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Recent experiments on strongly coupled cavity quantum electrodynamics present new directions in “matter-
light” systems. Following on from our previous work [Phys. Rev. Lett. 102, 135301 (2009)] we investigate
Bose-Hubbard models coupled to a cavity light field. We discuss the emergence of photoexcitations or “polaritons”
within the Mott phase, and obtain the complete variational phase diagram. Exploiting connections to the super-
radiance transition in the Dicke model we discuss the nature of polariton condensation within this novel state.
Incorporating the effects of carrier superfluidity, we identify a first-order transition between the super-radiant Mott
phase and the single component atomic superfluid. The overall predictions of mean field theory are in excellent
agreement with exact diagonalization and we provide details of superfluid fractions, density fluctuations, and
finite size effects. We highlight connections to recent work on coupled cavity arrays.
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I. INTRODUCTION

Over the last few years there has been tremendous activity
in studying the coherent interaction of matter and radiation in
a rich variety of “matter-light” systems. Recent experiments
have combined cavity quantum electrodynamics (cavity QED)
with cold atomic gases, and allow access to the strongly cou-
pled regime. This has led to pioneering work on Bose-Einstein
condensates (BECs) in ultrahigh finesse optical cavities [1],
and with optical fibers on atom chips [2]. It has also stimulated
advances in cavity optomechanics and condensate dynamics
[3,4]. More recently, strong matter-light coupling has been
achieved for ion crystals [5,6], with potential applications in
quantum information processing. These developments offer
a wealth of possibilities, at the interface between quantum
optics, cold atoms and condensed matter physics. The light
field serves not only as a probe of the many-body system [7],
but may also support interesting cavity mediated phenomena
and phases. It may further provide routes to simulate strongly
correlated quantum systems, with proposals based on coupled
cavity arrays [8–23] and nonlinear optical fibers [24].

Allied advances in solid state devices include cavity
QED experiments with superconducting qubits in microwave
resonators [25]. This has provided clean realizations of the
paradigmatic Jaynes-Cummings [26] and Dicke models [27],
describing two-level systems coupled to radiation. It has also
led to remarkable observations of the Lamb shift [28]. This
is complemented by the quest for polariton condensates in
semiconductor microcavities [29–34], where the hybridization
of an exciton and a photon yields low effective mass polaritons.
This offers the prospect of higher transition temperatures than
for exciton BEC, and gives access to coherence properties via
the cavity light field.

Motivated by this broad spectrum of activity, we examine
the impact of cavity radiation on bosonic Hubbard models
[35]. Following on from our previous work [36], we focus
on a two-band model in which photons induce transitions
between two internal states or Bloch bands. This is a natural
generalization of the much studied two-level systems coupled
to radiation, and may serve as a useful paradigm in other
contexts. In Ref. [36] we discussed the interplay of Mott

physics, photoexcitation, and Bose condensation promoted
by carrier itinerancy. In particular, we provided evidence
for a novel Mott phase with photoexcitations analogous to
polaritons. In this work we study this problem in more detail,
with emphasis on the nature of the polariton condensate. We
also highlight connections to coupled cavity arrays described
by the Jaynes-Cummings-Hubbard model and its variants
[8–23]. Additional directions in cold atoms include recent
work on excitons [37], generalized Dicke models [38], and
light propagation in atomic Mott insulators [39,40].

The outline of this paper is as follows. We begin in Sec. II
with an introduction to the two-band Bose-Hubbard model
coupled to quantum light [36]. In Sec. III we discuss the zero
hopping limit of this model and anchor the phase diagram.
We study the evolution with the strength of the matter-light
coupling and highlight the connections to the Dicke model
and the super-radiance transition [41–44]. In Sec. IV we use
a variational approach to obtain the overall phase diagram
in the presence of hopping. We corroborate our findings in
Sec. V using numerical simulations. We discuss the relation
to the bosonic BEC-BCS crossover and to other problems of
current interest in Sec. VI. We conclude in Sec. VII and provide
technical appendices.

II. MODEL

Let us consider a two-band Bose-Hubbard model coupled
to the quantum light field of an optical cavity in the rotating
wave approximation [36]:

H0 =
∑
iα

εαniα + ωψ†ψ +
∑
iαα′

Uαα′

2
: niαniα′ :

−
∑
〈ij〉

Jα(α†
i αj + h.c.) + g

∑
i

(b†i aiψ + H.c.), (1)

where i labels lattice sites, and α = a, b are bosons obeying
canonical commutation relations [αi, α

†
j ] = δij . These might

be states of different orbital or spin angular momentum,
and we assume the cavity radiation field, ψ , may induce
photoexcitations between these states; see Fig. 1.
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FIG. 1. (Color online) Heuristic diagram showing photoexcita-
tions above the filled bosonic Mott state. In analogy with fermionic
band insulators, the coherent superposition of a particle–hole pair and
a photon will be referred to as a “polariton”. Within an equilibrium
framework these polaritons may Bose condense.

Here, εα effects the band splitting ω0 ≡ εb − εa , and Uαα′

are interactions, where :: indicates normal ordering. This
yields : niαniα := niα(niα − 1) for like species and : niαniα′ :=
niαniα′ for distinct species. Jα are nearest neighbor hopping
parameters, and ω is the frequency of the cavity mode. For
simplicity we consider just a single mode which couples
uniformly to the bands. The coupling g is the strength of the
matter-light interaction. In view of the box normalization of
the photon field, the dipole coupling strength is proportional
to 1/

√
V , where V is the volume of the cavity. With a

fixed density of lattice sites, ρ = N/V , it is convenient to
denote g ≡ ḡ/

√
N , where N is the total number of lattice

sites. We work in units where the half-band splitting ω0/2 =
(εb − εa)/2 = 1.

An important feature of the Hamiltonian (1) is that the
individual atom and photon numbers are not conserved due
to the matter-light interaction. However, the total number of
atomic carriers

N1 ≡
∑

i

(
nb

i + na
i

)
, (2)

and the total number of photoexcitations

N2 ≡ ψ†ψ + 1

2

∑
i

(
nb

i − na
i + 1

)
, (3)

are conserved and commute with H0. The latter counts the
total number of photons plus particle-hole pairs, and we refer to
these composite excitations as “polaritons”—see Fig. 1. These
conservation laws reflect the global U(1) × U(1) symmetry of
H0 such that

a → eiϑa, b → eiϕb, ψ → e−i(ϑ−ϕ)ψ, (4)

where ϑ, ϕ ∈ R. In general this symmetry involves mixing be-
tween the matter-light sectors. Moreover, it also allows for the
simultaneous coexistence of Mott behavior and condensation,
corresponding to an unbroken U(1) and broken U(1) symmetry,
respectively. This symmetry will have a direct manifestation
in the phase diagram, and will suggest implications for
other multicomponent problems. We will work in the grand
canonical ensemble:

H = H0 − µ1N1 − µ2N2. (5)

We begin by assuming that a are strongly interacting hardcore
bosons, Uaa → ∞, and that b are sufficiently dilute so that we
may neglect their interactions, Ubb = 0. We will also start with
Uab = 0, before discussing departures from these conditions.

III. ZERO HOPPING LIMIT

Before embarking on a detailed examination of the model
(1), we investigate the zero hopping limit. As in the single-band
Bose-Hubbard model [45,46] this anchors the topology of the
general phase diagram. In the present case this is particularly
informative since the zero hopping phase diagram evolves with
the matter-light coupling, g. In addition, the global photon
mode couples all the sites, even in this zero hopping limit.
To gain a handle on this reduced Hamiltonian, we find it
convenient to develop two complementary approaches. These
help illuminate different aspects of the more general itinerant
problem, and provide a platform for extensions. In Sec. III A
we begin with a variational approach using a coherent state
ansatz for the photons. This will enable us to derive an
effective single site Jaynes-Cummings model [47] for the
a, b bosons, and proceed with the minimum of technical
input. In section III B we instead map the a, b bosons on
to effective spins. This yields the paradigmatic Dicke model
[41], describing many spins coupled to radiation. The Jaynes-
Cummings and Dicke models are familiar in atomic physics
and quantum optics and we provide a brief overview of these
closely related Hamiltonians in Appendix A. Both approaches
yield equivalent results and indicate a novel quantum phase
transition occurring within the lowest Mott lobe [36]. This
takes place from a conventional Mott state with no photons, to
a state with a nonvanishing population of photoexcitations,
as the strength of the matter-light coupling is increased.
This quantum phase transition coincides with the well known
super-radiance transition in the Dicke model [41–44], and we
interpret the results in this framework. The combination of
perspectives will be useful in the generalization to the itinerant
problem discussed in Sec. IV. For other proposals of Dicke
models and super-radiance transitions in cold atomic gases
see Refs. [48–50].

