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Internal Josephson effects in spinor dipolar Bose-Einstein condensates
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We theoretically study the internal Josephson effect, which is driven by spin-exchange interactions and
magnetic dipole-dipole interactions, in a three-level system for spin-1 Bose–Einstein condensates, obtaining
novel spin dynamics. We introduce single spatial mode approximations into the Gross–Pitaevskii equations and
derive the Josephson-type equations, which are analogous to tunneling currents through three junctions between
three superconductors. From an analogy with two interacting nonrigid pendulums, we identify unique varied
oscillational modes, called the 0–π , 0–running, running–running, 2nπ & running–2π , single nonrigid pendulum,
and two rigid pendulums phase modes. These Josephson modes in the three states are expected to be found in
real atomic Bose gas systems.

DOI: 10.1103/PhysRevA.81.023624 PACS number(s): 03.75.Mn, 03.75.Kk

I. INTRODUCTION

The Josephson effect is a universal quantum phenomenon,
defined as a current between two or more macroscopic
quantum states with weak coupling driven by the relative
phases of the macroscopic wave functions. The effect for a
junction of two superconductors was originally predicted by
Josephson [1] and discovered by Anderson and Rowell [2].
When the effect was first predicted and discovered, it was
considered a characteristic phenomenon of superconductors.
However, the effect has been found in diverse fields since
Feynman redefined the Josephson effect as the quantum
tunneling between two levels [3]. In particular, Maki and
Tsuneto have considered nonlinear ringing between equal
spin pairing states |↑↑〉 and |↓↓〉 in superfluid 3He-A as
a Josephson junction between the internal degrees of free-
dom [4]. Webb et al. subsequently observed the effect by
NMR [5].

Such Josephson effects have also been studied in atomic
Bose–Einstein condensates (BECs). Smerzi et al. derived
Josephson-type equations in a double-well potential from
Gross–Pitaevskii (GP) equations with two-mode approxima-
tions, revealing three oscillations, namely the 0, π , and running
phase modes [6,7]. Macroscopic quantum self-trapping from
the running mode and ac Josephson effects from the 0 phase
mode have been observed by Albiez et al. [8]. Furthermore,
Zhang et al. considered transitions between three energy
states for spin-1 BECs driven by spin-exchange interactions
as internal Josephson effects [9] and Chang et al. observed the
internal Josephson oscillation [10].

In addition, studies have focused on the magnetic dipole–
dipole interaction (MDDI) in BECs. The interaction between
spins has a characteristic symmetry for spin and orbit.
Therefore, the interaction is theoretically expected to give
new quantum phases [11–13], the Einstein–de Haas effect
[14], and so on. Griesmaier et al. realized spinor dipolar
condensates using 52Cr atoms [15], which have larger magnetic
moments than alkali atoms. The condensates clearly show
shape-dependent anisotropy of the MDDI [16,17]. Thus, the
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study of the MDDI has opened new avenues for investigating
spinor condensates.

For the MDDI, we can demonstrate new internal Josephson
effects in spin-1 BECs. The internal Josephson effect without
the MDDI is analogous with two junctions between three
superconductors because the weak coupling, namely the spin-
exchange interaction, permits transitions only from |0〉 to |±1〉
and from |±1〉 to |0〉. However, it is possible to transfer from
|±1〉 to |∓1〉 if the MDDI drives the transitions because
the anisotropic interaction breaks the conservation law of
magnetization, as will be discussed later. As the previous study,
Cheng et al. have discussed the Josephson effects driven by the
MDDI in the conservation law [18]. Therefore, we consider out
of the law that the transitions through the MDDI are analogous
with Josephson effects for three circular junctions between
three superconductors (see Fig. 1).

In this article, we introduce the spin dynamics in spinor
dipolar BECs in Sec. II using the GP equations with single-
mode approximations, and we demonstrate new Josephson
oscillations in Sec. III. Section IV is devoted to a conclusion.

