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Nonautonomous matter-wave solitons near the Feshbach resonance
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By means of analytical and numerical methods, we reveal the main features of nonautonomous matter-wave
solitons near the Feshbach resonance in a one-dimensional Bose-Einstein condensate confined by a harmonic
potential with a varying-in-time longitudinal trapping frequency. Based on the generalized nonautonomous
Gross-Pitaevskii model, we show that solitons in nonautonomous physical systems exist only under certain
conditions so that varying-in-time nonlinearity and confining harmonic potential cannot be chosen independently;
they satisfy the exact integrability scenarios and complement each other. We focus on the most physically
important examples where the applied magnetic field is either a linearly or a periodically varying-in-time
function. In the case of periodically varying scattering length, variations of confining harmonic potential are
found to be sign-reversible (periodic attractive and repulsive) to support the soliton-management regime. We
investigate the losses of validity of one-dimensional (1D) approximation in the cases when, by the joint action
of varying-in-time nonlinearity and confining potential, the atom cloud can be compressed from an initially
elongated quasi-1D cigar-shaped geometry to a final ball-shaped three-dimensional geometry and the induced
soliton collapse may occur.
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I. INTRODUCTION

The discovery of Bose-Einstein condensate (BEC) in
trapped clouds of ultracold alkali-metal atoms opened unique
possibilities to investigate the wave nature of matter [1–11].
This has been shown in the elegant BEC experiments that
discover, among other things, dark and bright matter-wave
solitons [6–11].

Being a product of the high-speed computer revolution of
the 20th century [12], the soliton is a subject of much current
interest in nonlinear science. Zabusky and Kruskal introduced
for the first time the soliton concept to characterize nonlinear
solitary waves that do not disperse and preserve their identity
during propagation and after a collision. The Greek ending
“on” is generally used to describe elementary particles and
this word was introduced to emphasize the most remarkable
feature of these solitary waves. This means that the energy
can propagate in the localized form and that the solitary
waves emerge from the interaction completely preserved in
form and speed with only a phase shift. Because of these
defining features, the classical soliton is being considered
as the ideal natural data bit. The optical soliton in fibers
presents a beautiful example in which an abstract mathematical
concept has produced a large impact on the real world of high
technologies [13,14].

The classical soliton concept was developed for nonlinear
and dispersive systems that have been autonomous; namely,
time has only played the role of the independent variable and
has not appeared explicitly in the nonlinear evolution equation.
A not uncommon situation is one in which a system is subjected
to some form of external time-dependent force. Such situations
could include repeated stress testing of a soliton in nonuniform
media with time-dependent density gradients; these situations
are typical for experiments with temporal and/or spatial
optical solitons, soliton lasers, ultrafast soliton switches, and
logic gates. The formation of matter-wave solitons in BEC
by magnetically tuned the interatomic interaction near a

Feshbach resonance provides a good example of nonau-
tonomous nonlinear system [8–10].

Historically, the study of soliton propagation through
density gradients began with the pioneering work of Tappert
and Zabusky [15]. As early as 1976, Chen and Liu [16]
substantially extended the concept of classical solitons to the
accelerated motion of a soliton in a linearly inhomogeneous
plasma. It was discovered that for the nonlinear Schrödinger
equation (NLSE) model with a linear external potential
Vext(x, t) = α0x the inverse scattering transform (IST) method
[17] can be generalized by allowing the time-varying eigen-
value (TVE), and as a consequence of this, the solitons with
time-varying velocities (but with time-invariant amplitudes)
have been predicted [16]. At the same time, Calogero and
Degaspieris [18] introduced the general class of soliton
solutions for the nonautonomous Korteweg–de Vries (KdV)
models with varying nonlinearity and dispersion. It was shown
that the basic property of solitons, to interact elastically, was
also preserved, but a novel phenomenon was demonstrated,
namely, the fact that each soliton generally moves with variable
speed as a particle acted on by an external force rather than as
a free particle [18]. In particular, to appreciate the significance
of this analogy, Calogero and Degaspieris introduced the terms
boomeron and trappon instead of classical KdV solitons [18].
More recently, different aspects of soliton dynamics described
by the nonautonomous NLSE models were investigated in
Refs. [19,20]. The “ideal” solitonlike interaction scenarios
among solitons have been studied in [19,20] in the framework
of the generalized nonautonomous NLSE models with varying
dispersion, nonlinearity, and dissipation or gain. Exact soliton
solutions for the nonautonomous nonlinear Schrödinger equa-
tion models with linear and harmonic oscillator potentials
substantially extend the concept of classical solitons and
generalize it to the plethora of nonautonomous solitons
that interact elastically and generally move with varying
amplitudes, speeds, and spectra adapted both to the external
potentials and to the dispersion and nonlinearity variations.
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In this work, we clarify our algorithm based on the Lax pair
generalization [20] and reveal generic properties of nonau-
tonomous matter-wave solitons. We consider the generalized
nonautonomous NLSE models with varying nonlinearities
from the point of view of their exact integrability for both
confining and expulsive external potentials. We emphasize that
the main goal of the article is twofold. First, we construct
the exactly integrable models for the Feshbach resonance
soliton management and investigate their main features by
analyzing the exact analytical solutions. Second, by means
of direct computer experiments, we demonstrate the stability
of matter-wave nonautonomous solitons and investigate the
validity of one-dimensional (1D) theory.

Our theory establishes an important interconnection be-
tween the varying-in-time nonlinearity and confining potential.
The exact analytical solutions and numerical simulations
reveal many specific features of nonautonomous solitons
corresponding to the different experimental conditions. To
date, bright matter-wave solitons and trains of bright solitons
have been studied in experiments with Bosonic lithium having
attractive interactions [8,9]. The experimental realization was
possible by tuning the scattering length with a Feshbach
resonance, first producing a condensate with repulsive inter-
actions, loading it into a 1D geometry, and then switching
the interaction to attractive by a change in the magnetic
offset field. Matter-wave dark solitons have been realized in
most experiments by using the so-called “phase imprinting”
method [5–7]. However, much less attention has been paid
to studying the behavior of solitons in BECs exhibiting
both varying-in-time nonlinearity and appropriately varying-
in-time trapping potential. Up to now, no attempts had been
made in experiments to relate these two different management
scenarios and to find nontrivial laws of soliton adaptation
in external potentials when varying-in-time nonlinearity and
confining potential complement each other.

A subtle interplay between nonlinear management by
means of the Feshbach resonance on the one hand and
varying-in-time harmonic oscillator potential on the other
hand can result in a rich variety of matter-wave solitons
with several interesting properties. To test the validity of our
predictions, the experimental arrangement should be inspected
to be as close as possible to the optimal map of parameters at
which the problem proves to be exactly integrable. The exact
analytical solutions and numerical experiments reveal many
specific features of nonautonomous solitons near the Feshbach
resonance. We propose the experimentally accessible methods
to generate the BEC solitons and demonstrate that variations
of magnetically tuned scattering length must be consistent
with variations of the confining potential. It is found, in
particular, that near a Feshbach resonance the matter-wave
soliton can be stabilized even without an axial trapping
potential. In the case of periodically varying nonlinearity,
variations of the external harmonic potential are found to be
periodically sign-reversible (expulsive or attractive) in time.
We demonstrate the advantages and limitations of our 1D
approximation. The Gross-Pitaevskii (GP) wave equation, as is
well known, predicts the catastrophic collapse of self-focusing
beams in two-dimensional (2D) and three-dimansional (3D)
space configurations [2–4]. By means of direct computer
experiments, we study the losses of validity of 1D theory

leading to matter-wave soliton collapse induced by 1D-to-3D
transformations of trapping potentials. Based on computer
simulations, we find that 1D nonautonomous matter-wave
soliton exists if varying-in-time scattering length as(t) and 1D
condensate density n1D(t) satisfy the following “empirical”
condition: |as(t)|n1D(t) � 0.1.