A. Variational approach

In the zero hopping and Uaa → ∞ limit, the Hamiltonian
(5) may be written in the form

H = ε̃a

∑
i

na
i + ε̃b

∑
i

nb
i + ω̃ψ†ψ

+ g
∑

i

(b†i aiψ + ψ†a†
i bi), (6)

where the site occupancy of a atoms is limited to 0, 1. We
absorb the chemical potentials in to the definitions

ε̃a ≡ εa − µ1 + µ2/2,

ε̃b ≡ εb − µ1 − µ2/2, (7)

ω̃ ≡ ω − µ2.

This bosonic Hamiltonian is analogous to the fermionic
problem of localized excitons in a microcavity [51,52]. An
instructive way to analyze the problem is to consider a coherent
state for the cavity light field:

|γ 〉 ≡ e− γ 2

2 +γψ† |0〉, (8)

where γ is a variational parameter to be determined. As usual,
this is an eigenstate of the annihilation operator, ψ , with
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eigenvalue γ . The coherent state assumption is expected to
become exact in the thermodynamic limit, and this is borne out
by the complementary approach in Sec. III B. The expectation
value,

〈γ |H |γ 〉 ≡
∑

i

Heff, (9)

yields an effective single site problem for the a and b atoms
which is readily diagonalized:

Heff = ε̃an
a + ε̃bn

b + ω̄γ 2 + gγ (b†a + a†b), (10)

where ω̄ ≡ ω̃/N . This is a significant merit of the current
approach, since it is directly tractable without technical input.
In view of the hardcore constraint on the a atoms, this
describes a single two-level system coupled to an effective
“radiation field” of b atoms. This paradigm is described by the
much studied Jaynes-Cummings model [47,53], discussed in
Appendix A. The eigenstates of Eq. (10) are superpositions
in the upper and lower bands. Focusing on Mott states with
total occupation na + nb = n, we consider admixtures of |0, n〉
and |1, n − 1〉 in the |na, nb〉 basis. The lowest eigenstate has
energy

E−
n = ω̄γ 2 + nε̃b − ω̃0/2 −

√
ω̃2

0/4 + g2γ 2n, (11)

where ω̃0 ≡ ε̃b − ε̃a is the effective band splitting. The
nonlinear dependence on

√
n is a notable feature of the

Jaynes-Cummings eigenstates and has recently been seen in
circuit QED experiments [26]. (Analogous dependence is also
seen in BECs [1,2] as a function of the number of atoms in
the cavity.) Minimizing with respect to γ , one obtains the
variational self-consistency condition

∂E−
n

∂γ
= 2γ

⎛
⎝ω̄ − g2n√

ω̃2
0 + 4g2γ 2n

⎞
⎠ = 0. (12)

Depending on the parameters, one may therefore obtain either
the trivial solution γ = 0, corresponding to zero photon
occupancy, or the nontrivial solution

γ 2
var = 1

4

(
g2n

ω̄2
− ω̃2

0

g2n

)
= 〈ψ†ψ〉, (13)

corresponding to a finite photon occupancy. This latter solution
is supported in the region where γ 2

var > 0, or when the matter-
light coupling exceeds the critical value

Ḡc ≡ ḡc

√
n = √

ω̃ω̃0, (14)

where for simplicity we consider ω̃0 > 0. As we shall discuss
in Sec. III B, this onset of the photon field corresponds to
the well-known super-radiance transition in the Dicke model
[41–44]. Indeed, it is readily seen from Eq. (13), that for Ḡ �
Ḡc, the photon field has the characteristic variation

〈ψ†ψ〉
N

= 1

4ω̃2

( Ḡ4 − Ḡ4
c

Ḡ2

)
, (15)

where Ḡ = ḡ
√

n. See for example Table 1 of Ref. [54]. We
shall give an alternative derivation of these results in Sec. III B.
This complementary approach becomes asymptotically exact
in the thermodynamic limit and helps justify the coherent state
ansatz (8).
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FIG. 2. (Color online) Zero hopping phase diagram in the Uaa →
∞ limit with Ubb = Uab = 0. We set εb = −εa = ḡ = 1 and ω = 1
corresponding to ω < ω0, where ω0 ≡ εb − εa . The vertical line, ḡ =
ḡc, is the super-radiance transition in the Dicke model, and separates a
Mott insulator (MI) with na + nb = 1 and 〈ψ †ψ〉 = 0, from a super-
radiant Mott insulator (SRMI) with 〈ψ †ψ〉 	= 0. Outside of these
regions are the vacuum state, and the unstable region corresponding
to macroscopic population of the b states. Whilst the total density
is fixed within both Mott phases, na + nb = 1, the individual a and
b populations vary in the super-radiant phase as shown in Fig. 3.
Inset: εb = −εa = ḡ = 1 and ω = 3. For ω > ω0 the upper and lower
boundaries may cross and terminate the lobe, since for µ2 > ω0 the
lowest stable state is the vacuum; see Appendix D for a derivation
of this.

Knowledge of the eigenvalues (11), together with the
variational consistency condition (12), enables one to construct
the zero hopping phase diagram depicted in Fig. 2. The lower
boundary consists of two segments. The first corresponds
to the transition from the vacuum to the Mott state with
no photons, and is given by the condition E−

1 (γ = 0) � 0
or µ1 � εa + µ2/2. The second segment corresponds to the
transition in to the photon rich Mott state and occurs when
E−

1 (γvar) � 0 where

E−
n (γvar) = nε̃b − ω̃0

2
− n

4ω̃

(
ḡ4 + ḡ4

c

ḡ2

)
. (16)

Explicitly this locus is given by

µ1 � εa + εb

2
− 1

4ω̃

(
ḡ4 + ω̃2(ω0 − µ2)2

ḡ2

)
. (17)

Noting that ḡc depends on n according to Eq. (14) we see that
E−

n (γvar) → n(ε̃b − ḡ2/4ω̃) as n → ∞. For ε̃b − ḡ2/4ω̃ � 0,
or chemical potentials satisfying

µ1 � εb − µ2

2
− ḡ2

4(ω − µ2)
, (18)

it is energetically favorable to macroscopically populate the
b levels. This corresponds to the upper boundary in Fig. 2.
Indeed, in the absence of the matter-light coupling Eq. (18)
yields ε̃b � 0 and is naturally associated with population of the
b states; we provide the corresponding g = 0 phase diagram
for comparison in Appendix B. In contrast to the classical
light case (where ψ is treated as a fixed c-number) coupling
to the fluctuating quantum field, ψ , eliminates the higher Mott
lobes corresponding to integer increases in the b-populations;
the higher lobes corresponding to the a particles have been
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FIG. 3. (Color online) Onset of magnetization M = (nb − na)/2
at the super-radiance transition, traversing a line through Fig. 2
with µ1 = 0. Whilst the total density na + nb = 1 remains pinned
throughout the entire Mott region, photoexcitation promotes atoms
between the bands in the super-radiant phase.

explicitly eliminated by the hardcore constraint. We confirm
this reduction analytically in Appendix D.