II. FORMULATION

A. Single-mode approximation

Before we consider the internal Josephson effect for spin-1
BECs, we analyze the spin-1 GP equations with an MDDI:

ih̄
∂ψα

∂t
=

(
− h̄2

2M
∇2 + V − µ

)
ψα − geµBH · Fαβψβ

+ c0ψ
∗
βψβψα + c2F · Fαβψβ

+ cdd

∫
dr′ δij − 3eiej

|r − r′|3 Fi(r′)F j

αβψβ, (1)

where the integers α and β represent the spin 0 and ±1 states,
V (r) is the trapping potential, and µ is the chemical potential.
The spin-density vector F = (Fx, Fy, Fz) and the vector of
the spin components Fαβ = (Fx

αβ, F
y

αβ, F z
αβ) are represented

by Fi=x,y,z = ψ∗
αF i

αβψβ given by the components F i
αβ of the

spin matrices F̂i for spin-1. The Zeeman term is presented by
Lande’s g factor of an electron ge, Bohr magneton µB , and
external magnetic field H. The coefficients c0 = (g0 + 2g2)/3
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FIG. 1. (Color online) The transitions, driven by the Hamiltonians
of a spin-exchange interaction ĤSE (black arrows) and an MDDI
Ĥdd [red (dark gray) arrows], between the energy states (solid line)
are analogous to the Josephson effect for cooper pairs tunneling
through (a) two and (b) three insulators (white boxes) between
superconductors, named SC1, SC0, and SC-1 [red (dark gray) boxes].
(a) and (b) compare differently with the MDDI, whereas the MDDI
can also drive transition from |±1〉 to |∓1〉. The circles represent the
condensate.

and c2 = (g2 − g0)/3 are the interaction parameters for gi =
4πh̄2ai/M represented by the s-wave scattering lengths ai .
The coefficient of the MDDI is given by cdd = µ0g

2
eµ

2
B/4π

with e = (r − r′)/|r − r′| being a unit vector.
Since it is difficult to derive the internal Josephson effect

from Eq. (1) directly, we introduce the single-mode approxi-
mation [9]:

ψi(r, t) =
√

Nξi(t)φ(r) exp

(
− iµt

h̄

)
, (2)

where φ satisfies the eigenvalue equation (−h̄2∇2/2M + V +
c0n)φ = µφ with the relation

∫
dr|φ|2 = 1. The approxima-

tion can be used when the shapes of the condensates are
decided by the spin-independent terms, namely |c0| 	 |c2|.
The condition is satisfied for 87Rb and 23Na. The validity of the
approximation in spin-1 dipolar BECs has been discussed by
Yi and Pu [19]. They found that the approximation is affected
by the anisotropic parameter of the shape of the condensates
λ and the ratio cdd/|c2|. For small λ, the approximation is
well defined even if the ratio is large. Here, we assume that
the ratio is smaller than 1, allowing the approximation to be
used. Hence, introducing Eq. (2) into Eq. (1), we can derive
the equation of the spinor |ξ 〉 = (ξ1, ξ0, ξ−1)T in H = Hẑ,

ih̄
d

dt
|ξ 〉 = (ĤZ + ĤSE + Ĥdd )|ξ 〉, (3)

given by the Zeeman, the spin-exchange interaction, and the
MDDI Hamiltionians,

ĤZ = −geµB

⎛
⎜⎝

H 0 0

0 0 0

0 0 −H

⎞
⎟⎠ , (4)

ĤSE = c

⎛
⎜⎝

1 − 2ρ−1 ρ−10 0

ρ0−1 1 − ρ0 ρ01

0 ρ10 1 − 2ρ1

⎞
⎟⎠ , (5)