To avoid confusion, we stress that exclusively the integrable
models are being considered and investigated in this article.
Nonintegrable models for the Feshbach resonance nonlinear
management of matter waves are summarized in the recently
published book [4].

The article is organized as follows. In Sec. II we discuss
the statement of the problem and consider certain of the
remarkable opportunities for strong nonlinear soliton man-
agement that are specific to only the Feshbach resonance.
In Sec. III we consider the generalized nonautonomous GP
models from the point of view of their exact integrability by
the IST method and obtain the general solutions for these
models. In Sec. IV we study the main features of nonau-
tonomous matter-wave solitons near the Feshbach resonance
with continuously tuned scattering length. We consider the
two most physically important examples when the applied
magnetic field is varying in time linearly and periodically. The
nonautonomous soliton management concept presented in this
article is strictly valid for the limiting case of 1D condensate.
Obviously, this model has explicit and implicit limitations
on its applicability. Some of the advantages and limitations
of 1D soliton management concept will be demonstrated
in Sec. V through direct 3D computer simulations. Finally,
Sec. VI contains the conclusions drawn from our study and an
outlook for future work.

II. STRONG VARIATIONS OF NONLINEARITY
NEAR THE FESHBACH RESONANCE

It is a commonly accepted fact that the evolution of the
condensate wave function �(r, t) may be very accurately
described by the 3D model well known in low-temperature
and solid-state physics named, after its authors, the Gross-
Pitaevskii (3D GP) model [2–4,21]:

ih̄
∂

∂t
�(r, t)=

[
−h̄2∇2

2m
+G0 |�(r, t)|2+Vext(r, t)

]
�(r, t),

(1)

the time-independent version of which,[
−h̄2∇2

2m
+ G0 |�(r)|2 + Vext(r)

]
�(r) = µ�(r), (2)

is derived by means of the ansatz

�(r, t) = �(r) exp(−iµt/h̄), (3)

where we use the standard notation for the chemical potential
µ and the time-independent nonlinear parameter G0,

G0 = 4πh̄2as

m
= const. (4)

In these equations r = (x, y, z) is the displacement from the
trap Vext(r) center and m refers to the mass of the atom. The
condensate wave function is normalized to the total number of
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atoms in BEC,∫
|�(r, t)|2 d3r = N = const, (5)

and the density of atoms is given by

n3D(r) = |�(r, t)|2 . (6)

From the physical point of view, the dynamics of condensate
can be treated as a substantially nonlinear process, which is
completely similar to the formation of the Bose condensate of
photons in a laser [22]. In the absence of an external potential,
the GP equation is ordinarily considered to be like the NLSE,
which is well studied in the theory of the self-focusing and
generation of temporal and spatial optical solitons [23–29].

The nonlinearity in BEC arises from the density-dependent
interactions between atoms proportional to the s-wave scat-
tering length as [1–4,21]. These interactions add significant
new physics to the coherent matter wave itself and give rise
to many novel phenomena in analogy to general nonlinear
wave effects [2–4]. Matter-wave solitons are formed due
to the balance of the dispersion and nonlinear compres-
sion. In a Bose-Einstein condensate this balance occurs
between the nonlinear mean-field interaction and quantum
pressure and can be classified according to the sign of
the s-wave scattering length, as , determining whether the
interparticle interaction is attractive (negative as) or repulsive
(positive as) and leading, respectively, to the formation of
bright or dark solitons. The magnetic-field dependence of the
scattering length as has a resonance structure near the so-
called Feshbach resonances [30–36], that provides remarkable
opportunities for the study of matter-wave physics with a very
strong, very weak, positive, negative, or even time-dependent
interaction strength, all within a single experiment [30–36].

In the general case, the strength of the nonlinearity G3D(t)
is defined in terms of the time-dependent s-wave scattering
length as(t),

G3D(t) = 4πh̄2as(t)

m
. (7)

As follows from experiments [30–36], the resonance in the
s-wave scattering length a(B) shows a dispersive form as a
function of the applied magnetic field,

as(B)

abg
= 1 + �0/B0

1 − B(t)/B0
. (8)

This kind of energy-dependent enhancement of interparticle
collision cross sections arises because of the existence of a
metastable state [2–4]. In the empirically derived expression
Eq. (8), B0 is the resonant value of the magnetic field, abg is the
value of scattering length far from resonance, and parameter
�0 represents the resonance width in units of the Bohr radius
a0 = 0.0529 nm. Feshbach resonances have been reported in
85Rb at 164 G [33], in 23Na at 853 and 907 G [32], and in
7Li at 725 G [8]. 133Cs offers further flexibility because of
a unique combination of low-field Feshbach resonances [36]:
one broad resonance allows for precise tuning of the scattering
length from a large negative value at zero field to large positive
values at higher fields going through zero at 17 G, whereas
several narrow resonances (with the most prominent one at
48 G) enable very precise control [36].

FIG. 1. (Color online) Feshbach resonance management. (a) The
resonance structure in the magnetic-field-dependence of the scattering
length as . (b) Variations in time of the scattering length in the case
of periodical sweeping of the magnetic field across the point 172 G.
(c) Variations in time of the scattering length in the case of periodical
sweeping of the magnetic field through the point 156 G.

Let us consider the Feshbach resonance nonlinear manage-
ment problem in more detail. As an example, and without the
loss of generality, we consider the main Feshbach resonance
characteristics obtained in experiments with 85Rb [33]. These
experiments demonstrate that the self-interaction energy of
the 85Rb Bose-Einstein condensate can be magnetically tuned
in accordance with the dispersive form given by empiri-
cal relation Eq. (8), where abg = −295a0, �0 = 8 G, and
B0 = 164 G.

Calculated magnetic-field dependence of scattering length
(corresponding resonance value B0 = 164 G and width of
resonance �0 = 8 G) is shown in Fig. 1(a). The scattering
length becomes zero at 172 G. This figure indicates that the
nonlinear term given by Eq. (4) can be continuously tuned
if the magnetic field will vary in time. In particular, the
variations of the scattering length by almost two orders of
magnitude can be obtained during 500 ms by linearly tuning
the magnitude of the magnetic field B = B(t = 0) + γ t − B0

with the speed of the field ramp γ = dB/dt = 0.08 G/ms
in the range B = (145–185) G. The scattering length as a
function of time has the same form as represented in Fig. 1(a)
with the only difference being that the point at which 185 G
corresponds to the total time interval 500 ms and the peak of
the resonance 164 G now corresponds to 250 ms.
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The variation of the scattering length near the Feshbach
resonance has been used in experiments by Cornish et al. [34]
to magnetically tune the condensate self-interaction energy
over a wide range, extending from strong repulsive to large
attractive interactions. Cornish et al. [34] applied a linear ramp
to sweep the magnetic field across the resonance. By applying a
linear ramp to the magnetic field, they varied the magnitude of
the scattering length in the condensate by almost three orders
of magnitude. Cornish et al. [34] especially emphasized that
the duration of this ramp (500 ms) was chosen to be sufficiently
long to ensure that the condensate responded adiabatically.

There is still much room for improvement in employing the
Feshbach resonance management technique. One important
possibility can be demonstrated. Let us consider, for example,
the periodical sweeping of the magnetic field near the
Feshbach resonance. Figure 1(b) shows the time dependence of
scattering length (in units of the Bohr radius) corresponding to
the magnetic field variations B(t) = B(t = 0) + β cos(	t) −
B0 around the zero scattering length point B(t = 0) = 172
G with the amplitude of the field modulation β = 7 G
and the frequency 	 = 16π rad/s (T = 2π/	 = 125 ms).
The sweeping of the magnetic field through the zero point
a = 0 at B = 172 G toward the Feshbach resonance B =
164 G is responsible for the scattering length increasing.
For comparison, Fig. 1(c) illustrates how we are able to
easily change the scattering length dynamics by moving in
the opposite direction and sweeping of the magnetic field
across the point B(t = 0) = 156 G where the scattering length
becomes negative.