Accompanying the super-radiance transition is a change in
the relative atomic populations or “magnetization”

M = 1
2 (〈nb〉 − 〈na〉), (19)

corresponding to photoexcitation into the upper band. Indeed,
the possibility of such magnetic phase transitions is a strong
motivation for studying multicomponent problems, even with-
out matter-light coupling [55,56]. The magnetization (19) is
readily computed from the Jaynes-Cummings eigenstates (A6)
with n = 1. It also serves as an order parameter for this
continuous transition:

M =
⎧⎨
⎩

− 1
2 ; Ḡ � Ḡc,

− 1
2

(
Ḡc

Ḡ

)2
; Ḡ � Ḡc.

(20)

This corresponds to 〈na〉 = 1 and 〈nb〉 = 0, for Ḡ � Ḡc, and
a nontrivial imbalance, 〈nb〉 − 〈na〉, for Ḡ > Ḡc. In Fig. 3 we
plot the continuous onset of population imbalance described
by Eq. (20). In Sec. III B we will see how these results emerge
from the exactly solvable Dicke model.

B. Dicke model

As in the fermionic cases considered elsewhere [51,52], an
alternative way to view the zero hopping Hamiltonian (6) is as
an effective spin-boson model. Within the subspace of fixed
density, na + nb = n, we introduce effective spins for a priori
possible Mott lobes

|⇓〉 = |1, n − 1〉, |⇑〉 = |0, n〉, (21)

where we denote bosonic states as |na, nb〉. The operators

S+ = b†a√
n

, S− = a†b√
n

, Sz = 1

2
− na, (22)

form a representation of su(2) on this restricted Hilbert space.
In the lowest Mott lobe with n = 1 this reduces to the usual
Schwinger boson construction [57]. In the representation (22)

the Hamiltonian (6) becomes

H = ω̃0

N∑
i=1

Sz
i + ω̃ψ†ψ + G

N∑
i=1

(S+
i ψ + H.c.) + cn, (23)

where G ≡ g
√

n and cn = N (nε̃b − ω̃0/2). This is the much
studied spin-1/2 Dicke model [41], describing N two-level
systems coupled to radiation; see Appendix A for a brief
review. This model is integrable [42,44,58] and in the thermo-
dynamic limit it has a quantum phase transition to a so-called
super-radiant phase when [42–44]

Ḡc ≡ Gc

√
N = √

ω̃ω̃0, (24)

in agreement with our previous result (14). In this context, the
term super-radiance indicates the onset of many-body or co-
operative effects involving the photon coupled to many atoms.
This mapping not only helps justify our variational approach,
but will also provide insights into polariton condensation and
matter-light coherence at the super-radiance transition.

The thermodynamic limit of the Dicke model (23) may be
analyzed using collective spin operators [59]

J ≡
N∑
i

Si , (25)

where we exploit site independence of the global photon field,
and N ≡ 2S plays the role of a large spin. This motivates
an asymptotically exact semiclassical treatment based on the
Holstein-Primakoff transformation [59–61]

J+ = c†(2S − c†c)1/2,

J− = (2S − c†c)1/2c, (26)

J z = c†c − S,

where c is a canonical boson. The super-radiance transition
is associated with condensation of this auxiliary boson. Most
crucially, this is related to condensation of polaritons, and not
the a, b bosons themselves. The Dicke model (23) becomes

H = ω̃0(c†c − S) + ω̃ψ†ψ

+ Ḡ√
N

[ψ†(2S − c†c)1/2c + c†(2S − c†c)1/2ψ], (27)

where we drop the ‘constant’ cn. Within a semiclassical
1/S expansion around the thermodynamic limit [59] we may
proceed by introducing coherent states for the photon and
auxiliary boson

|γ 〉 ≡ e− γ 2

2 +γψ† |0〉, |ζ 〉 ≡ e− ζ2

2 +ζc† |0〉, (28)

where γ and ζ are classical c-numbers. The energy density
reads

E ≡ 〈H 〉/N = ω̃0(ζ̄ 2 − 1/2) + ω̃γ̄ 2 + 2Ḡγ̄ ζ̄ (1 − ζ̄ 2)1/2,

(29)

where γ̄ ≡ γ /
√

N , ζ̄ ≡ ζ/
√

N . Minimizing over γ̄ gives

γ̄ = − Ḡζ̄ (1 − ζ̄ 2)1/2

ω̃
. (30)
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Substituting back in Eq. (29) yields

E = Ḡ2

ω̃
ζ̄ 4 +

(
ω̃0 − Ḡ2

ω̃

)
ζ̄ 2 − ω̃0

2
, (31)

and we acquire an expectation value 〈c〉 	= 0 when the
quadratic term becomes negative. This corresponds to the
super-radiance quantum phase transition at Ḡc = √

ω̃ω̃0 in
agreement with the previous results. Minimizing Eq. (31) over
ζ̄ 2 and substituting into Eq. (30) one obtains

ζ̄ 2 = Ḡ2 − Ḡ2
c

2Ḡ2
, γ̄ 2 = Ḡ4 − Ḡ4

c

4ω̃2Ḡ2
; Ḡ � Ḡc. (32)

The onset of the photon field agrees with Eq. (15). In
addition, the expectation value 〈J+〉 = ζ (2S − ζ 2)1/2 tracks
the condensation of the Holstein-Primakoff boson, c, via its
coherent state parameter ζ :

〈J+〉
N

= ζ̄ (1 − ζ̄ 2)1/2 = − ω̃γ̄

Ḡ
. (33)

These results show that the super-radiance transition is ac-
companied by condensation of the Holstein-Primakoff boson,
〈c〉 	= 0. As we will discuss in Sec. IV B, in the two-band
Bose-Hubbard model coupled to light, this corresponds to
condensation of the polaritonic bilinear 〈b†a〉 above the Mott
background, and not the a, b bosons themselves. In addition
to the onset of photons described by Eqs. (15) and (32), the
magnetization M ≡ 〈J z〉/N reproduces the previous results.

The correspondence between the variational approach
outlined in Sec. III A, and the Dicke model analysis is clearly
encouraging. In Sec. IV we shall extend the variational
approach to include the important effects of itinerancy and
carrier superfluidity.

IV. VARIATIONAL APPROACH FOR HARDCORE ATOMS

A. Phase diagram

Having confirmed a zero hopping Mott phase, with na +
nb = 1, we consider itinerancy and carrier superfluidity.
Within this lowest lobe we may take hardcore a and b bosons.
This will also be convenient for the numerical simulations in
Sec. V. While this does not affect physics within the lobe, the
zero hopping upper boundary is modified by the restriction on
the b-atom population. In this case we only need retain the
states |0, 0〉, |1, 1〉 and the admixtures of |0, 1〉 and |1, 0〉. The
zero hopping diagram shown in Fig. 2 is replaced by Fig. 4.
The lower boundary remains unchanged because the same
eigenstates are involved, and the upper boundary becomes a
mirror reflection of the lower one. This is quite natural since
the a and b operators now appear on an equal footing, modulo
the effects of the band splitting. More formally, this may
be traced to the invariance of the hardcore Hamiltonian (5)
(up to a constant term) under the particle-hole transformation
a → a†, b → b†, together with µ1 → εa + εb + Uab − µ1,
and the interchange of the a and b operators and the hopping
parameters Ja and Jb; since hardcore bosons obey on-site
anticommutation relations, n → 1 − n, under particle-hole
transformation. For εa = −1, εb = 1 and Uab = 0 this involves
µ1 → −µ1. The particle-hole transformation also accounts for
the change in the vacuum, |0, 0〉 → |1, 1〉.

0.25 0.5 0.75

1.5

0

1.5

µ2

µ 1

Superradiant
Mott Insulator

n 1
Mott

Insulator

a b 0n 2

Vacuumn 0

FIG. 4. (Color online) Variational zero hopping diagram for
hardcore a and b atoms. The symmetry about µ1 = 0 reflects the
combined particle-hole and species interchange symmetry of the
Hamiltonian (6) in the hardcore limit; see text.