Ĥdd = c+
dd

⎛
⎜⎝

ρ0 ρ−10 0

ρ0−1 1 − ρ0 ρ01

0 ρ10 ρ0

⎞
⎟⎠

+ c−
dd

⎛
⎜⎝

0 ρ10 ρ0

ρ01 ρ−11 + ρ1−1 ρ0−1

ρ0 ρ−10 0

⎞
⎟⎠

+ 2cz
dd

⎛
⎜⎝

m 0 0

0 0 0

0 0 −m

⎞
⎟⎠ , (6)

where ρij = ξ ∗
i ξj (ρii = ρi) are components of the density

matrix ρ = |ξ 〉〈ξ |, c±
dd = cx

dd ± c
y

dd with cz
dd given by

ci
dd = cdd

2
N

∫∫
drdr′ |φ(r)|2|φ(r′)|2

|r − r′|3

⎛
⎝1 − 3ei

∑
j

ej

⎞
⎠ ,

(7)

c = c2N
∫

dr|φ|4 are the interaction parameters, and
m = ρ1 − ρ−1 is the magnetization. Comparing Eq. (5) with
Eq. (6), we can conclude that the term with c−

dd in Ĥdd

includes the operators |±1〉〈∓1|, which project from |∓1〉
to |±1〉, where |1〉 = (1, 0, 0)T , |− 1〉 = (0, 0, 1)T are unit
vectors. These operators are not included in ĤSE . We again
emphasize that the transition from |±1〉 to |∓1〉 is possible
only by the MDDI.

Using the relation
∑

i ρi = 1, we can rewrite the spin
exchange and the dipole term to give

ĤSE + Ĥdd = (c + c+
dd )

⎛
⎜⎝

ρ0 ρ−10 0

ρ0−1 1 − ρ0 ρ01

0 ρ10 ρ0

⎞
⎟⎠

+ c−
dd

⎛
⎜⎝

0 ρ10 ρ0

ρ01 ρ−11 + ρ1−1 ρ0−1

ρ0 ρ−10 0

⎞
⎟⎠

+ (
c + 2cz

dd

) ⎛
⎜⎝

m 0 0

0 0 0

0 0 −m

⎞
⎟⎠ . (8)

Equation (8) clearly shows that a c term can be included in the
c+
dd and cz

dd terms. In short, the MDDI is partly renormalized
in the spin-exchange interaction.

In conclusion for the MDDI, three important roles for spin
dynamics appear in Eq. (6). The first is the spin-exchange
effect, as in Eq. (5), given by the c+

dd and cz
dd terms of Ĥdd .

The second is the transition from the ±1 to the ∓1 states,
given by the c−

dd term. The last is an interaction between
the magnetization and the spin, given by the cz

dd term, which
implies that the magnetization produces a molecular field.

B. Josephson-type equations

In order to investigate the Josephson effect for transitions
between the three states, we substitute ξj = √

ρje
iθj in Eq. (3),

deriving the Josephson-type equations for ρ0, m and relative
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phases θ = θ1 + θ−1 − 2θ0 and θm = θ1 − θ−1;

ρ̇0 = 2

h̄
c′ρ0

√
(1 − ρ0)2 − m2 sin θ

+ 2

h̄
c−
ddρ0{(1 − ρ0) sin θ cos θm + m cos θ sin θm}, (9)

ṁ = −2

h̄
c−
ddρ0{

√
(1 − ρ0)2 − m2 sin θm

+ (1 − ρ0) cos θ sin θm + m sin θ cos θm}, (10)

θ̇ = 2

h̄
c′(1 − 2ρ0) + 2

h̄
c′ (1 − ρ0)(1 − 2ρ0) − m2√

(1 − ρ0)2 − m2
cos θ

+ 2

h̄
c−
dd

{
(1 − ρ0)(1 − 2ρ0) − m2√

(1 − ρ0)2 − m2
cos θm

+ (1 − 2ρ0) cos θ cos θm − m sin θ sin θm

}
, (11)

θ̇m = −2

h̄
(EZ + c′′m) + 2

h̄
c′ mρ0√

(1 − ρ0)2 − m2
cos θ

+ 2

h̄
c−
dd

{
mρ0√

(1 − ρ0)2 − m2
cos θm + ρ0 sin θ sin θm

}
,

(12)

where EZ = −geµBH is the Zeeman energy and c′ = c +
c+
dd and c′′ = c + 2cz

dd are the interaction coefficients. The
equations clearly demonstrate the definition of the Josephson
effect, namely a current between states driven by a relative
phase.

