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Dynamics of a Bose-Einstein condensate in a horizontally vibrating shallow optical lattice
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We consider a solitonic solution of the self-attractive Bose-Einstein condensate in a one-dimensional external
potential of a shallow optical lattice with large periodicity when the lattice is horizontally shaken. We investigate
the dynamics of the bright soliton through the properties of the fixed points. The special type of bifurcation results
in a simple criterion for the stability of the fixed points depending only on the amplitude of the shaking lattice.
Because of the similarity of the equations with those of an ac-driven Josephson junction, some results may find
applications in other branches of physics.
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I. INTRODUCTION

Stabilization of the unstable fixed points by periodic forces
has always been an interesting problem; a case in point
is that of the inverted pendulum. [1,2] In such problems,
the oscillating force, which is usually much faster than
the natural evolution of the autonomous system, effectively
averages to a nonzero stabilizing (or destabilizing) force.
For the Bose-Einstein condensate (BEC), in the mean-field
approximation, the dynamics is governed by the nonlinear
Schrödinger equation (NLSE). With the attractive interaction
between the atoms, localized matter waves known as the bright
solitons have been observed in effectively one-dimensional
BECs [3]. External potentials produced by magnetic fields or
laser beams, are used to trap and manipulate the BEC matter
waves [4].

The idea of the stabilizing forces due to the presence of
time-dependent potentials has found numerous applications
in BEC-related studies. For instance, investigation of the
motion of a soliton in an inverted trap, when its strength is
varied rapidly and periodically, shows the formation of stable
equilibria for a range of amplitude to frequency ratios of
the varying trap [5]. Following the seminal paper of Dunlap
and Kenkre [6], a quantum-mechanical version of stabilizing
effects by the fast oscillating forces has been characterized
in the BEC context as dynamic localization. In dynamic
localization, tunneling is suppressed as a consequence of
shaking of the periodic potential, when the ratio of the
magnitude and the frequency is a root of the zeroth-order
Bessel function [7]. Time-dependent parameters have also
been suggested to prevent the condensate from collapsing and
to stabilize it in two and three dimensions [8].

Studies of the NLSE when perturbed by a periodic potential
is not a new problem [9,10], but the experimental ground made
available by the advent of optical lattices (OLs) has renewed
interest in it as an important topic of study in BEC-related
research [11,12]. Changing the parameters of the optical
lattice, e.g., the depth of the potential, allows the control of
the interaction among the atoms and the study of the predicted
quantum phase transitions [13]. Motion of the lattice leads to
the manipulation of the internal structure of the atom cloud
and the formation of vortices and solitons [14].

Here, we study the soliton dynamics for a one-dimensional
(1D) BEC in a horizontally shaken periodic potential. The
parameters are chosen so that the soliton is stable in the

time scales of interest: the potential of the OL is chosen to
be smaller than the interaction energy of the BEC, and the
wavelength of the OL is large compared to the length scale
of the matter wave. We state our problem in terms of how
the shaking of an OL influences the properties of the fixed
points. The equation describing the soliton dynamics can be
expressed as that of a periodically forced pendulum or a driven
Josephson junction [15,16]. This is in the same spirit as that
of the stability conditions for the inverted pendulum, where
the pivot is harmonically displaced, and instead of an external
periodic force, the system is parametrically driven.

II. THE MODEL

A Bose-Einstein condensate when confined to one dimen-
sion is described by the NLSE as follows:

ih̄
∂φ

∂t
= − h̄2

2m

∂2φ

∂x2
+ NG1D|φ|2φ + Vext(x, t)φ, (2.1)

where φ is the mean-field wave function, N is the total number
of atoms in the condensate, and G1D is the coefficient of the
nonlinear term. G1D = 2h̄asω⊥ characterizes the interatomic
interaction in the condensate, with as being the scattering
length, and ω⊥ the confinement frequency in the transverse
direction. To rewrite the equation in a dimensionless form, we
scale the time and the coordinate by τ = 2h̄/(N |G1D|) and
ξ = h̄/

√
mN |G1D|, respectively; we have

i
∂φ

∂t
+ ∂2φ

∂x2
+ 2|φ|2φ = V (x, t)φ. (2.2)

Here, we have assumed an attractive atom-atom interaction
(i.e., negative scattering length). We take the normalized
external potential V (x, t) = 2Vext/(N |G1D|) as

V (x, t) = �2x2 + ε cos[k(x − � sin ωt)], (2.3)

where the first term defines the longitudinal magnetic trap,
with � = h̄ωx/(N |G1D|), and ωx the axial trap frequency.
The second term characterizes the potential of the OL; ε =
2V0/(N |G1D|), V0 being the OL strength. k is the the wave
number of the OL; the amplitude and frequency of vibration
of the OL are denoted, respectively, by � and ω. All lengths
are scaled by ξ , and all times are scaled by τ .