To incorporate itinerancy and superfluidity we augment the
variational analysis for two component bosons in an optical
lattice [56] with a coherent state for light:

|V〉 = |γ 〉 ⊗
∏

i

[cos θi(cos χia
†
i + sin χib

†
i )

+ sin θi(cos ηi + sin ηib
†
i a

†
i )] |0〉, (34)

where |γ 〉 is the coherent state introduced previously, and
θ, χ, η, γ are to be determined. The corresponding order
parameters are given by 〈a〉 = 1

2 sin 2θ cos(χ − η), 〈b〉 =
1
2 sin 2θ sin(χ + η) and 〈ψ〉 = γ . The first term in brackets in
Eq. (34) describes the Mott state, and the second superfluidity.
For θ = 0 this coincides with the variational approach for
localized excitons coupled to light [33], and as we will discuss
in Sec. IV B, reproduces the previous results for Jα = 0. More
generally, Eq. (34) takes real hopping into account, involving
site vacancies and interspecies double occupation. It provides
a useful starting point to identify the boundaries between the
Mott and superfluid regions. We consider spatially uniform
phases with energy density E ≡ 〈V|H |V〉/N :

E = (ε̃+ − ε̃− cos 2χ ) cos2 θ + (2ε̃+ + Uab) sin2 η sin2 θ

− z

4
[Ja cos2(χ − η) + Jb sin2(χ + η)] sin2 2θ

+ ω̃γ̄ 2 + ḡγ̄ cos2 θ sin 2χ, (35)

where z is the coordination and ε̃± ≡ (ε̃b ± ε̃a)/2. Minimizing
on γ̄ gives γ̄ = 〈ψ〉/√N = −ḡ cos2 θ sin 2χ/2ω̃. This may
be eliminated from Eq. (35) to yield

E = (ε̃+ − ε̃− cos 2χ ) cos2 θ + (2ε̃+ + Uab) sin2 η sin2 θ

− z

4
[Ja cos2(χ − η) + Jb sin2(χ + η)] sin2 2θ

− ḡ2 cos4 θ sin2 2χ

4ω̃
. (36)

The symmetries of Eq. (36) determine the domain of minimiza-
tion. It is invariant under θ → θ + π and θ → −θ , and may
be minimized over θ ∈ [0, π/2]. Likewise, it is invariant under
χ → χ + π and η → η + π . Since the hopping contribution
favors χ and η taking the same sign, we may also minimize
χ, η ∈ [0, π/2]. To begin with we set Ja = Jb = J and the
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SR−SF

a−SF

MI

SR−MI

FIG. 5. (Color online) Variational phase diagram with Ja = Jb =
J and εa = −1, εb = 1, ω = ḡ = 1, Uab = 0. The phases are (i)
a Mott insulator (MI, dark blue), (ii) a super-radiant Mott state
supporting a condensate of photoexcitations (SR-MI, light blue),
(iii) a super-radiant superfluid (SR-SF, light red), and (iv) an a-type
superfluid (a-SF, dark red). As shown by the solid line, the tetracritical
line ultimately bifurcates into two bicritical points connected by a first
order transition. For µ1 > 0, the a-type superfluid is replaced by a
b-type owing to the particle-hole and species interchange symmetry
of the hardcore Hamiltonian (5) when Ja = Jb; see text.

expression may be further reduced using Ja cos2(χ − η) +
Jb sin2(χ + η) = J (1 + sin 2χ sin 2η). Minimizing over the
restricted domain yields the phase diagram in Fig. 5.

For the chosen parameters, we have up to four distinct
phases in the interval µ1 < 0; (i) a Mott state with 〈a〉 =
〈b〉 = 〈ψ†ψ〉 = 0, (ii) a super-radiant Mott state with 〈a〉 =
〈b〉 = 0 and 〈ψ†ψ〉 	= 0, (iii) a single component superfluid
with 〈a〉 	= 0 and 〈b〉 = 〈ψ†ψ〉 = 0, and (iv) a super-radiant
superfluid 〈a〉 	= 0, 〈b〉 	= 0, 〈ψ†ψ〉 	= 0. Indeed, the Hamil-
tonian displays a U(1) × U(1) symmetry and these may be
broken independently. The phase diagram reflects this pattern
of symmetry breaking. In particular, the super-radiant Mott
state corresponds to an unbroken U(1) in the matter sector
(corresponding to a pinned density and phase fluctuations)
but a broken U(1) (or phase coherent condensate) for pho-
toexcitations. As we shall discuss below, the expectation
value of the bilinear, 〈b†a〉 	= 0, corresponds to the onset of
coherence in the Dicke model. This novel phase may thus be
regarded as a form of supersolid [62] in which photoexcitations
condense on the background of a Mott insulator. Although
the lattice precludes spontaneous translational symmetry
breaking (at least with this periodicity) the excitations may
be thought of as mobile defects in an otherwise ordered
background.

As in the zero hopping case, we may extend Fig. 5 into
the region µ1 > 0 by exploiting symmetries of (5). This is
reflected in the variational energy by using sin2 η = (1 −

cos 2η)/2 to combine the ε̃+ contributions:

E = 1

2
(εa + εb) − µ1 − 1

2
(εb − εa − µ2) cos 2χ cos2 θ

+ 1

2
[Uab − (εa + εb + Uab − 2µ1) cos 2η] sin2 θ

− zJ

4
(1 + sin 2χ sin 2η) sin2 2θ − ḡ2 cos4 θ sin2 2χ

4(ω − µ2)
.

(37)

Since Ja = Jb = J this is invariant (up to a constant) under
µ1 → εa + εb + Uab − µ1 and η → π/2 − η, which inter-
changes the superfluid order parameters 〈a〉 and 〈b〉. For the
parameters used in Fig. 5, the a-type superfluid observed for
µ1 < 0 is replaced with a b-type for µ1 > 0.

As may be seen from Fig. 5, the locus of the tetracritical
line may be determined from the intersection of the super-
radiance transition with the Mott insulator to a-type superfluid
phase boundary. This yields ε̃a + zJ = 0 as discussed in
Appendix C. This may also be seen from a Landau type
expansion of E . In view of the nonlinear relationship, it is
convenient to expand in the angles θ, χ, η as opposed to the
order parameters 〈a〉, 〈b〉, 〈ψ〉:

E = ε̃a − (ε̃a + zJ )θ2 −
(

ḡ2 − ω̃ω̃0

ω̃

)
χ2 + · · · . (38)

The quadratic “mass” terms vanish when ε̃a + zJ = 0 and the
super-radiance condition ḡ = √

ω̃ω̃0 is met. In some simple
cases E may be expanded directly in the order parameters. For
example, throughout the entire Mott lobe where 〈a〉 = 〈b〉 = 0
we may set θ = 0. Returning to Eq. (35) and minimizing over
χ yields tan 2χ = −2ḡγ̄ /ω̃0. This gives E = ε̃+ + ω̃γ̄ 2 −√

ω̃2
0/4 + ḡ2γ̄ 2, where γ̄ = 〈ψ〉/√N . This agrees with our

variational zero hopping result (11) in the lowest lobe with
n = 1.

In Fig. 6 we present a cross section of the phase diagram (5)
for µ1 = −0.6. We indicate continuous transitions by single
lines and first order transitions by dotted lines. In general,
the transition from the superradiant Mott state to the non-
super-radiant a-type superfluid involves a discontinuous jump
in the photon density. This results in a first order transition
as indicated by the discontinuity in the first derivative of the
energy and the order parameters as shown in Fig. 7. This
first order line connects two bicritical points as indicated in
Fig. 6. The length of this first order segment changes with µ1,
and emanates from the tetracritical line as shown in Fig. 5.
These overall features are also exhibited for more general
hopping parameters as shown in Fig. 8, where a-type and
b-type superfluids emerge for large hopping asymmetry.

B. Coherence in super-radiant Mott phase

An interesting aspect of the super-radiant Mott phase is
that polariton condensation coexists with the Mott character.
Within both Mott phases θ = 0 and our variational wave
function (34) becomes

|V〉 = |γ 〉 ⊗
∏

i

(cos χia
†
i + sin χib

†
i ) |0〉. (39)
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0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.0

0.2

0.4

0.6

zJ

µ 2

MI

U 1 U 1

a 0 b 0
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Superradiant SF

a 0 b 0 ψ ψ 0

Superradiant MI

a 0 b 0 ψ ψ 0

U 1

a type SF

a 0 b 0 ψ ψ 0

U 1

FIG. 6. (Color online) Cross section of the phase diagram (5) for
µ1 = −0.6. The first order transition from the super-radiant Mott state
to the a-type superfluid is indicated by a dashed line. The locus of this
transition is determined analytically from Eq. (C8). The remaining
transitions are continuous.