First, from Eq. (10), we can easily see that conservation of
the magnetization is broken by the c−

dd term. When c−
dd = 0,

the magnetization becomes a conserved value. Under the
single-mode approximation, ci

dd = 0 for uniform density and
a spherical shape, which is obtained from the integration,
Eq. (7). Second, we note that the variables ρ0 and m are
canonical conjugates of θ and θm, respectively. Therefore,
these equations can be derived from the canonical equations
of motions:

ρ̇0 = −2

h̄

∂H
∂θ

, θ̇ = 2

h̄

∂H
∂ρ0

, ṁ = 2

h̄

∂H
∂θm

, and

θ̇m = −2

h̄

∂H
∂m

,

whose Hamiltonian is represented as

H = Hθ + Hθm
+ Hint, (13)

where

Hθ = c′{ρ0(1 − ρ0) + ρ0

√
(1 − ρ0)2 − m2 cos θ}, (14)

Hθm
= c′′

2
m2 + Ezm + c−

ddρ0

√
(1 − ρ0)2 − m2 cos θm,

(15)

Hint = c−
dd{ρ0(1 − ρ0) cos θ cos θm − ρ0m sin θ sin θm}.

(16)

Since the Hamiltonian H(ρ0(t),m(t), θ (t), θm(t)) is not ex-
plicitly time dependent, the relation dH/dt = ∂H/∂t = 0 is
satisfied. A comparison of the Hamiltonian with that of a
pendulum of length l and angle ϕ, Hp(P, ϕ) = P 2/2M +

θmθ

lθ lθm

FIG. 2. (Color online) Analogy between the dynamics of Joseph-
son junctions and two interacting nonrigid pendulums with lengths
lθ ∝ c′ρ0

√
(1 − ρ0)2 − m2 and lθm

∝ (c−
dd/c

′)lθ .

Mgl cos ϕ, shows that the dynamics described by the equations
may be equal to that of two nonrigid pendulums, because
Hθ and Hθm

are similar to the Hamiltonian of nonrigid
pendulums with lengths proportional to c′ρ0

√
(1 − ρ0)2 − m2

and c−
ddρ0

√
(1 − ρ0)2 − m2 and angles θ and θm, respectively.

The two pendulums have some interaction with each other,
represented by terms in Hint that include the product of
θ by θm. Therefore, we consider that Eq. (13) represents
the Hamiltonian of two interacting nonrigid pendulums
(see Fig. 2).

III. SPIN DYNAMICS

In this section, we discuss solutions of the equations for
EZ = 0, namely small oscillations of two nonrigid pendulums
in Sec. III A, oscillations of a single nonrigid pendulum in
Sec. III B, and oscillations of two interacting nonrigid pendu-
lums in Sec. III C.

A. Small oscillation around stationary solutions

Not being able to solve the Josephson-type equation
directly, we first obtain the solutions for the stationary states:

ρ0 = ρa, m = 0, θ = (2n + 1)π, θm = θa (17)

and

ρ0 = 1
2 , m = 0, θ = 2nπ, θm = nπ. (18)

Here ρa and θa are arbitrary constants. For EZ = 0, we cannot
obtain the stationary magnetization m �= 0. In order to study
the features of the oscillation of the pendulums, we perform
linear analysis by introducing the approximations ρ0  ρ0s +
δρ0, m  ms + δm, θ  θs + δθ , and θm  θms + δθm, where
these deviations from the stationary solutions are very small,
into the Josephson-type equations. Linearizing the equations
by ignoring squares of the deviations, we obtain the equations
for the deviations; the solutions around Eq. (17) are