Equation (2.2) with � = � = 0 is studied by Scharf and
Bishop [10] and by Kevrekidis et al. for � = 0 [17]. In this
paper, we assume that the longitudinal magnetic trap is absent,
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or that the axial frequency � is so small as to be neglected
compared with ε. In the absence of any external potential,
Eq. (2.2) has a stationary solitonic solution as

φ(x, t) = η
exp(it/2η2)

cosh[η(x − q)]
, (2.4)

where η defines the soliton amplitude as well as its width,
and q is the position of the soliton center. In the presence of
the periodic potential, we treat q, the particle coordinate, as a
variational parameter. Fixing η, and with no other variational
parameter, we are assuming that the soliton is stable in the time
scales of our study and that radiations are negligible. These
conditions are satisfied when we keep the OL amplitude and
wave number small; we will return to this point below. For our
purposes, it is enough to write the equation of motion for q,
which is independent of the phase [10], as

d2q

dt2
= −1

η

dVeff

dq
. (2.5)

The effective potential is defined as

Veff(q) = ε

∫ +∞

−∞
dx|φ(x−q)|2 cos[k(x−� sin ωt)]. (2.6)

Using Eq. (2.4) we find

Veff = kπε

sinh(kπ/2η)
cos[k(q − � sin ωt)]. (2.7)

The equation of motion for the soliton is obtained from
Eq. (2.5):

d2q

dt2
+ A sin[δ sin(ωt) − q] = 0. (2.8)

Here, we have put q → kq; δ = k�, and

A = k3πε

η sinh(kπ/2η)
. (2.9)

The notion of a particle for the soliton is valid when the
length scale of the soliton which is proportional to 1/η is
much smaller than the wavelength of the OL λ = 2π/k [10].
For all the results reported here, we keep this criterion by
choosing k/η ≈ 1/2, although our investigations show that
we can keep the particle notion even when the two length
scales are comparable in magnitude, i.e., k � η.

Figure 1 demonstrates the comparison between the numeri-
cal integration of Eq. (2.2) and what results from the numerical
integration of Eq. (2.8). It is not far from expectation to find the
results matching each other. The idea is that the unstable point
of the stationary potential changes to a (uniformly) stable point,
here a center, when the OL is vibrated with a definite amplitude
and frequency. Since there is no dissipation present in the
system under study, the stable critical points of Eq. (2.8) will
be centers. One can imagine a small amount of damping
in Eq. (2.2), changing the centers to stable spirals which
are asymptotically stable [18]. This handmade damping is
different from what is usually introduced in the BEC context as
the damped NLSE [19], where an imaginary term, reminding
one of the imaginary potential in nuclear physics, is introduced
causing the norm of the condensate to become nonconserved.

It is worth mentioning here that a change of variable
according to θ = q − δ sin ωt transforms Eq. (2.8) to the
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FIG. 1. (Color online) A contour plot of the soliton dynamics in
the presence of the OL potential, resulting from the direct integration
of Eq. (2.2). At t = 65, the oscillation amplitude is switched from
δ = 3 to δ = 2. The other parameters are ω = 5, ε = 0.2, and k = 1,
and as the initial conditions we have assumed a stationary soliton
with q(0) = 1 and η = 2. The red thick line shows the result of the
integration of Eq. (2.8) with the coordinate defined as x = kq to
match Eq. (2.2). All the quantities in the figures are dimensionless.

equation describing a driven undamped pendulum:

d2θ

dt2
+ A sin θ = −δω2 sin ωt. (2.10)

This equation also describes an undamped Josephson junction
which is periodically excited, in which case θ is the supercon-
ducting phase difference across the junction and A plays the
role of the critical current [16]. There is vast literature on this
topic [20], and we will make contact with it in the next section,
when we derive an analytic condition for the stability of the
fixed points for Eq. (2.8).

Figure 1 and all other plots have been sketched for the
value of the OL strength ε = 0.2. Returning to the question
of the limits of stability of the soliton, as ε increases past 0.2,
we observe considerably more radiation, although we repeated
the calculations for the OL strengths of up to ε � 1, where
the soliton survives in the time scales of our experiments,
and found very similar results. Since in Eq. (2.3) energies
are normalized by N |G1D|, this criterion means that the
OL strength V0 should remain smaller than the condensate
interaction energy. The maximum number of the atoms in a
1D condensate is limited by its size [11]. Here we need the size
of the BEC to be less than the OL periodicity. For an optical
lattice with the periodicity of 20µ [21], an estimate for the
number of atoms and the depth of the OL potential would be
N ∼ 20 000 and V0 � 10−5 h̄ω⊥, respectively.