III. EXACTLY INTEGRABLE MODELS FOR
MATTER-WAVE SOLITONS NEAR THE FESHBACH

RESONANCES IN CONFINING POTENTIALS

The intrinsic similarities between the mean-field GP model
and the NLSE model imply the existence of common fun-
damental nonlinear phenomena, independent of the physical
origin of the nonlinearity. Equation (1) is known for a large
class of physical systems, and without confining potential
this equation is known as the famous nonlinear Schrödinger
equation. In this sense, matter-wave solitons in one dimension
are similar to optical solitons in fibers [23–29] and, therefore,
the parallelism with the fiber-soliton management concept
could be brought into active use for matter waves as well
(see, for example, the review of optical soliton dispersion
management principles in [14,29] and references therein).

How can we determine whether a given nonlinear evolution
equation is integrable? An ingenious method for answering
this question was discovered by Gardner, Green, Kruskal, and
Miura (GGKM) [17]. Following this work, Lax [37] formu-
lated a general principle for associating nonlinear evolution
equations with linear operators so that the eigenvalues of the
linear operator are integrals of the nonlinear equation. Lax
developed the IST method based on an abstract formulation
of evolution equations and certain properties of operators in a
Hilbert space, some of which are well known in the context of
quantum mechanics [17]. Ablowitz, Kaup, Newell, and Segur
(AKNS) [38] have found that many physically meaningful
nonlinear models can be solved with the IST method.

In the traditional scheme of the IST method, the spectral
parameter 
 of the auxiliary linear problem is assumed to
be a time-independent constant 
′

t = 0, and this fact plays a
fundamental role in the development of analytical theory. Chen
and Liu [16] were the first who showed theoretically that an
inhomogeneous plasma still supports Langmuir solitons and
multisolitons, which maintain their shapes and identities even
after mutual collisions if and only if 
′

t = const = α0. The
NLSE model with linear x-dependent potential was directly
integrated in their work [16] by applying the IST method.

Notice that the nonlinear evolution equations that arise
in the approach of the variable spectral parameter, 
′

t �= 0,
contain, as a rule, some coefficients explicitly dependent on
time. In physics and mathematics, a differential equation
is autonomous when it does not depend on time (does not
depend on the independent variable). In contrast, differential
equation is nonautonomous when it does depend on time
(does depend on the independent variable). The classification
of dynamic systems into autonomous and nonautonomous
is often convenient and can correspond to different physical
situations, in which, respectively, an external time-dependent
driving force is present or absent. The mathematical treatment
of a nonautonomous system of equations is considerably more
complicated then the treatment of autonomous ones.

The IST method with variable spectral parameter makes
it possible not only to construct the well-known models of
nonlinear autonomous physical systems, but also to discover
many novel integrable and physically significant nonlinear
nonautonomous equations by extending the Zakharov-Shabat
(ZS) [39] and AKNS [38] formalism and following the ideas of
Chen and Liu [16], Calogero and Degasperis [18], and Gupta,
Ray, Herrera, and Balakrishnan [40].

In the framework of the generalized IST method with
the variable spectral parameter 
(t), a nonlinear integrable
equation arises as a compatibility condition,

F̂t − Ĝx + [F̂, Ĝ] = 0, (9)

of a system of the eigenvalue linear matrix differential
equations:

ψx = F̂ψ(x, t), ψt = Ĝψ(x, t). (10)

Here ψ(x, t) = {ψ1, ψ2}T is a two-component complex func-
tion, F̂ and Ĝ are complex-valued (2 × 2) matrices,

F̂(
) = F̂
{

(t),Q(x, t),

∂Q

∂x
,
∂2Q

∂x2

}
, (11)

Ĝ(
) = Ĝ
{

(T ),Q(x, t),

∂Q

∂x
,
∂2Q

∂x2

}
, (12)

depending on the time-varying spectral parameter 
(t) =
κ(t) + iη(t). Following the general strategy based on the IST-
TVE method discovered by Chen and Liu [16] and applying
the moving-in-time focuses concept of the self-focusing theory
to the fundamental IST-TVE formalism (see, e.g., [19], and
references therein), we can construct the desired matrices F̂
and Ĝ in the form

F̂ = −i
(t )̂σ3 + Û φ̂, (13)

Ĝ =
(

A B

C −A

)
, (14)
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Û =
√

σ

1 − �(t)

(
0 Q(x, t)
−Q∗(x, t) 0

)
, (15)

φ̂ =
(

exp[−i�t (1 − �)−1x2/2] 0
0 exp[i�t (1 − �)−1x2/2]

)
.

(16)

The desired AKNS elements [38,39] of the Ĝ matrix,
Ĝ = ∑k=2

k=0 Gk

k, with


t = α(t) + 
(t)
�t

(1 − �)
,

are represented by

A = i

2

σ

1 − �
|Q|2 − iα(t)x − i
x

�t

(1 − �)
− i
2,

B =
√

σ

1 − �

[
1

2
xQ

�t

(1 − �)
+ i

2
Qx + 
Q

]
(17)

× exp

[
i

�tx
2

2(1 − �)

]
C = −B∗.

The Schrödinger equation is of the second order of x, which is
why we have considered here terms not higher than the second
order of 
.

Equation (9) must be valid for all values of complex TVE

(t) = κ(t) + iη(t)


(t) = κ(t) + iη(t)

= 1 − �(0)

1 − �(t)

[

(0) +

∫ t

0
α(t ′)

1 − �(t ′)
1 − �(0)

dt ′
]

, (18)

where 
(0) = k0 + iη0 is given by the initial conditions. The
function �(t) is required to be a twice-differentiable and
once-integrable, but otherwise arbitrary, function; there are
no restrictions. We call it control function here and assume
that �(t = 0) = �(0).

From the mathematical point of view, the main problem is
to find a suitable transformation under which the symmetric
form of the Lax equation is preserved. Alternatively, from
the physical point of view, the more fundamental is the
question whether the inhomogeneous media still support
solitons with varying main parameters: variable time-space
duration, amplitude, and phase. To find a such transformation,
we introduce matrix

φ̂ =
(

exp [iϕ(x, t)] 0
0 exp [−iϕ (x, t)]

)
, (19)

where the function ϕ(x, t) is defined by the parabolic phase
profile ϕ = �(t)x2/2. The transformation (19) directly fol-
lows from the general Hamiltonian approach and the well-
known time-space analogy in the theory of self-focusing
of laser beams in nonlinear optics [24–27]. The oscillating
periodically contracted and expanded laser beam in self-
focusing nonlinear Kerr-like media exists if and only if the
radius of curvature of its wave front is an oscillating function
of the propagation distance. More exactly, if we compare the
expression for the phase profile given by Eq. (19) with a
well-known formula for the ideal lens, ϕ = r2/2f , we can
conclude that the transformation law (19) can be considered

as the transformation of the soliton phase by the nonlin-
ear self-focusing lens with a time-dependent focus length
f = f (t).

The phase evolution of the condensate wave function can
be studied in a well-defined and controlled way by means
of interferometric methods during expansion as well as in
a matter waveguide [41]. After release from the trap, the
mean-field energy is converted to kinetic energy, which for an
initial harmonic trapping potential leads to a quadratic phase
profile. The results of the experimental and theoretical studies
presented in Ref. [41] justify the phase transformation law
given by Eq. (19).

The nonisospectral generalization for the IST method
given by Eqs. (12)–(18) leads to the following exactly
integrable nonautonomous NLSE model with parabolic time-
dependent confining potential and linear (also time-dependent)
potential:[

i
∂

∂t
+ 1

2

∂2

∂x2
+ σ

1 − �(t)
|Q|2

]
Q

=
[

2α(t)x + 1

2

1

1 − �(t)

∂2�(t)

∂t2
x2

]
Q, (20)

where parameter σ = ±1 is introduced to separate bright- and
dark-soliton solutions for the nonautonomous model given by
Eq. (20).