˙δm = δ̇θ = 0, (19)

and those around Eq. (18) are

¨δρ0 = −ω2
ρ0±δρ0, (20)

¨δm = −ω2
m±δm (21)

where ω2
ρ0± = 4(c′ ± c−

dd )2/h̄2 and ω2
m± = 4c−

dd{∓cz
dd ±

(c+
dd ± c−

dd )/2}/h̄2 with ± indicating the equations for θms =
2nπ and (2n + 1)π , respectively. From Eq. (19), we can
conclude that there are no stable oscillational solutions around
Eq. (17). On the other hand, Eqs. (20) and (21) are easily
solved and have the solutions δρ0 = �ρ cos ωρ±t and δm =
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�m cos ωm±t , whose amplitudes are �ρ and �m. Considering
the deviations from Eqs. (19) to (21), we can conclude that
there are no oscillations around θ = (2n + 1)π , namely the
π phase mode in the canonically conjugate variable {ρ0, θ},
whereas there are 0 and π phase modes in {m, θm}.

B. Josephson effect for a nonrigid pendulum

Next, in order to review the 0, π , and running phase
modes in spin-1 BECs, we study the Josephson effect for
c−
dd = 0 obtained for spherically shaped condensates [20].

Under this condition, the spin dynamics are represented by
Eqs. (9) and (10) with c−

dd = 0, where there is no need to
consider ṁ and θ̇m because m is constant. The equations are the
same as for the Josephson effect driven by the spin-exchange
interaction in Ref. [9] if the quadratic Zeeman effect, which
is effective for the hyperfine interaction between the nuclear
and electron spins in the Zeeman splits [10,21], is introduced
in the equation. Therefore, considering the quadratic Zeeman
effect δdd ∝ H 2

eff given by the effective dipole magnetic field
Heff ∝ cz

ddm, we obtain

ρ̇0 = 2

h̄
c′ρ0

√
(1 − ρ0)2 − m2 sin θ, (22)

θ̇ = − 2

h̄
δdd + 2

h̄
c′(1 − 2ρ0)

+ 2

h̄
c′ (1 − ρ0)(1 − 2ρ0) − m2√

(1 − ρ0)2 − m2
cos θ, (23)

where ρ0 is the canonical conjugate of θ . Hence, these
equations are derived from the canonical equations of motions
for the Hamiltonian:

H′ = δdd (1 − ρ0) + c′{ρ0(1 − ρ0)

+ ρ0

√
(1 − ρ0)2 − m2 cos θ. (24)

The Hamiltonian directly represents the system of a nonrigid
pendulum. Using H′ = H′

0 = H′[ρ0(0), θ (0)] for Ḣ′ = 0, we
can solve Eq. (22) and obtain the solutions expressed by
Jacobi’s elliptic function cn(a, k); for c′ > 0

ρ0 = ρb + (ρc − ρb)cn2

(
1

h̄

√
2c′δdd (ρc − ρa)t, k

)
, (25)

and for c′ < 0

ρ0 = ρb − (ρb − ρa)cn2

(
1

h̄

√
−2c′δdd (ρc − ρa)t, k′

)
, (26)

where k = {(ρc − ρb)(ρc − ρa)}1/2 and k′ = {(ρb − ρa)/(ρc −
ρa)}1/2 are given by the roots of ρ̇0 = 0, ρa,b,c. Pendulumlike
oscillations occur on the contour lines of Eq. (24) for energy
being conserved, shown in Fig. 3. The dynamics can be
classified into three modes; the dynamics on the lines around
θ = 0 and π are called the 0 and π phase modes, respectively,
and the line from θ = −2π to 2π is the running phase mode.
The 0 phase mode corresponds to the motion of a pendulum
oscillating around θ = 0 with a varying length. The π phase
mode also shows an oscillation around θ = π , a characteristic
dynamics for the nonrigid pendulum. Finally, the running
phase mode represents the rotational dynamics.