To describe photoexcitations above the filled Mott state, we
introduce a change of vacuum |�〉 ≡ ∏

i a
†
i |0〉 so that

|V〉 = |γ 〉 ⊗
∏

i

cos χi

∏
i

(1 + tan χib
†
i ai) |�〉. (40)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

zJ

µ2 0.45

I

II

0 0.4 0.8

0.02

0.06

E
zJ

E
0

a
b

γ

µ2 0.0
µ2 0.45
µ2 0.6

zJ

FIG. 7. Evolution of the mean field order parameters 〈a〉, 〈b〉,
γ̄ = 〈ψ〉/√N across the transitions depicted in Fig. 6 for µ2 = 0.45.
(I) First order transition from the super-radiant Mott state to the a-type
superfluid, (II) continuous transition from the a-type superfluid to the
super-radiant superfluid. Inset: Evolution of the variational energy
(relative to the zero hopping Mott phase) across the transitions
in Fig. 6 for fixed values of µ2. The solid line at µ2 = 0.45 has
a discontinuity in the first derivative and indicates a first order
transition in passing from the super-radiant Mott insulator to the
a-type superfluid. The remaining transitions are continuous.

b−SF

a−SF

SR−SF
SR−MI

MI

FIG. 8. (Color online) Variational phase diagram showing a slice
through Fig. 4 with µ1 = −0.25 and extended in to the (Ja, Jb)
hopping plane. We use the same key as in Fig. 5 and denote the
b-type superfluid (b-SF) in orange. Single component superfluids are
observed for large hopping asymmetry.

Since we are dealing with hardcore bosons this may be
exponentiated, and for homogenous parameters

|V〉 = |γ 〉 ⊗ eN ln cos χetan χ
∑

i b
†
i ai |�〉. (41)

This is already reminiscent of a coherent state for the bilinears,
although one needs to be careful since we are dealing with
hardcore bosons. Instead, we may examine condensation
properties directly by computing expectation values using
Eq. (39). Using the Schwinger boson representation (22) for
the lowest lobe

J + ≡
∑

i

b
†
i ai, J − ≡

∑
i

a
†
i bi, J z ≡ 1

2

∑
i

(
nb

i − na
i

)
,

(42)

we may calculate the bosonic bilinear 〈J +〉:

〈V|J +|V〉 =
∑

i

〈V|b†i ai |V〉 = N sin χ cos χ = N

2
sin 2χ.

(43)

At θ = 0 our variational analysis yields γ̄ = −ḡ sin 2χ/2ω̃:

〈V|J +|V〉
N

≡
∑

i〈b†i ai〉
N

= − ω̃γ̄

ḡ
. (44)

This agrees with the result (33) obtained from the Holstein-
Primakoff approach to the Dicke model [59]. We see that in
the two-band Bose-Hubbard problem we have condensation
involving particle-hole pairs above the Mott background
with 〈b†a〉 	= 0. This corresponds to condensation of the
Holstein-Primakoff boson 〈c〉 	= 0 in the dual formulation as
evidenced by Eq. (33). Crucially, condensation of 〈b†a〉 is
not accompanied by condensation of the individual bosonic
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carriers a and b. This follows immediately from Eq. (39) where
〈a〉 = 〈b〉 = 0. Since matter-light coherence in the Dicke
model translates into polariton and not carrier condensation,
Mott behavior and polariton condensation may coexist.

V. NUMERICAL SIMULATIONS

We now analyze the Hamiltonian (1) by exact diagonaliza-
tion, imposing a maximum number of photons, 〈ψ†ψ〉 � Mψ ,
in addition to the hardcore a, b constraints. We consider
a one-dimensional system with N lattice sites, with the
basis of tensor product states |φ〉(νa )

a ⊗ |φ〉(νb)
b ⊗ |φ〉(νψ )

ψ , where
νa,b = 1, . . . , 2N and νψ = 0, 1, . . . , Mψ . Here |φ〉(να )

α =
|n(να)

α,1 , . . . , n
(να )
α,N 〉 where n

(να )
α,i ∈ {0, 1}, and the photon states

are given by |φ〉(νψ )
ψ = |n(νψ )

ψ 〉 where n
(νψ )
ψ ∈ {0, 1, . . . , Mψ }.

The total Hilbert space has dimension D = 2N2N (Mψ + 1).
In the largest case considered, with N = 8 sites and Mψ =
64 photons, this corresponds to a matrix dimension D ≈ 4E6.
Increasing Mψ further has only minor influence.

Applying periodic boundary conditions in real space, we
diagonalize the sparse matrix representation of H to obtain
the ground state |�0〉 and its energy E0. We compute the
atom and photon densities, and the density fluctuations σα =√〈n̂2

α〉 − 〈n̂α〉2. To obtain the superfluid fraction, f α
s , of the α

atoms, we impose a phase twist � � π by means of a Peierls
factor α

†
i αj �→ α

†
i αj e

−i�/N , and calculate the change in the
ground state energy [63]:

f α
s = N

Jα〈nα〉
E

(�)
0 − E0

�2
. (45)

For the single-component Bose-Hubbard model, this quantity
is zero deep in the Mott insulator, and approaches unity far in
the superfluid. Note that in our case, the hardcore constraint
always provides an effective interaction even for large hopping,
so that fs < 1. A total superfluid density can be obtained by
imposing the phases on both species a,b and calculating

fs = N∑
α Jα〈nα〉

E
(�)
0 − E0

�2
. (46)

We supplement these superfluid diagnostics with the zero
momentum occupations nα(k = 0) = N−1 ∑

pq〈α†
pαq〉.

A. Small hopping and Dicke super-radiance

To verify the existence of a super-radiance transition within
the Mott phase we begin our numerical treatment in the limit
of small nonzero hopping. Figure 9 shows the Mott lobe with
density n = 1 at zJ = 0.1, for two different values of Mψ . For
sufficiently large Mψ the results are in good agreement with the
variational zero-hopping phase diagram shown in Fig. 4, and
the overall features depend only weakly on the number of sites.
In order to examine the onset of super-radiance, we track the
evolution of the polariton and photon densities in Fig. 10. At
zero hopping, Eq. (24) yields the critical coupling g2

c = ω̃ω̃0 =
(ω − µ2)(εb − εa − µ2). For the chosen parameters at fixed
ḡ = 1, the transition occurs at a critical chemical potential,
µc

2 = (3 − √
5)/2 ≈ 0.382. This onset is well reproduced at

small finite hopping, as shown in Fig. 10. For N = 1 (where
the Dicke model reduces to the Jaynes-Cummings model) we

n=1 Mott Superradiant Mott

 0  0.2  0.4  0.6  0.8  1
µ2

-2

-1

 0

 1

 2

µ 1

FIG. 9. Exact diagonalization results for the phase diagram at
small hopping, zJ = 0.1, for hardcore a,b atoms and εa = −1,
εb = 1, ω = ḡ = 1, Uab = 0. The dashed (solid) lines corresponds to
N = 8 and Mψ = 16 (Mψ = 64) photons, and have been obtained
from spline fits to the contours at n = 0.99 and n = 1.01. The
vertical line indicates the location of the super-radiance transition
as determined from 〈ψ †ψ〉/N � 0.01. The results are in good
qualitative agreement with the variational zero hopping results in
Fig. 4, showing the continuity of this behavior into the Mott phase.

see quantized steps with fixed integer polariton density, N2/N .
These form the basis of the Mott lobes observed in Jaynes-
Cummings-Hubbard models [9,23]. Even in this extreme limit,
the densities closely track the thermodynamic Dicke model