When this result is compared with generalized nonau-
tonomous GP equation,

i
∂Q

∂t
+ 1

2

∂2Q

∂x2
+σR(t) |Q|2 Q−2α(t)xQ− 1

2
�2(t)x2Q = 0,

(21)

the exact integrability of the generalized GP model, Eq. (21),
is immediately apparent if the time dependence of nonlinearity
and variations of the confining potential satisfy the exact
integrability scenario:

R(t) = 1

1 − �(t)
, (22)

V (x, t) = 1

2
�2(t) x2 = 1

2[1 − �(t)]

∂2�(t)

∂t2
x2. (23)

That is why solitons in nonautonomous physical systems
exist only under certain conditions and varying-in-time non-
linearity and confining harmonic potential cannot be chosen
independently; they satisfy the exact integrability scenarios
and complement each other. From the physical point of view,
Eq. (23) can be considered as the law of soliton adaptation
to the external potential. It is precisely this soliton-adaptation
mechanism that is of prime physical interest. Here, we clarify
some examples in order to gain a better understanding into
this physical mechanism, which can be considered as the
interplay between nontrivial time-dependence of parabolic
soliton phase and external time-dependent parabolic potential.
We stress that this nontrivial time-space-dependent phase
profile of nonautonomous soliton [see Eqs. (14) and (19)]
depends on the management function �(t) and this profile
does not exist for canonical NLSE soliton when �(t) = 0 and
R(t) = 1.
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In this article, our investigations are focused on the main
features of bright solitons near the Feshbach resonance.
Dynamics of dark solitons will be considered in the separate
publication.

Application of the auto-Bäcklund transformation [42] and
the recurrent relation

Qn(x, t) = −Qn−1(x, t) − 4ηn�n−1(x, t)

1 + |�n−1(x, t)|2

× [1 − �(t)] exp

[
−i

�tx
2

2(1 − �)

]
, (24)

which connects the (n − 1) and n-soliton solutions by means of
the so-called pseudopotential �n−1(x, t) = ψ1(x, t)/ψ2(x, t)
for the (n − 1)-soliton scattering functions ψ(x, t) =
(ψ1ψ2)T , leads us to the desired result. One-soliton Q1(x, t)
and two-soliton Q2(x, t) solutions are represented by the
following analytic expressions:

Q1(x, t) = 2η01 [1 − �(0)]√
(1 − �(t))

sech [ξ1(x, t)]

× exp

[
−i

�t x2

2(1 − �)
− iχ1(x, t)

]
, (25)

Q2(x, t) = 4
√

(1 − �(t)
N (x, t)

D(x, t)
exp

[
−i

�tx
2

2(1 − �)

]
. (26)

In Eq. (26) the numerator is given by

N = η1 cosh ξ2 exp(−iχ1)

× [
(κ2 − κ1)2 + iη2(κ2 − κ1) tanh ξ2 + η2

1 − η2
2

]
+ η2 cosh ξ1 exp(−iχ2) × [

(κ2 − κ1)2

− 2iη1(κ2 − κ1) tanh ξ1 − η2
1 + η2

2

]
, (27)

and the denominator is represented by

D = cosh(ξ1 + ξ2)[(κ2 − κ1)2 + (η1 − η2)2]

+ cosh(ξ1 − ξ2)[(κ2 − κ1)2 + (η1 + η2)2]

− 4η1η2 cos(χ2 − χ1), (28)

where

ξi(x, t) = 2η0ix
1 − �(0)

1 − �(t)

+ 4η0iκ0i [1 − �(0)]2
∫ t

0

dτ

[1 − �(τ )]2

+ 4η0i [1 − �(0)]
∫ t

0

dτ

[1 − �(τ )]2 K(τ ), (29)

χi(x, t) = 2κ0ix
1 − �(0)

1 − �(t)
+ 2x

1 − �(t)
K(t)

+ 2
(
κ2

0i − η2
0i

)
[1 − �(0)]2

∫ t

0

dτ

[1 − �(τ )]2

+ 4κ0i [1 − �(0)]
∫ t

0

K(τ )dτ

[1 − �(τ )]2

+ 2
∫ t

0

[ K(τ )

1 − �(τ )

]2

dτ, (30)

K(t) =
∫ t

0
α(τ ′)[1 − �(τ ′)]dτ ′, (31)

η(t) = 1 − �(0)

1 − �(t)
η0i , κ(t) = 1 − �(0)

1 − �(t)
κ0i + K(t)

1 − �(t)
,

(32)

and the initial velocity and amplitude of the
ith soliton (i = 1, 2) are given by κ0i and η0i , respectively.

Equation (26) describes two-soliton bound state at all
times and all locations. We will look into some of its
interesting features. Obviously, these soliton solutions reduce
to that obtained earlier in the limit R(t) = 1, and α(t) =
�(t) ≡ 0 for canonical NLSE without external potentials
[23–29].

IV. NONLINEAR DYNAMICS OF NONAUTONOMOUS
MATTER-WAVE SOLITONS NEAR THE FESHBACH

RESONANCE WITH CONTINUOUSLY TUNED
SCATTERING LENGTH

Equations (20) and (8) have one feature in common, the
resonance form in the nonlinearity. That is why, as follows
from Eqs. (20)–(23), the matter-wave soliton-management
concept must be consistent with variations of confining
potential.

Let us rewrite Eq. (21) in the vicinity of a resonance by using
the reduction ∂2�/∂t2 = 0, which denotes that the confining
harmonic potential is vanishing. To suppose that confining
harmonic potential is vanishing implies that the control func-
tion �(t) is defined as �(t) = C0t with the initial condition
�(0) = 0. Because of this, the nonlinearity in Eq. (21) has the
simple dispersive form R(t) = R(0)/(1 − C0t), which holds
also for the scattering length as(t) in the case of the linear
tuning of the magnetic field B = B(t = 0) + γ t − B0 [see
Sec. II and Eq. (8)]. Without loss of generality, we consider
R(t = 0) = 1. In fact, as we discussed in Sec. II, the scattering
length as(t) can be continuously tuned by linearly increasing
in time an external magnetic field near the Feshbach reso-
nance. Thus, we can write the following nonautonomous GP
equation:

i
∂Q

∂t
+ 1

2

∂2Q

∂x2
+ 1

1 − C0t
|Q|2 Q − 2α(t)xQ = 0. (33)

Hence, the nonlinear BEC dynamics in the vicinity of the
Feshbach resonance (8) can be considered in the framework
of the exactly integrable NLSE model Eq. (32) with the
nonlinearity of dispersive form. One- and two-soliton solutions
in the most general form are given by

Q1(x, t) = 2η01√
(1 − C0t)

sech [ξ (x, t)]

× exp

[
− i

2

C0x
2

1 − C0t
− iχ (x, t)

]
, (34)

Q2(x, t) = 4
√

(1 − C0t)
N (x, t)

D(x, t)
exp

(
− i

2

C0x
2

1 − C0t

)
,

(35)

023610-6



NONAUTONOMOUS MATTER-WAVE SOLITONS NEAR THE . . . PHYSICAL REVIEW A 81, 023610 (2010)

where the nominator N (x, t) is given by Eq. (27), the
denominator D(x, t) is represented by Eq. (28) and

ξ (x, t) = 2η0ix + 4η0iκ0i t

1 − C0t
+ 4η0i

∫ t

0

dτ

(1 − C0τ )2
K′(τ ),

(36)

χ (x, t) = 2κ0ix + 2
(
κ2

0i − η2
0i

)
t + 2K′(t)x

1 − C0t

+ 4κ0i

∫ t

0

K′(τ )dτ

(1 − C0τ )2
+ 2

∫ t

0

[ K′(τ )

(1 − C0τ )

]2

dτ,

(37)

with

K′(τ ) =
∫ τ

0
α(τ ′)(1 − C0τ

′)dτ ′ (38)

and

η(t) = η0i

1 − C0t
, κ(t) = κ0i

1 − C0t
+ K′(t). (39)

Let us now give the explicit formulas of the soliton solutions
for the case where all the eigenvalues are purely imaginary. In
the case α = 0, the one-soliton solution for Eq. (33) is given by

Q(x, t) = 2η01√
(1 − C0t)

sech

[
2η01x

(1 − C0t)

]
× exp

[
− i

2

C0x
2

1 − C0t
+ i

2η2
01

(1 − C0t)
t

]
. (40)

This result shows that in the vicinity of the Feshbach
resonance the soliton can be stabilized even without a trapping
potential and, in addition, Eq. (40) indicates the possibility
for the optimal compression of matter-wave solitons in
BEC. In this optimal regime the total energy is contained in
the soliton. In Fig. 2 we illustrate the matter-wave soliton
compression dynamics near the resonance given by Eq. (40)
with C0 = 0.01. Direct computer experiment confirms the
linear-in-time soliton compression scenario in full accordance
with analytical expression (40).