0.66

0.11

H /c

θ

1

θ

ρ0

m = 0

0
0 π 2π−2π −π

0.19

0.63

m = 0.3

0.7

0 π 2π−2π −π
0

ρ0

θ

FIG. 3. (Color online) Contour lines of Eq. (24) for (a) m = 0
and (b) 0.3 with δdd = 0.3c′(>0), represented as white. The bold
lines show the phase modes written in the figures, respectively.

C. Josephson effect for two pendulums

Here we discuss the dynamics in Eqs. (9) to (12). Solving
the equations numerically using the fourth-order Runge–
Kutta method, we obtain several characteristic results for
two interacting nonrigid pendulums. In the calculations, we
estimate that the interaction parameters satisfy the relations
c′/c−

dd = 11 and c′′/c−
dd = 12, which are determined from

the order estimations c+
dd ∼ c−

dd ∼ cz
dd and c ∼ 10c+

dd . The
orders between the spin-exchange interactions and MDDIs
have been discussed by Yi and Pu [22]. In this subsection, we
denote the pendulums having angles θ and θm as θ and θm

pendulums, respectively, considering the dynamics from the
time developments of the canonically conjugate variables (in
Sec. III C1) and the Hamiltonian (in Sec. III C2).

1. Modes in the dynamics of four variables

First, we present the typical 0–π phase mode for which
θ and θm oscillate around θ = 0 and θm = π , respectively,
as shown in Figs. 4(a) and 4(b). The phase mode is clearly
obtained by applying small deviations from the stationary
solution, Eq. (18). Considering the motion of the pendulums,
the θ and θm pendulums make small oscillations around 0 and π

as the lengths grow and shrink. The features of the oscillations
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(c−dd/h̄)t

π π ππ π π π

ρ0

θ

m

θm

ρ0

θm

θm

FIG. 4. (Color online) Typical 0–π phase mode. The dynamics
of the four variables ρ0, m, θ , and θm in (a) and (b) and the
phase projections of the motions in {ρ0, θ} and {m, θm} in (c)
and (d) are given for ρ0(0) = 0.51, m(0) = 0.01, θ (0) = π/18, and
θm(0) = 19π/18.

are represented by trajectories projected in the phase spaces
{ρ0, θ} Figs. 4(c) and {m, θm} 4(d). Since the trajectory is
confined to a simple closed orbit, we can see that the motion of
the pendulums is similar to that of two independent pendulums,
namely a periodic motion. On the other hand, changing
m(0) = 0.01 to m(0) = 0.36, we obtain the quasi-0–π phase
mode, shown in Fig. 5. The trajectory plotted in Fig. 5(c) is
not an orbit, and hence, we regard the spread trajectory as
evidence of chaotic motion of the θ pendulum. In order to
investigate the chaotic motions, we plot Poincaré mappings
in Fig. 6. The mappings represent projections of the cross
sections at t = nT (n = 1, 2, . . .), where the period T is given
by eigenfrequencies in the systems, providing direct evidence
of chaotic motion for the 0–π phase modes, because there is
only one point in the Poincaré mappings where the motions
are not chaotic but periodic. However, it is unexpected that
the typical 0–π phase mode should be chaotic. Therefore, we
conclude that the motions of the two pendulums are essentially
chaotic, and thus, the dynamics do not occur on a contour line
of the 0 phase mode. The θm pendulum is also not a dynamic
on a contour line of the π phase mode.

Setting m(0) = 0.37, where the other initial conditions are
same as the 0–π phase mode, we can produce the 0–running
phase mode in Fig. 7. The phase mode shows that the θ

pendulum oscillates around θ = 0 with a small amplitude
chaotically, whereas the θm pendulum rotates continuously,
given by the dynamics of θm in Fig. 7(b). The θm pendulum
has a long stay around θm = 2nπ , which can be understood by
Fig. 7(b).