III. SLOW AND FAST DYNAMICS

With
√

A � ω, two time scales will be present in Eq. (2.8),
and it is reasonable to consider the dynamical variable as
the sum of a slow component, v, and a fast component, u;
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namely, q = v + u. Equation (2.8) can then be separated into
two equations for fast and slow variables (we have scaled time
by

√
A), that is,

ü + J0(δ)u cos v + S2n−1 cos v − S2n sin v = 0, (3.1)

v̈ − 〈S2n−1u〉T sin v − 〈S2nu〉T cos v − J0(δ) sin v = 0,

(3.2)

with

S2n = 2
∞∑

n=1

J2n(δ) sin 2nωt, (3.3)

S2n−1 = 2
∞∑

n=1

J2n−1(δ) sin(2n − 1)ωt, (3.4)

where Jn is the Bessel function of nth order, and 〈 〉T denotes
time averaging of the fast variable over T = 2π/ω. Assuming
the slow component v to be constant over the range of this fast
time scale, Eq. (3.1) can be solved, and 〈S2n−1u〉T and 〈S2nu〉T
calculated. Putting the results into Eq. (3.2), we have

v̈ − J0(δ) sin v + 2f (v) sin 2v = 0, (3.5)

with

f (v) = −
∞∑

n=1

(−1)nJ 2
n (δ)

�2 − n2ω2
. (3.6)

� is a function of v as follows:

�2 = J0(δ) cos v. (3.7)
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FIG. 2. Six plots show F (v, δ) (arbitrary units) vs. v for various
values of δ in the vicinity of the bifurcation point. Other parameters
are ω = 5 and ε = 0.2.

With |�| � 1, we have ω � |�|. Now, factoring out 1/ω2, the
absolute value of the summation can be shown to be smaller
than π2/12. So, f (v) ∼ O(1/ω2), and the coefficient of sin 2v

in Eq. (3.5) can be neglected, once δ is not close to one of the
zeros of the J0.

In this approximation, the stability of the fixed points just
depends on the sign of the coefficient of sin v; i.e., J0(δ).
So for J0(δ) < 0, v = 2nπ are stable fixed points; whereas
for J0(δ) > 0, they are no longer stable, and v = (2n + 1)π
become stable. This seems like a transcritical bifurcation,
but since the critical value of bifurcation parameter δ is
for J0(δ) = 0 where neglecting the harmonic term is not
valid, a more precise look is needed near the bifurcation
point.

In Fig. 2, we have sketched F (v, δ) = J0(δ) sin v −
2f (v) sin 2v, with smoothly increasing δ in the vicinity of
the first root of the J0, δ0 � 2.405. It can be seen that first
q = π (or −π ) loses stability via a supercritical pitchfork
bifurcation, and then q = 0 becomes stable via a subcritical
one. Note that these two successive bifurcations occur in very
narrow windows for the bifurcation parameter δ [actually, the
bifurcations we talk about here are defined for the damped
systems; for the definitions to be exact, we may imagine a
small damping term is added to Eqs. (2.8) and (3.5) as we
stated before]. Numerical results show that the width of these
windows grows with decreasing frequency of shaking; this
point is justified below.
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FIG. 3. (a) J0(δ) has been plotted. Its zeros are bifurcation points,
and its sign determines the stability of the fixed points. (b) The
bifurcation diagram has been plotted in the vicinity of the first zero of
the J0. The evolution of fixed points shows two successive pitchfork
bifurcations [stable (S) and unstable (U) fixed points have been
represented by solid and dashed lines, respectively]. Parameters are
the same as in Fig. 2 and the vertical dashed line shows the position
of the first root of the Bessel function.
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We can find an approximate value for the width of the
bifurcation window around the roots of the Bessel function.
Approaching one of the roots of J0, say, the first root, i.e.,
δ0 � 2.405, the second and third terms of the Eq. (3.5) will
be of comparable magnitude. Keeping the first term in the
summation of Eq. (3.6) and ignoring �2 in the denominator,
we find the following criterion for (2n + 1)π to be unstable
fixed points:

2J1(δ)2

ω2
> J0(δ). (3.8)

A similar condition can be found for the 2nπ to change to
stable points. Together, we arrive at the approximate limits of
the first bifurcation window:

δ0 − 2J1(δ)

ω2
> δ > δ0 + 2J1(δ)

ω2
. (3.9)

Within this window, none of the nπ fixed points is stable, as
can be seen from Fig. 3. This equation shows that the width of
the window quadratically decreases with increasing frequency.
We again emphasize that out of the bifurcation window, the
stability is set only by the amplitude of the vibrating OL and
not its frequency. This contradicts the common concept of the
classical problem of stabilizing the inverted pendulum by the
vibrating support [1,2].