FIG. 2. (Color online) Self-compression of a nonautonomous
matter-wave soliton near the Feshbach resonance calculated within
the framework of the model [Eqs. (33), (40)] after choosing the
soliton-management parameters C0 = 0.01, α = 0, and η0 = 0.05.

The bound two-soliton solution for the case of the purely
imaginary eigenvalues is represented by

Q2(x, t) = 4
√

(1 − C0t)
N (x, t)

D(x, t)
exp

(
− i

2

C0x
2

1 − C0t

)
,

(41)

where

N = (
η2

1 − η2
2

)
[η1 cosh ξ2 exp(−iχ1)

− η2 cosh ξ1 exp(−iχ2)], (42)

D = cosh(ξ1 + ξ2) (η1 − η2)2 + cosh(ξ1 − ξ2) (η1 + η2)2

− 4η1η2 cos(χ2 − χ1), (43)

and

ξi(x, t) = 2η0ix

1 − C0t
, (44)

χi(x, t) = − 2η2
0i t

1 − C0t
+ χ0i . (45)

For the particular case of η01 = 1/2, η02 = 3/2, Eq. (41)
transforms to

Q2(x, t)

= 4√
(1 − C0t)

× exp[it/2/(1 − C0t) − χ01]

cosh 4x + 4 cosh 2x − 3 cos[4t/(1 − C0t) + �ϕ]
×{cosh 3x − 3 cosh x exp[i4t/(1 − C0t) − �ϕ]}.

(46)

In the limit R(t) = 1 and C0 = 0, this solution reduces to the
well-known breather solution which was found by Satsuma
and Yajima [43],

Q2(x, t) = 4
cosh 3x + 3 cosh x exp (4it)

cosh 4x + 4 cosh 2x + 3 cos 4t
exp

(
it

2

)
,

(47)

and has been observed in all pioneering experiments with
optical solitons in fibers [23–29]. At t = 0, the breather takes
the simple form Q(x, t) = 2sech(x). An interesting property
of this breather solution is that its form oscillates with the
so-called soliton period Tsol = π/2 [23–29].

In the general case of nonautonomous system with time-
dependent nonlinearity, the soliton period becomes dependent
on time. Near the Feshbach resonance R(t) = 1/(1 − C0t), the
soliton period is given by

Tsol = π (1 − C0t)2

η2
01 − η2

02

. (48)

Typical behavior of nonautonomous breather is shown in
Fig. 3 for η01 = 0.25, η02 = 0.75 and in Fig. 4 for η01 =
0.4, η02 = 0.8. Equation (48) can be obtained directly from
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FIG. 3. (Color online) Matter-wave breather dynamics near the
Feshbach resonance calculated within the framework of the model
[Eq. (41)] after choosing the soliton-management parameters C0 =
0.07, α = 0, η01 = 0.25, and η02 = 0.75.

the general solution given by Eq. (46). We stress that the
Satsuma and Yajima breather can be obtained from the general
solution [Eq. (41)] if and only if the soliton phases are chosen
properly, precisely when �ϕ = π . The intensity profiles of the
autonomous and nonautonomous breathers build up a complex
landscape of peaks and valleys and reach their peaks at the
points of the maximum (see Figs. 3 and 4).

The case of periodically varying magnetic field B(t) =
β cos(	t) can be regarded as a special case. In this case
the spectral parameter 
(t) of the IST method is directly
related to the magnetic field variations. Now the control
function �(t) is given by �(t) = β cos 	t and the parameter
functions for varying-in-time nonlinearity R(t) and confining
potential V (x, t) cannot be chosen independently; they satisfy

FIG. 4. (Color online) Two-nonautonomous-soliton-interaction
scenario near the Feshbach resonance calculated within the frame-
work of the model Eq. (41) after choosing the soliton-management
parameters C0 = 0.07, α = 0, η01 = 0.4, and η02 = 0.8.

the following exact integrability conditions:

R(t) = 1

1 + β cos 	t
, (49)

V (x, t) = 1

2
�2(t)x2 = 1

2

β	 2 cos 	t

1 + β cos 	t
x2. (50)

Consequently, variations of confining harmonic potential are
found to be sign-reversible (periodic attractive and repulsive)
to support the stable nonlinear soliton-management scenario
in this example. Exact soliton solutions for the case of
periodically varying nonlinearity [Eq. (49)] are represented
by formulas (25) and (29)–(32), where the substitution
�(t) = �0 cos 	t is straightforward. Periodically varying in
time the expulsive and/or attractive sign-reversible harmonic
oscillator potential [Eq. (50)] makes it possible to generate
nonautonomous matter-wave solitons with periodically vary-
ing characteristics (see Fig. 5).

Using the example of α = α0 = const, one- and two-soliton
solutions can be derived without difficulty. The result is given
by the general solution [Eqs. (26)–(32)], where

K(t) = α0t

(
1 − C0

2
t

)
, (51)

ξ (x, t) = 2η0(x + 2κ0t + α0t
2)(1 − C0t)

−1, (52)

χ (x, t) = [
2κ0x + 2α0xt + 2

(
κ2

0 − η2
0

)
t − α0C0xt2

+ 2κ0α0t
2
]
(1 − C0t)

−1

+ α2
0

(
2

3
t3 − 1

6
C0t

4

)
(1 − C0t)

−1. (53)

FIG. 5. (Color online) (a) Self-compression and periodical oscil-
lations of a nonautonomous matter-wave soliton near the Feshbach
resonance calculated within the framework of the model [Eqs. (49),
(50)] after choosing the soliton management parameters β = 0.75,
α = 0, and ω = 0.5. (b) Periodic sign-reversible oscillations of the
external harmonic oscillator potential.
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FIG. 6. (Color online) Evolution of nonautonomous matter-wave
solitons calculated within the framework of the generalized model
given by Eqs. (33), (49), and (50) after choosing the soliton-
management parameters. (a,b) α = 0.01, η0 = 0.1, and C0 = 0.07;
(c,d) ω = 0.5 and β = 0.75.

Without a resonance, under condition C0 = 0, the solution of
Eq. (52) reduces to that obtained by Chen and Liu in Ref. [16]:

ξ (x, t) = 2η0(x + 2κ0t + α0t
2 − x0). (54)

The Chen and Liu solution for negative initial velocity
κ0 = −V0 (V0 > 0) has the group velocity vg = 2(V0 − α0t)
and travels toward the potential range with deceleration 2α0

until the turning point xT = x0 + V 2
0 /α0, where the velocity

changes sign and the soliton is reflected back from the
potential. Figure 6 shows that the deceleration effect preserves
in the process of the nonautonomous soliton self-compression
in the vicinity of the Feshbach resonance as well.