Thus, we can obtain the transition from the 0–π phase mode
to the 0–running phase mode by changing m(0).

π ππ π

(c−dd/h̄)t

ρ0

θ

m

θm

ρ0

θm

θm

FIG. 5. (Color online) Quasi-0–π phase mode for ρ0(0) = 0.51,
m(0) = 0.36, θ (0) = π/18, and θm(0) = 19π/18.

Third, the running–running phase mode is shown in
Fig. 8. The solutions show that the motions of the pendulums
are rotations with different angular frequencies.

Fourth, we present the 2nπ & running–2π phase mode
in Fig. 9, where n is an integer. In this mode, the dynamics
of the two pendulums show strange and interesting motions.
Especially, the θ pendulum repeats an oscillation around θ =
2nπ and a rotation from θ = 2nπ to (2n + 1)π . The dynamics
indicates a transition from the contour lines of the 2π phase

π π ππ π π π

π π π π

θ θm

ρ0 m

m

θ

ρ0

θm

FIG. 6. Poincaré mappings for the 0–π modes within (c−
dd/h̄)t =

500. The upper and lower figures show the projections of the Poincaré
sections at T = 2π/ωρ0− for the phase spaces {ρ0, θ} and 2π/ωm−
for {m, θm} in Figs. 4 and 5, respectively.
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(c−dd/h̄)t

π π π π
π π

ρ0
θ

m θm

ρ0

θ

m

θm

FIG. 7. (Color online) 0–running phase mode for ρ0(0) = 0.51,
m(0) = 0.37, θ (0) = π/18, and θm(0) = 19π/18.

mode to another line of the running phase mode, which is
shown clearly in Fig. 9(c). Due to this transition, transitions
should occur for Ḣ = 0 in {m, θm}. Also, the θm pendulum has
a time average of 〈θ〉 = 2π . However, the pendulum repeats a
rotation from θ  0 to 4π and returns to θ  0.

We obtain the motions of a single nonrigid pendulum in
Fig. 10 and two rigid pendulums in Fig. 11, namely the
single nonrigid pendulum and two rigid pendulums phase
modes. For the single pendulum, the θ pendulum oscillates

(c−dd/h̄)t

π ππ π π

ρ0

θm

θm

ρ0

θ

m

θm

FIG. 8. (Color online) running–running phase mode for ρ0(0) =
0.6, m(0) = 0.2, θ (0) = π/2, and θm(0) = π .

θ

θm (b)

(c−dd/h̄)t

π π π π π π π

ρ0

m

ρ0

θ

m

θm

(a)

(c) (d)

FIG. 9. (Color online) 2nπ & running–2π phase mode for
ρ0(0) = 0.1, m(0) = 0, and θ (0) = π/2, θm(0) = π/3.

around θ = 0, whereas the length of the θm pendulum grows
and shrinks without an oscillation because θm = 0. The phase
space in Fig. 10(c) shows a single trajectory, indicating
dynamics like that of a rigid pendulum. On the other hand,
Figs. 11(a) and 11(b) show the running–running mode for
rigid pendulums given by the constants ρ0 and m. Then,
Figs. 11(c) and 4(d) are very difficult solutions for understand-
ing the dynamics. The θ pendulum exponentially deviates from
the initial angle to θ = π . The θm pendulum, however, exhibits
the rotation of a rigid pendulum.

θ

θm

(c−dd/h̄)t

π ππ π π

ρ0

m

ρ0

θ

m

θm

FIG. 10. (Color online) single nonrigid pendulum phase mode for
ρ0(0) = 0.2, m(0) = 0, θ (0) = π/2, and θm(0) = π .
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θ

θm

(c−dd/h̄)t

ρ0

m

FIG. 11. (Color online) The motion of two rigid pendulums for
the initial conditions ρ0(0) = 0, m(0) = 0.8, θ (0) = 0, and θm(0) = 0
for (a) and (b), and ρ0 = 0, m = 0.01, θ = π/4, and θm = π for (c)
and (d).