To see to what extent the slow-fast approximation gives
reliable results, we have compared, in Fig. 4, the results of the
direct solution of NLSE [Eq. (2.2)], the equation of motion
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FIG. 4. (Color online) Results of the direct integration of the
NLSE equation (contour plot), soliton center coordinate (red thick
line), and the averaged equation (green line) plotted for several values
of δ and ω. The parameters in (a) to (d) are, respectively, for δ =
3, 3, 2.42, 2.42 and for ω = 10, 2, 10, 5. The only figure in which
the result of the averaged equation does not match with the two
other results is (d), where it is close to the bifurcation point and the
frequency is moderate.
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FIG. 5. (a) Frequency of the oscillation of the soliton center of
mass vs. amplitude of the shaken OL resulting from integration of
Eqs. (2.8) and (3.5); the latter points have been joined to be more
distinguishable. (b) A narrow window around the first bifurcation
point highlighted to show the invalidity of the approximation in this
region. Other parameters are the same as Figs. 2 and 3.

for center of mass [Eq. (2.8)], and the equation for the slow
dynamics [Eq. (3.5)], for different values of δ and ω. Note that
far from bifurcation points, the result of the averaged equation
fits those of the other two quite remarkably, even for such
a moderate value of frequency as ω = 1. It is only near the
bifurcation point that the averaged equation fails for moderate
values of frequency.

In Fig. 5, a full comparison of the periods of the oscillations
of Eqs. (2.8) and (3.5) is exhibited. It can be seen that for the
values of the vibration amplitude not close to the bifurcation
point, the results fit each other well; this is true even for the
moderate values of the vibration frequency (not shown). So, it
is only in the vicinity of the bifurcation points that the results
differ substantially, both qualitatively and quantitatively.

Before ending this section, we would like to express the
results of when the equations describe a Josephson junction
as in Eq. (2.10). In this case, the stability of the fixed points
will not be a matter of interest. Instead, adding a constant term
to the right-hand side of Eq. (2.10), a dc-current feed, will
result in a constant term appearing on the right-hand side of
Eq. (3.5), with J0(δ) having the role of an effective critical
current, reflecting the effect of the high-frequency ac current.
Therefore, the width of the zero-voltage Shapiro step of the
current-voltage characteristic of the junction [16] shows a
Bessel function dependence on the amplitude of the ac current,
as has been noted before [16,22] and has an analytic support
for the voltage-driven junctions [23].
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The center of mass of a BEC, when put in a tilted periodic
potential [24], obeys an equation of a dc-biased Josephson
junction. Shaking the periodic potential mimics the ac bias as
in Eq. (2.10): now zero voltage means an oscillating soliton,
while a nonzero voltage means a running soliton. The above
argument about the effective critical current of a Josephson
junction can define the minimum value of the constant force
exerted by the linear potential which can depin the soliton,
giving it a nonzero average velocity. Since the equations
of motion are nondissipative, an initial momentum can also
depin the soliton and give it a nonzero average velocity.
It turns out that for such a kicked soliton, the minimum
initial momentum for depinning the condensate is greater for
more localized solitons [25]. Shaking the periodic potential
effectively reduces the height of the potential, lowering the
threshold momentum for depinning [26].

IV. CONCLUSION

To summarize, we have studied the dynamics of a 1D
BEC soliton in a horizontally vibrating periodic potential.
While normally for time periodic potentials the various
criteria depend on the ratio of amplitude and frequency
[5–7], here the results show that for a considerable range
of the parameters, the stability of the fixed points is gov-
erned solely by the amplitude of the vibrations. Although
the approximation assumes a large vibration frequency of
the OL, the numerical results show good agreement even
for the moderate values of the frequency. This property

arises from the periodic nature of the potential and from the
equations which show two successive fold bifurcations for
the adjacent fixed points. The idea of stabilizing an unstable
fixed point by horizontal vibration can also be exploited to
trap a soliton by a vibrating repulsive potential created by, say,
a laser beam [27]. But the simple criterion for the stability,
deduced above, is dependent on the periodic nature of the
potential.

The equation of the motion of the soliton center of mass
for this arrangement, not surprisingly with some variations,
finds application in other branches of physics, such as the
classical problem of a pendulum, Josephson junctions, charge-
density waves [28], and nano-machines proposed by using
Casimir forces [29]. In this way, our results may find a wider
range of applications. For example, one can expect that the
symmetry-breaking running modes [20,29], which here mean
a forward-moving soliton with an oscillating OL, can occur
for the small values of the vibration frequency (not considered
here). Also Shapiro steps, which in the Josephson junctions
define the ranges of the dc input current, where the phase is
(on average) locked to the external periodic input and voltage
remains constant, can inspire an experiment where in a tilted
shaken OL, the mean velocity of the soliton coincides with a
multiple of the frequency [30].
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