The generalized Satsuma and Yajima formula for eigenval-
ues η01 = 1/2, η02 = 3/2 can be regarded as a special case. In
this case we find

Q2(x, t)

= 4√
(1 − C0t)

exp

(
− i

2

C0x
2

1 − C0t

)
× exp

{[
−2α0xt + α0C0xt2

− α2
0

(
2

3
t3 − 1

6
C0t

4

)]
(1 − C0t)

−1

}
× exp(it/2/(1 − C0t) − χ01)

cosh 4X + 4 cosh 2X − 3 cos[4t/(1 − C0t) + �ϕ]
×{cosh 3X − 3 cosh X exp[i4t/(1 − C0t) − �ϕ]},

(55)

where X(x, t) = (x−x0+α0t
2)(1−C0t)−1,�ϕ = χ02−χ01.

Figure 7 shows examples of the bound nonautonomous
solitons dynamics calculated in the framework of Eq. (53) for
various values �ϕ = χ02 − χ01 and �x = x01 − x02.

FIG. 7. (Color online) Nonlinear interaction of two nonau-
tonomous solitons calculated within the framework of the generalized
model given by Eq. (55) after choosing the soliton management
parameters α = 0.01, C0 = 0.01, and η01 = η02 = 1.0. The relative
phase difference between solitons is �ϕ = 0 in the top panel but it is
changed to �ϕ = π in the bottom panel.

The interesting part of the soliton interaction scenario in
this case is connected with suppression of interaction forces
among initially strongly overlapping solitons. An acceleration
of the period of oscillation of a two-soliton pair, as well as
the suppression of interaction, are clearly shown in Fig. 7.
Consequently, similar to the canonical soliton case, the
nonautonomous solitons in confining harmonic and linear
x-dependent potentials attract or repel each other depending on
their relative phase difference. Their pure solitonlike features
(elastic character of interaction) are confirmed by accurate
direct computer simulations.

V. VALIDITY OF 1D APPROXIMATION AND
MATTER-WAVE SOLITON COLLAPSE INDUCED BY

1D-TO-3D TRANSFORMATIONS OF TRAPPING
POTENTIALS

When studying the effects of nonlinear matter-wave man-
agement, we must also consider the validity of the GP model in
this limit. Obviously, when the scattering length is varied with
time, the dimensionless parameter controlling the validity of
the mean-field approach [2–4] will be dependent on time, too:

n3D|as(t)|3 � 1, (56)

where n3D is the average density of the 3D dilute Bose
gas. The inequality Eq. (56) means that BEC is sufficiently
dilute for the effective range of the two-body interaction
potential to be much smaller than the mean particle sep-
aration. Typical values of density range from 1013 cm−3

to 1015 cm−3, so that n3D|as |3 is always less than 10−3

for a typical alkali-metal gas characterized by scattering
length as0(t = 0) = 100a0 in units of the Bohr radius a0 =
0.0529 nm. The relationship presented in Fig. 1 breaks down
only in the extreme vicinity of the resonance, affording a large
range of the density n3D for which the GPE model is still
appropriate. If we consider a typical condensate of density
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from n3D = 1013 cm−3 to 1015 cm−3 and as0(t = 0) = 5 nm
so that parameter n3D|as(t = 0)|3 varies from 1.25 × 10−6 to
1.25 × 10−4 , the GP equation is still valid when as is
one order of magnitude larger as(t = t1) = 10as0(t = 0) =
1000a0 = 52.9 nm, so that parameter n3D|as(t = 0)|3 varies
from 1.25 × 10−3 to 1.25 × 10−1 (see Fig. 1).

Let us consider the mean-field dynamics of the condensate
when the main criterion [Eq. (56)] for validity of the GP equa-
tion is satisfied. Our goal now is to obtain the accurate criteria
for adiabaticity of the matter-wave-management scenario:

1

as

das

dt
≈ 1

B0 − B(t)

dB

dt
� 1

Teff
, (57)

1

�ho

d�ho

dt
� 1

Teff
, (58)

where Teff denotes an effective time scale of the atom-cloud
variations. Equations (57) and (58) mean that both scattering
length as(t) and trapping potential V (r, t) = 1/2m�2

ho(t)r2 are
slowly varying functions of time as compared with exp(t/Teff).

The starting point of our study is the time-dependent 3D GP
equation (GPE) for the complex wave function �(x, y, z, t)
that describes the behavior of a BEC atom cloud in the 3D
harmonic trapping potential:

ih̄
∂�

∂t
= − h̄2

2m
�� + 4πh̄2as(t)

m
|�|2 �

+ 1

2
m�2

ho(t) (x2 + y2 + z2)�. (59)

As is well known, the GPE provides an excellent model
of mean-field effects in BECs and has accurately predicted
the onset of collapse of an attractive BEC. The basic GPE
(59) is insufficient to study the collapsing condensate in the
immediate vicinity of the Feshbach resonance where high-
order effects become considerable. In the immediate vicinity
of the Feshbach resonance, given by the empirically derived
expression [Eq. (8)], the BEC collapses onto itself and its atoms
form molecules due to three-body recombination [1–4]. That
is why, in addition to the mean-field potential, a three-body
recombination should be explicitly included in the GP equation
as an imaginary loss term −ih̄K3|�(r, t)|4/2 [44]. Nonlinear
atom losses are important for collapsing condensates when
the magnetic fields are such that the Feshbach resonance is
crossed. It would be expected that dissipative losses would be
stronger only in the extreme vicinity of the resonance when
the atom density becomes n ≈ 8πh̄as/mK3 ≈ 1016 cm−3 for a
typical alkali-metal gas [44]. However, in the present work, we
only consider the parameter region where the scattering length
does not change its sign, which means that the resonance is
never crossed.

It should be emphasized that the adiabaticity criteria in soli-
ton physics have been studied extensively both in theory and in
experiments, particularly in connection with the development
of adiabatic soliton perturbation methods and adiabatic optical
soliton compression technique in dispersion-decreasing fibers
[23–29]. Moreover, the criteria of adiabaticity for nonlinear
matter waves have been considered recently within the context
of atomic matter waves tunneling from macroscopically
populated optical standing-wave traps and for BEC in a box
whose size varies with time [45].

Following the ideas and method of Band, Malomed, and
Trippenbach, let us show that a temporally varying 3D
condensate wave function �(r, t) is governed by four charac-
teristic response times, Teff ÷ {Tkin; Tint; Ttrap; Tho}, which can
be formally obtained from the definition

1

Teff
= 1

�(r, t)
∂�(r, t)

∂t
. (60)

Note in particular that characteristic response times Teff ÷
{Tkin; Tint; Ttrap; Tho} are related throughout the kinetic energy
(Ekin), atomic interaction energy (Eint), and external trapping
potential energy (Etrap) variations. The response time scale
Tho = 2π/�ho is the standard period of harmonic oscillations.

By using the equation for the characteristic size of an atomic
3D cloud,

1

r2
0

= −
[

1

�

∂2�

∂r2

]
r=0

, (61)

we obtain the important relations for characteristic response
times of the problem,

Tkin = 2mR2
0

h̄
= 2r2

0

�hoa
2
ho

= Tho
r2

0

πa2
ho

, (62)

Tint = m

4πh̄|as |n = 2a2
hl

�hoa
2
ho

= Tho
a2

hl

πa2
ho

, (63)

Ttrap = 2h̄

m�2
hoR

2
0

= 2a2
ho

�hor
2
0

= Tho
a2

ho

πr2
0

, (64)

where aho = (h̄/m�ho)1/2 is the oscillator length of the har-
monic potential, and a2

hl = 1/(8π |as |n) is the healing length.
One can see that two response times Tkin and Ttrap are related

by two expressions,

Ttrap × Tkin = 4

�2
ho

= T 2
ho

π2
, (65)

Tkin

Ttrap
= r4

0

a4
ho

, (66)

two response times Tkin and Tint are related by

δ = Tkin

Tint
= r2

0

a2
hl

, (67)

and the next two response times Ttrap and Tint are related by

Ttrap

Tint
= a4

ho

a2
hlr

2
0

= δ
a4

ho

r4
0

. (68)

The qualitative behavior of condensate depends on the value
of the dimensionless parameter δ. If δ is small, δ � 1, then
the interatomic interaction is just a small perturbation on the
noninteracting Bose gas behavior. In the linear approximation
δ � 1, the statement as(0) = 0, is formally equivalent to
setting Tkin = Ttrap, and the size of the atomic cloud is
determined by r0 = aho. In the opposite case, when δ ≈ 1, and
without a trapping potential Vext(r, t) = 0, the atomic cloud
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behavior is determined primarily by the competition between
the interaction-energy term and the kinetic-energy term. In the
case of attractive self-interactions, when the scattering length
as(0) is negative, the two energies are equal when Tkin = Tint

and the characteristic radius of the atomic cloud is of the order
of the healing length r0 = ahl. In particular, in 3D world, δ = 1
when

Tkin

Tint
= 8πn|as |r2

0 = 6 N |as |
r0

= 1, (69)

where N is the total number of atoms in the volume 4/3πr3
0 .