2. Contour lines of the Hamiltonian

Here we discuss the various modes for two pendulums from
the Hamiltonians.

It is impossible to plot the contour lines for the total
Hamiltonian, namely Eq. (13), because of the four dimensions
given by ρ0, m, θ , and θm. By considering the Hamiltonian of
the θ pendulum Hθ and the θm pendulum Hθm

, however, the
features of the motions of the pendulums can be obtained.

As mentioned in Sec. II B,H is a conserved value. However,
Hθ , Hθm

, and Hint are not conserved. Figure 12 shows the time
development of these Hamiltonians, indicating the nonconser-
vation, noting though that the values in (a) exhibit only small
oscillations that do suggest energy conservation. Therefore, the
trajectory in the phase spaces does not have to follow a contour
line. As examples, we show the trajectories and contour lines
for the 0–π and 2nπ & running–2π phase modes in Fig. 13.
Naturally, the contour lines change with time because Hθ and
Hθm

include the parameters m(t) and ρ0(t), which are time
dependent. In Fig. 13, we plot the lines for the time averages
m = 〈m〉 and ρ0 = 〈ρ0〉 in Hθ and Hθm

. The trajectories of the
0–π phase mode almost follow the contour lines in Figs. 13(a)

(c−dd/h̄)t

Hθ/c
−
dd

Hθm/c−dd
Hint/c

−
dd

FIG. 12. (Color online) Time development of the Hamiltonians.
(a), (b), and (c) have the same initial conditions as for Figs. 4, 5, and
9, respectively.

π π π

π π π ππ π π π π

π

θ

ρ0

θm

m

ρ0

θ

m

θm

FIG. 13. (Color online) Trajectories and contour lines for the 0–π ,
(a) and (b), and 2nπ & running–2π phase modes, (c) and (d). The
trajectories are shown as green (right gray) lines in the 0–π mode
and red (dark gray) dots in the 2nπ & running–2π mode. The lines
are given by Eq. (14) for m = 〈m〉  0 in (a) and (c) and Eq. (15)
for ρ0 = 〈ρ0〉  0.5 in (b) and 0.47 in (d). The magnitude of the
Hamiltonians increases from black to white.

and 13(b). On the other hand, for the 2nπ & running–2π phase
mode of (c) and (d), the trajectories do not follow the lines.
However, the transition from the 0 to running phase modes is
clearly seen in {ρ0, θ}. An important result is that the dynamics
of the θm pendulum cannot be discussed as transitions between
the 0, π and running phase modes.

IV. CONCLUSION

By introducing the single-mode approximation into the
spin-1 GP equations with the magnetic dipole–dipole interac-
tions, we show the transitions between the three states, which
are analogous with Josephson junctions of a ring of three super-
conductors. Furthermore, deriving the canonical equations of
motion from the Josephson equations, the Josephson junctions
are found to also be analogous with two nonrigid pendulums
having interactions with each other. First, in order to consider
a simple nonrigid pendulum, we assume that the shapes of
the condensates are spheres. In this way, we review well-
known three-phase nodes, the 0, π and running phase modes.
Second, we numerically solve the equations for two nonrigid
pendulums, showing several motions: the 0–π , 0–running,
running–running, 2nπ & running–2π , single pendulum, and
two rigid pendulum phase modes. Finally, we discuss the
transition between the modes from the nonconserved Hamil-
tonians Hθ , Hθm

, and Hint.
We consider that the Josephson effect, which has been

found in various phenomena from condensed matter physics
to classical physics, is a universal and important physical
phenomenon. In this study, the effect was discussed only in
relation to BECs. However, we expect that the study of the
Josephson effect of the three states will be useful in many
other fields beyond atomic BECs.
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