 0

 1

 2

 3

 4

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

N
2/

N

µ2

(b) Polariton Density

 0

 1

 2

 3

 4

<
ψ

† ψ
>

/N N=∞ Dicke  

N=1 Mψ=32

N=8 Mψ=32

(a) Photon Density

FIG. 10. Exact diagonalization results with N = 1, 8 sites, Ja =
Jb = J , and zJ = 0.1. We set εa = −1, εb = 1, ω = ḡ = 1, µ1 =
Uab = 0. The profiles show the onset of super-radiance within the
Mott phase, and evolve with increasing system size toward those
for the thermodynamic limit of the Dicke model. Evolution of
(a) the photon density 〈ψ †ψ〉/N , (b) the polariton density, N2/N .
For N = 1 the Dicke model reduces to the Jaynes-Cummings model
and exhibits quantized integer steps in the polariton density [9,23].
More generally these are quantized in units of 1/N . The value of Mψ

is of minor importance in the range of µ2 considered as it sets the
upper limit on the number of excitations available.
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results. As N increases, the step sizes are reduced by a factor of
1/N and we approach the variational thermodynamic results.
This behavior in our itinerant boson model closely mirrors
direct finite N simulations of the Dicke model; see Fig. 16. A
notable difference between the Dicke and Jaynes-Cummings-
Hubbard models [9,23] (both with N sites) is reflected in their
zero hopping eigenstates. In the latter, eigenstates are tensor
products of superpositions of two states which differ in photon
number by one, whereas in the Dicke model the global photon
mode leads to a coherent photon state for large N . In the
Dicke model the higher Mott lobes are eliminated in favor of
a continuous photon onset, whereas in the Jaynes-Cummings-
Hubbard models [9,23] they remain in tact.

B. General phase diagram

Turning to the construction of the overall phase diagram,
we first consider a fixed value µ1 = 0 and present results in
the (zJ, µ2) plane; see Figs. 11 and 12. So far we have set
Uab = 0 in order to expose the essential details. Following our
original work [36], we now take Uab = 1 to help illustrate the
generality of the overall results. The interspecies interaction
also helps stabilize the Mott region up to larger values of the
hopping.

In Fig. 11 we show density plots of atom and photon
densities, and density fluctuations. In Fig. 12 we plot superfluid
fractions. From these data, we can identify the four different
phases present in Fig. 5. The Mott-superfluid transition is
visible from the deviation of the total atom density from unity
in Fig. 11(a). The super-radiance transition corresponds to
the onset of photon density in Fig. 11(b). Panels (c) and (d)
demonstrate the existence of the single-component superfluid
in the region where n 	= 1 and na 	= 0, while nb = 0. This
is also visible in the individual superfluid fractions shown
in Fig. 12. We also see the onset of a nontrivial population
imbalance, nb − na , or existence of b bosons, accompanying
the super-radiance transition. Specifically, na = 1, nb = 0 in
the left of the white region of panel (b), but na < 1, nb > 0
above; see panels (c), (d), and (g). The nature of the two
Mott phases (normal and super-radiant) is illustrated by panels
(e)–(f). We observe an onset of local fluctuations σα with
increasing hopping. Since the Mott state is characterized by
n = na + nb = 1, the individual atom density fluctuations σα

in the super-radiant Mott phase are much larger than σ . In
the normal Mott phase, nb = 0 so that the Mott insulator
consists purely of a atoms and hence σa = σb = 0. Finally,
the Mott-superfluid transition is also apparent in our results
for the superfluid fractions as shown in Fig. 12.

Exact diagonalization of small clusters yields an approxi-
mation to the critical value Jc for the Mott-superfluid transition
by monitoring the onset of fs , as in Fig. 12(a), or the local
fluctuations σ of the total atom density, as in Fig. 11(e). Both
σ and fs are also nonzero below Jc for finite N [63]. While fs

is expected to scale to zero for J < Jc as N → ∞, the local
density fluctuations remain nonzero in the Mott phase due to
virtual hopping processes. This is illustrated in Fig. 13.

The system size N has a noticeable impact on the onset
of correlations related to superfluidity. Since a finite size
scaling analysis requires much larger system sizes, we provide
approximate phase boundaries obtained from the contour
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(d) b-atom density
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(c) a-atom density
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FIG. 11. Exact diagonalization results for N = 8 sites and Mψ =
16 photons. We set µ1 = 0, Ja = Jb = J , and εa = −1, εb = 1,
ω = ḡ = Uab = 1. The panels show density plots of (a) total atom
density, (b) photon density, (c) a-atom density, (d) b-atom density,
(e) fluctuations of the total atom density, (f) fluctuations of the a-atom
density, (g) fluctuations of the b-atom density. In particular (a) reveals
the Mott-superfluid transition and (b) the super-radiance transition.

lines σ (zJ, µ2) = 0.3 [alternatively fs(zJ, µ2) = const.] to
indicate the onset of superfluidity, and 〈ψ†ψ〉/N = 0.01
to indicate super-radiance. The numerical constants for the
contours have been chosen in order to obtain phase boundaries
that match those suggested by the data in Figs. 11 and 12;
see Fig. 13. Figure 13(c) shows the zero-momentum occu-
pation n(k = 0) = na(k = 0) + nb(k = 0) for the atoms. The
latter is expected to diverge as a function of system size in
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FIG. 12. Exact diagonalization results for N = 8 sites and Mψ =
16 photons. We set µ1 = 0, Ja = Jb = J , and εa = −1, εb = 1,
ω = ḡ = Uab = 1. The panels show density plots of (a) total
atomic superfluid fraction, (b) a-atom superfluid fraction, (c) b-atom
superfluid fraction. The Mott-superfluid transition is evident from
the onset in (a), and the single component a-type superfluid in
(b) and (c).

the SF phase, and such behavior can indeed be seen above
zJ ≈ 1.1.

Repeating the above procedure for different µ1 values we
build up a picture of the overall phase diagram as shown in
Fig. 14. This may be compared to the variational analysis
shown in Fig. 5. We find the same phases as in the analytical
approach and the evolution of the phase boundaries is in good
agreement. For the choice of µ1 = 0 these phases meet in a
tetracritical point. As found analytically this extends into a
tetracritical line which ultimately bifurcates into two bicritical
points. The agreement between the numerical simulations and
mean field theory is remarkable given the enhanced role of
fluctuations in low dimensions. This mirrors the success of
mean field theory in other bosonic systems and may be assisted
by the long range cavity photons.

VI. RELATION TO OTHER PROBLEMS

A feature not addressed by the present mean field theory,
but captured in Fig. 14, is the dispersion of the super-radiance
transition with J ; in the Mott phase, θ = 0, and J drops out
of the variational energy (35). One way to understand this is
to recast the matter contribution as

|VM〉 =
∏

i

(cos χi + sin χib
†
i ai)|�〉, (47)

where |�〉 ≡ ∏
i a

†
i |0〉 is the filled Mott state in the absence of

excitations. In the spatially uniform case

|VM〉 = N eλ
∑

i b
†
i ai |�〉, (48)

where λ ≡ tan χ and N ≡ (1 + λ2)−N/2. This only accom-
modates local particle-hole pairs above the filled Mott
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FIG. 13. Exact diagonalization results with Ja = Jb = J and
εa = −1, εb = 1, ω = ḡ = Uab = 1. We set µ1 = 0, µ2 = 0.4, Mψ =
2N , and show the system size dependence of (a) superfluid fraction,
(b) density fluctuations, (c) zero momentum occupation. Within
the Mott phase for J < Jc, the superfluid fraction decreases with
increasing system size. This indicates a Mott-superfluid transition
at approximately zJc ≈ 1.1. This is compatible with the fluctuation
onset criterion, σ = 0.3, that we use to determine the overall phase
diagram in Fig. 14, and the divergence of n(k = 0) with system size
in (c).