If we consider a typical alkali-metal gas with as0 = 5.0 nm in
a harmonic trap with r0 = 30 µm, we obtain N = 103 atoms
trapped in a solitary matter wave under condition Tint = Tkin. In
the general case, the condensate behavior is determined by the
competition of the external, interatomic, and kinetic potentials.
Collapse of the 3D BEC system occurs when N exceeds a
critical value Ncr, which is given by Ncr = 0.67r0/|as | [2–4].
This implies that for the example considered here, there exists
a critical number of atoms Ncr = 4 × 103 beyond which a
collapse occurs.

According to Eqs. (57) and (58), the soliton behavior is
adiabatic when the main parameters of the system, such as
trapping potential and nonlinearity, vary slowly relative to the
time scale Teff = Tint:

1

B0 − B(t)

dB

dt
� �ho

a2
ho

2a2
hl

;
1

�

d�

dt
� �ho

a2
ho

2a2
hl

. (70)

The characteristic quantum-mechanical length scale aho may
be written in a very useful form proposed by Pethick and Smith
in [2],

aho ≈ 10.1

(
100 Hz

fho

1

A

)1/2

µm, (71)

in terms of the trap frequency fho = �ho/2π measured in Hz
and the mass number A, namely, the number of nucleons in
the nucleus of the atom. For example, when fhoA ≈ 100, the
relationship in Eq. (71) means that aho ≈ 10 µm. In the case
illustrated in Fig. 1, when fhoA = 100, we obtain A = 85
and fho = 1.18 Hz, and one can find the following estimation
for characteristic time scale: Teff = 2.5 ms. That is why our
adiabatic matter-wave soliton self-compression scenario is still
valid as long as the speed of the field ramp γ = dB/dt is
low enough γ = dB/dt � 3 G/ms. In a harmonically trapped
BEC with time-varying frequency �ho(t), a total frequency
sweep value d�ho/dtTeff during a time scale Teff should be
small enough compared to a trapping potential frequency �ho,
namely, d�ho/dtTeff � �ho. For a characteristic time scale
Teff = 2.5 ms and fho = 1.18 Hz, we obtain the following
adiabaticity criterion: dfho/dt � 0.5 kHz s−1.

In the strict sense, canonical NLSE solitons exist only in
the 1D world [39]. Physically, the existence of 1D solitons
indicates the fundamental feature of the 1D NLSE model:
its complete integrability [39]. That is why the quasi-1D
(a cigar-shaped) geometry was used in all pioneering and
recent experiments with matter-wave solitons [5–11]. It is a
well-established fact that beyond the 1D world, disk-shaped
(2D) and ball-shaped (3D) solitary waves are unstable due

to transverse perturbations and collapse [2–4]. For example,
temporal periodic modulation of the scattering length in 2D
disk-shaped BECs was shown to excite Faraday patterns in the
atom density in the plane transverse to the tight confinement
direction [46].

Let us consider a cylindrically symmetric harmonic trap-
ping potential,

V (x, y, z, t) = 1
2m�2

ho‖(t) x2 + 1
2m�2

ho⊥(y2 + z2), (72)

with constant radial trap frequency �ho⊥ and a varying-in-time
longitudinal one �ho‖(t),

�2
ho‖(t) = �2

ho‖(t = 0) × �2(t), (73)

where dimensionless function �2(t) describes the time-
varying trapping potential only in the axial direction x, so
that a transverse trap does not depend on time �ho⊥ = const.

Nonlinear dynamics of a quasi-1D (a cigar-shaped) con-
densate under much greater transverse than axial confinement
�2

ho‖ � �2
ho⊥can be considered in the framework of the GPE,

ih̄
∂�

∂t
= − h̄2

2m
�� + 4πh̄2as(t)

m
|�|2 �

+ 1

2
m�2

ho‖(t) x2� + 1

2
m�2

ho⊥(y2 + z2)�, (74)

with factorized wave function

�(r, t) = �(r⊥, t)ψ(x, t) (75)

separating transverse (r2
⊥ = y2 + z2) and longitudinal (x)

dependencies [2–4]. The 3D GP equation (74) can be reduced
to a 1D model if one can neglect excitations of higher-order
transverse modes so that the atoms occupy only the ground
state of their transverse motion. The wave function separation
(75) can be achieved formally by a two-time-scale expansion
with a slow-response time scale Ttrap‖ and a fast-response time
scale Ttrap⊥ given by

Ttrap‖ = 2h̄

m�2
ho‖r

2
0

= 2a2
ho‖

�ho‖r2
0

= Tho‖
a2

ho‖
πr2

0

, (76)

Ttrap⊥ = 2h̄

m�2
ho⊥r2

0

= 2a2
ho⊥

�ho⊥r2
0

= Tho⊥
a2

ho⊥
πr2

0

. (77)

Although in a strict sense this separation can be done only
in the linear problem, the effective 1D nonlinear coefficient
appears to be a factor in the nonlinear term resulting from the
subsequent transverse integration:

G1D(t) =
∫∫ ∞

−∞ G3D(t)�4(y, z)dydz∫∫ ∞
−∞ �2(y, z)dydz

. (78)

The averaging procedure Eq. (78), in full analogy with the
same procedure for optical solitons in fibers [23–26], leads
to G1D(t) = 2h̄2as(t)/(ma2

ho⊥), where aho⊥ is the transverse
harmonic oscillator length. Physically, transition to the quasi-
1D description is possible if the change of the chemical
potential due to the mean-field interaction is much smaller than
the level spacing in the transverse trapping potential [2–4].
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The net result is the 1D GP equation

ih̄
∂

∂t
ψ(x, t) = − h̄2

2m

∂2ψ

∂x2
+ 2h̄2as(t)

ma2
ho⊥

|ψ(x, t)|2 ψ

+ 1

2
m�2

ho‖(t)x2ψ(x, t), (79)

where ψ(x, t) is the quasi-1D wave function normalized to the
number of particles. By using the following transformations
of functions and coordinates,

Q(x, t) →
√

aho‖
N

ψ(x, t); t → �ho‖t ; x → x/aho‖, (80)

R(t) → εas(t)

(
aho‖
aho⊥

)2

, (81)

where ε = 2as(0)N/aho‖, Eq. (78) can be reduced to the
generalized GPE model (21) with varying-in-time nonlinearity
and confining parabolic potential:

i
∂Q

∂t
+ 1

2

∂2Q

∂x2
+ σR(t) |Q|2 Q − 1

2
�2(t)x2Q = 0. (82)

The transition from 3D to 1D geometry demonstrates once
again the parallels between two theoretical methods developed
in the BEC theory [2–4] and in nonlinear fiber optics [23–26].