background, and may thus be regarded as the BEC limit of the
BEC-BCS crossover problem. By analogy with the fermionic
BCS approach to exciton insulators [64,65], and the crossover
problem in 40K [66], one expects that excitons may lower their
energy by spreading out in real space and pairing in momentum
space. In this regard, the “BCS” pairing phenomenon in Bose
gases has a long history, with the Valatin-Butler wave function
[67] playing the role of the BCS state. This has been developed
in a series of early works motivated by liquid 4He [68–73] and
biexciton formation [74–76]. This later emerged in studies
of high-Tc superconductivity [77] and two-component Bose
gases [78,79]. The interesting possibility of bound states of
three or four particles has also been explored [80,81]. Central
to these studies is the requirement to stabilize attractive Bose
gases against collapse, with the aid of short-range repulsion
or internal structure. When this condition is met, and at
sufficiently low densities where exciton overlap is negligible,
it has been argued that such pairing states may exist [73].
In the present context, stabilization of the paired state and
the absence of carrier condensation is brought about by the
interplay of Mott physics and photoexcitation. It would be
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FIG. 14. (Color online) Overall phase diagram obtained by exact
diagonalization with N = 8 sites and Mψ = 16 photons. We set
Ja = Jb = J , εa = −1, εb = 1, ω = ḡ = 1, and Uab = 1, and use the
same key as in Fig. 5. We extract the Mott-superfluid boundaries from
the onset of density fluctuations, σ � 0.3, and the super-radiance
transition from the onset of photons, 〈ψ †ψ〉/N � 0.01; see text.
The simulations show the distinct phases and the bifurcation of the
tetracritical line suggested by mean field theory. The bifurcation is
indicated by the regions where the two boundaries overlap along a
line rather than a single tetracritical point.

interesting to explore this problem in more detail, and we
leave these refinements to future studies.

As noted in our previous work, the connection to the
BEC-BCS crossover for bosons is reinforced by the Feshbach
resonance problem studied in the continuum [82–86] and on
the lattice [87–89]. Performing a particle-hole transformation,
the matter-light coupling reads ψ†aibi . Aside from the global
nature of the photon, this converts a and b into a “molecule” ψ .
At the outset there are eight possible phases corresponding to
separate condensation of 〈a〉, 〈b〉, 〈ψ〉. At the mean field level,
only five of these may survive; condensation of two variables
provides an effective field (as dictated by the coupling) which
induces condensation of the other. In Figs. 5 and 14 the
band asymmetry, εa < εb, in conjunction with the chosen
parameters, reduces this to four or less. Nonetheless, the
additional b-type superfluid is stabilized for larger values
of µ1 owing to the particle-hole and species interchange
symmetry involving µ1 → εa + εb + Uab − µ1. In contrast to
the single species mean field theory [82–84], this two species
case supports an atomic superfluid, since condensation of
one carrier no longer induces an effective field. Moreover,
condensation may leave a U(1) symmetry intact, which allows
the coexistence of Mott and phase coherent behavior.

In deriving Eq. (35) and the phase diagram, we are primarily
concerned with the matter-light coupling. As such we incor-
porate Uab as in Ref. [56]. Within this variational approach,

a b

g

FIG. 15. (Color online) The classical light limit of Eq. (1) (where
ψ is a replaced by a c-number), may be simulated in optical
superlattices [92] where the coupling g represents tunneling between
different wells, a and b.

this interaction has no impact on the Mott states with θ = 0,
as evident from the energy density (35). Nonetheless, the
presence of the matter-light coupling stabilizes the nontrivial
phases in Fig. 5 and provides good agreement with the
numerical simulations. However, as noted by Söyler et al. [90]
and previous works [78–81], analogous pairing phases may
be supported in the two-component Bose-Hubbard model,
without matter-light coupling, through a more sophisticated
treatment of Uab itself. Indeed, on-site repulsive interactions,
Uabnanb, favor a particle of one species and a hole of the other
on the same site. Treating this pairing in a BCS approach, one
may replace na

i n
b
i by |�i |2 + (�ib

†
i ai + H.c.), where �i ≡

〈a†
i bi〉, is to be determined self-consistently. This field acts

as a local “photon”, and a similar mean field phenomenology
may ensue. Such pairing also occurs in fermionic models [37].
Although our discussion has focused on a single global photon,
the symmetry analysis is more general. This is supported by
studies of the two-band Bose-Hubbard model for equal fillings
and commensurate densities [91].

In closing we note that the classical light limit of Eq.
(1) (where ψ is replaced by a c-number) may be simu-
lated in optical superlattices [92] where giaib

†
i represents

tunneling between different wells; see Fig. 15. In the case
of hardcore a-atoms and soft core b-atoms this provides an
analog of the Jaynes-Cummings-Hubbard models considered
in Refs. [9,23]. This geometry may also be useful in realizing
other “matter-bath” systems.

VII. CONCLUSIONS

We have investigated the two-band Bose-Hubbard model
coupled to a single mode of a cavity light field. We combine
analytical and numerical techniques and find good agreement
between the approaches. The model displays a novel phase in
which “polaritons” condense on the platform of a bosonic Mott
insulator. We extend our previous work [36] in several direc-
tions including an investigation of the overall phase diagram,
and the nature of polariton condensation. In particular, we use
the framework of the Dicke model to discuss how polariton
condensation emerges in the absence of carrier condensation.
In terms of numerical results, we have presented superfluid
fractions, atom density fluctuations and zero-momentum occu-
pation, and analyzed the phase diagram under variation of µ1.
In addition, we have addressed the effects of finite cluster size
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and the photon cutoff. This helps illustrate connections to work
on Jaynes-Cummings-Hubbard models and coupled cavity
arrays. This topic has broad connections to other problems
of current interest including atom-molecule mixtures and the
BEC-BCS crossover in bosonic systems.

There are many avenues for further research including
nonequilibrium aspects and collective excitations [93,94].
It would be interesting to develop numerical techniques to
explore finite temperature polariton condensation and the
onset of phase coherence in the Mott phase. It would also
be worthwhile to examine the phase diagram with soft core
bosons with finite Uaa and Ubb.
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APPENDIX A: DICKE MODELS

Throughout this manuscript we make use of the Dicke
model [41] and its reductions. In the literature this appears
in various guises and with different names so we present a
brief guide. The Dicke model describes N two-level systems
or “spins” coupled to radiation

H = ω0

N∑
i

Sz
i + ωψ†ψ + ḡ√

N

N∑
i

(ψ†S−
i + S+

i ψ), (A1)

where Si is a spin-1/2 operator and ψ is a canonical boson.
Here ω0 is the level-splitting between the two-level systems, ω
is the frequency of the cavity mode, and ḡ is the strength
of the matter-light coupling. In quantum optics the Dicke
model is also known as the Tavis-Cummings model [95]. In
the special case of a single spin, N = 1, the Dicke model
is often referred to as the Jaynes-Cummings model [47].
The Hamiltonian (A1) is written in the so-called rotating
wave approximation in which terms of the form S±

i ψ±
are excluded. In the absence of these terms, the model is
integrable [42,44,58] and exhibits a super-radiance quantum
phase transition when ḡ = √

ωω0 [41–44]; for a discussion
of the model including counterrotating terms see Ref. [54].
Depending on the application these models are often recast in
different representations and we gather a few results below.

1. Jaynes-Cummings

The simplest case is the Dicke model with N = 1, or the
Jaynes-Cummings model, describing a single two-level system
coupled to radiation. It plays a central role in the variational
analysis presented in Sec. III A, and recent problems in matter-
light systems, e.g., [9,23]. A convenient representation is the
single site Hamiltonian

H = εana + εbnb + g(b†a + a†b), (A2)

where a is a hardcore boson (restricted to occupancy zero or
one) and b may take arbitrary occupancy. We may construct
exact eigenstates of total integer occupation, n = na + nb � 1,
as superpositions

|n〉 = α|1, n − 1〉 + β|0, n〉, (A3)

where the first and second entries of the states are the
occupations of the a and b particles, respectively. In matrix
form this yields the eigenvalue problem(

εa + (n − 1)εb g
√

n

g
√

n nεb

)(
α

β

)
= En

(
α

β

)
, (A4)

where we recall that b|n〉 = √
n|n − 1〉 and b†|n〉 =√

n + 1|n + 1〉 for bosons. The eigenvalues are given by

E±
n = nεb − ω0/2 ±

√
ω2

0/4 + g2n, (A5)

where ω0 ≡ εb − εa . This agrees with the spectrum of the
Jaynes-Cummings model given by Greentree et al. [9], where
we identify εa , εb, and g with their parameters ε, ω, and β.
The coefficients in the corresponding normalized eigenvectors
|n〉± may be written

α± = −ω0/2 ± χ (n)√
2χ2(n) ∓ ω0χ (n)

,

(A6)

β± = g
√

n√
2χ2(n) ∓ ω0χ (n)

,

where χ (n) ≡
√

ω2
0/4 + g2n. We note that there is a minor

typing error in the eigenstates given in the methods section
of Ref. [9], where the basis states |1, n − 1〉 and |0, n〉 are
erroneously reversed. Equivalently, one may reverse the sign
of � ≡ ω0 in their expression.

2. Dicke model

The generic Dicke model (A1) is integrable for arbitrary
N [42,44,58], but is most conveniently analyzed in the
thermodynamic limit, N → ∞ [59]. However, in numerical
simulations we must deal with the effects of finite N and
truncations of the photon Hilbert space. In Fig. 16 we show
the evolution of the polariton density, N2/N , where N2 =
ψ†ψ + ∑

i(S
z
i + 1/2), and the photon density as a function of

0 0.2 0.4 0.6
0

1

2

3

µ2

N
2 N

N 1
N 2
N

Polariton DensityPhoton Density

µ20.2 0.6
0

1

2

3

ψ
ψ

N

FIG. 16. Evolution of the polariton density, N2/N , in the Dicke
model for N = 1, 2 sites and comparison to the N → ∞ thermo-
dynamic limit. For N = 1 the Dicke model reduces to the Jaynes-
Cummings model and the quantized polariton steps correspond to the
Mott lobes discussed in Ref. [9]. In the Dicke model these steps are
quantized in units of 1/N and as N → ∞ we approach the variational
results. Inset: Evolution of the photon density. The magnetization (or
population imbalance) may be obtained by subtraction. All figures
show the onset of super-radiance at µ2 = (3 − √

5)/2 ≈ 0.382, for
ω → ω̃ = 1 − µ2, ω0 → ω̃0 = 2 − µ2, and ḡ = 1.
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FIG. 17. Zero hopping phase diagram for the Hamiltonian (6) in
the absence of matter-light interaction, with εa = −1, εb = 1, ω = 1,
g = 0. The loci ε̃a = 0, ε̃b = 0, ω̃ = 0, indicated by the lower, upper,
and vertical lines, respectively, delineate the regions of population
onset for a, b, ψ in the grand canonical ensemble. When g is switched
on the horizontal boundaries bend downward and evolve into those
shown in Fig. 2.

N . This is obtained by solution of the finite dimensional matrix
problem. Both plots exhibit discrete jumps which track the
thermodynamic results. For N = 1 the Dicke model reduces
to the Jaynes-Cummings model and the quantized polariton
steps correspond to the Mott lobes discussed in Ref. [9].

APPENDIX B: ZERO HOPPING PHASE DIAGRAM
WITH g = 0

An instructive way to think about the topology of the zero
hopping phase diagram in Fig. 2, is in the absence of the matter-
light coupling. In Fig. 17 we plot the loci ε̃a = 0, ε̃b = 0, ω̃ =
0, corresponding to population transitions in the Hamiltonian
(6) for g = 0. When g is switched on, the horizontal boundaries
bend downward and continuously evolve into those shown in
Fig. 2.

APPENDIX C: VARIATIONAL PHASE BOUNDARIES

The variational energy for the finite hopping problem
allows some analytic progress with the phase boundaries, and
highlights connections to the Dicke model. In the absence
of competition from other phases, the transition between the
non-super-radiant insulator (θ = χ = γ̄ = 0) and the a-type
superfluid (θ 	= 0, χ = η = γ̄ = 0) for example occurs when
ε̃a + zJ = 0. This may be seen by explicit computation of
the energies of each phase. The energy density in the generic
Mott phase is

Eθ=0 = (ε̃+ − ε̃− cos 2χ ) − ḡ2 sin2 2χ

4ω̃
. (C1)

Minimizing on χ yields either χ = 0, corresponding to an
ordinary Mott insulator, with EMI = ε̃+ − ε̃−, or

cos 2χ = 2ω̃ε̃−
ḡ2

≡ ω̃ω̃0

ḡ2
, (C2)

corresponding to the super-radiant Mott insulator. At this
nontrivial stationary point

∂2E
∂χ2

= 2
(
ḡ4 − ω̃2ω̃2

0

)
ω̃ḡ2

. (C3)

This corresponds to a minimum (with ω̃ > 0) provided ḡ >√
ω̃ω̃0. This coincides with the super-radiance transition in the

Dicke model [41–44]. The energy density in the super-radiant
Mott phase is

ESRMI = EMI − (ḡ2 − ω̃ω̃0)2

4ḡ2ω̃
. (C4)

Similarly, in the a-type superfluid

EaSF = (ε̃+ − ε̃−) cos2 θ − zJ

4
sin2 2θ. (C5)

Minimizing on θ yields either θ = 0 or cos 2θ = − (ε̃+−ε̃−)
zJ

.
The latter yields

EaSF = − (ε̃+ − ε̃− − zJ )2

4zJ
. (C6)

The condition EMI = EaSF yields the MI-aSF boundary ε̃+ −
ε̃− + zJ = 0 or equivalently ε̃a + zJ = 0. This meets the
super-radiance onset ḡ2 = ω̃ω̃0 at ḡ2 = ω̃(ε̃b + zJ ) or

µ1 = εb − µ2

2
− ḡ2

ω − µ2
+ zJ. (C7)

In a similar fashion, the transition between the super-radiant
Mott state and the a-type superfluid occurs when ESRMI =
EaSF or

zJ (ḡ2 − ω̃ω̃0)2 = ḡ2ω̃(ε̃a + zJ )2. (C8)

APPENDIX D: ABSENCE OF HIGHER LOBES IN
COUPLING TO QUANTUM LIGHT

In Fig. 2 we see that only the Mott lobe with atomic
density, n = 1, is supported due to the coupling to the quantum
light field. To prove that only this lobe survives we compare
the energies of the higher states to those depicted in Fig. 2.
Without loss of generality we may focus on the stable region
defined by ε̃b − ḡ2/4ω̃ > 0. Within this domain E−

n (γvar)
and E−

n (γ = 0) are both smoothly increasing functions of n.
Furthermore, while the super-radiance condition (14) holds,
E−

n (0) � E−
n (γvar). We immediately conclude that whenever

the n = 1 super-radiance condition is met (ḡ4 > ω̃2ω̃2
0), the

ground state energy is either E−
1 (γvar) or 0, the vacuum energy.

However, outside of this region we must examine whether the
lowest energy super-radiant state is lower in energy than either
E−

1 (0) or the vacuum.
To address this let us consider super-radiant states with

n > 1. These are candidates for the ground state within the re-
gion, ḡ4 < ω̃2ω̃2

0 < n2ḡ4, where the upper bound follows from
the super-radiance condition and the lower bound precludes
the region in which E−

1 (γvar) is supported. If ω̃0 > 0, taking
roots of the inequality yields ω̃0 > ω̃ω̃2

0/nḡ2 and ω̃0 > g2/ω̃.
In conjunction with the condition for stability, we see that
E−

n (γvar) > ε̃a = E−
1 (0). That is to say, the ground state never

has n > 1.
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If ω̃0 � 0 a stronger statement can be made. Invoking the
super-radiance condition, ω̃0 < −ω̃ω̃2

0/nḡ2, it follows that
E−

n (γvar) > 0 for all n. Hence the vacuum must be the ground
state when ω̃0 � 0. [The latter implies E−

1 (0) = ε̃a � ε̃b > 0,

where the last inequality has followed from the stability
requirement.] We see that a sufficient condition for termination
of the Mott lobe is µ2 > ω0. However, since µ2 < ω in general,
such regimes are only stable for ω0 < ω; see Fig. 2.
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