The exact integrability conditions given by Eqs. (22)
and (23) establish a one-to-one correspondence between
varying-in-time nonlinearity and parabolic trapping potential.
Because of this, the interested reader can take different control
functions R(t) to find both corresponding trapping potentials
from Eq. (23) and soliton solutions by using the algorithm
[Eqs. (25)–(32)] developed in this article. Let us show for
example, that the so-called Miura transformation in the soliton
theory (see, for example, [23]),

�2(t) = ∂ϒ

∂t
− ϒ2(t), (83)

allows one to obtain simple particular analytic solutions for
R(t) given by

R(t) = exp

[∫ t

ϒ(t ′)dt ′
]

, (84)

where ϒ(t) is an arbitrary integrable function.
Now we turn our attention to finding specified conditions

for nonlinear soliton management by means of the Feshbach
resonance.

When ϒ(t) = γ = const, the conditions of compatibility
for nonlinearity and parabolic potential are given by

R(t) = exp(γ t); �2(t) = −γ 2, (85)

which represents the repulsive character of parabolic potential
for all times.

In the case of algebraic functions ϒ(t), there exists the
following set of interesting compatibility conditions:

ϒ(t) = γ

1 + γ t
;

R(t) = 1 + γ t ; �2(t) = − 2γ 2

(1 + γ t)2
,

(86)

ϒ(t) = − γ

1 + γ t
;

R(t) = 1

1 + γ t
; �2(t) = 0,

(87)

ϒ(t) = − 2γ t

1 + γ t2
;

R(t) = 1

1 + γ t2
; �2(t) = − 2γ

1 + γ t2
.

(88)

It is important to note that for linearly increasing (positive γ ) or
decreasing (negative γ ) in the time control function R(t) given
by Eq. (86), the character of harmonic potential remains repul-
sive for all times, as it is in the case of exponentially increasing
nonlinearity [Eq. (85)]. The case of hyperbolic increase
(negative γ ) or decrease (positive γ ) in time nonlinearity R(t)
(87) denotes that the confining harmonic potential is vanishing
and the matter-wave soliton can be stabilized even without a
trapping potential. The last case [Eq. (88)], presents one of the
most interesting possibilities. With negative γ , the parabolic
potential remains attractive for all times but its localization
region decreases progressively with time [see Eq. (88)].

In the case of periodically varying magnetic field B(t) =
β cos(	t), the spectral parameter 
(t) of the IST method
is directly related to the magnetic field variations. Now the
control function R(t) is a trigonometric periodically varying
function. Consequently, one can find from Eqs. (83) and (84)
the following set of compatibility conditions:

ϒ(t) = γ2	2 cos(	2t);

R(t) = exp[γ2 sin(	2t)];

�2(t) = −γ2	
2
2 [sin(	2t) + γ2 cos2(	2t)],

(89)

ϒ(t) = γ2	2 cos(	2t)

1 + γ2 sin(	2t)
;

R(t) = 1 + γ2 sin(	2t);

�2(t) = −
{
γ2	

2
2 sin(	2t)[1 − γ2 sin(	2t)] + 2γ 2

2 	 2
2

}
[1 + γ2 sin(	2t)]2

,

(90)

ϒ(t) = − γ2	2 cos(	2t)

1 + γ2 sin(	2t)
;

R(t) = 1

1 + γ2 sin(	2t)
;

�2(t) = γ2	
2 sin 	t

1 + γ2 sin 	t
,

(91)

In the case of hyperbolic functions ϒ(t), one may find the
following set of relations between nonlinear control functions
R(t) and trapping potential, which are interesting from the
practical point of view:

ϒ(t) = −γ3 tanh(γ3t);

R(t) = sech(γ3t); �2(t) = −γ 2
3 ,

(92)

ϒ(t) = γ3sech2(γ3t); R(t) = exp[tanh(γ3t)];

�2(t) = −γ 2
3 sech2(γ t){[tanh(γ3t) + 1]2 − 2}. (93)

Equation (92) can be considered as the solitary barrierlike
variations of the nonlinearity. The last example [Eq. (93)]
illustrates the effect of the nonlinearity saturation.
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FIG. 8. (Color online) The reverse process of 1D-to-3D trans-
formation from cigar-shaped geometry to ball-shaped geometry of
trapping potential V (r, t) = κ

2�2(t)x2/2 + r2
⊥/2 under the exact

integrability conditions given by Eq. (88) with negative γ = −0.1
at different time scales. (a) t = 0, (b) t = 2.5, (c) t = 3.0, after
choosing the aspect ratio κ

2 = 0.04 (r2
⊥ = y2 + z2).

It is easy to understand that as a consequence of varying-
in-time nonlinearity and trapping potential given, in particular,
by Eqs. (85)–(93), the atom cloud is subjected to wide axial
variations, including its self-compression, and in general it
may be that the initially quasi-1D cigar-shaped structure of
the atom cloud transforms continuously to the ball-shaped
3D structure. That is why the reverse process of 1D-to-3D
transformation from cigar-shaped to ball-shaped geometry
can be observed because of the soliton self-compression
effect. This is crucial for the purposes of matter-wave
soliton management under the exact integrability conditions
[Eqs. (22), (23)] and, in particular, the examples considered in
Eqs. (85)–(93).

For better visualization of these ideas, we present here
three examples of such reverse and nontrivial 1D-to-3D
transformations (see Figs. 8–11 for details). Figure 8 shows
the trapping harmonic potential of the exactly integrable
nonautonomous system given by Eqs. (88) with negative γ .
To be specific, we show in Fig. 9 all control functions R(t)
and �(t) for this case, so that Figs. 8 and 9 are probably the
most dramatic direct manifestations of the reverse 1D-to-3D
transformations of a trapping potential.

Figure 10 shows an example of periodic sign-reversible
variations in time of the confining potential (periodic-in-time
repulsive and attractive parabolic potentials) which have been
calculated according to the exact integrability conditions
given by Eqs. (89). And, finally, Fig. 11 represents the
results of periodic 1D-to-3D transformations from attractive
cigar-shaped to repulsive ball-shaped structures that have

FIG. 9. (Color online) Main soliton-management functions (a)
R(t), (b) �2(t), and (c) axial trapping potential varying in time
under the exact integrability conditions given by Eq. (88) after
choosing the aspect ratio κ

2 = 0.04 of trapping potential V (r, t) =
κ

2�2(t)x2/2 + r2
⊥/2 and γ = −0.1.

been calculated in the framework of the exact integrability
conditions given by Eqs. (49) and (50).

It should be emphasized that all soliton solutions presented
in the Secs. II and III are strictly valid for the limiting case of
1D condensate. That is why it is natural to ask to what extent it
is possible to consider the general solution for the condensate

FIG. 10. (Color online) Main soliton-management functions
(a) R(t), (b) �2(t), and (c) axial trapping potential varying in
time under the exact integrability conditions given by Eqs. (89)
after choosing the aspect ratio κ

2 = 0.04 of trapping potential
V (r, t) = κ

2�2(t)x2/2 + r2
⊥/2 and 	 = 1.0.
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FIG. 11. (Color online) Main soliton management functions (a)
R(t), (b) �2(t), and (c) axial trapping potential varying in time under
the exact integrability conditions given by Eqs. (49) and (50) R(t) =
(1 + β cos 	t)−1, �2(t) = β	 2 cos 	t/(1 + β cos 	t) after choos-
ing the aspect ratio κ

2 = 0.04 of trapping potential V (r, t) =
κ

2�2(t)x2/2 + r2
⊥/2, β = 0.75, and 	 = 1.0.

density n(r, t) in the factorized form,

n(r, t)
n0

= |�(r, t)|2
|�(r = 0, t = 0)|2

= [1 − �(0)]2

[1 − �(t)]
sech2

{
x

Lsol‖

[1 − �(0)]

[1 − �(t)]

}
× exp

(
−y2 + z2

L2
⊥

)
, (94)

where |�(r, t)|2/|�(r = 0, t = 0)|2 ≡ n(r, t)/n0 is the den-
sity of atoms at the point in question normalized to its initial
peak value n0 = N/(2πL2

⊥Lsol‖), and L⊥ and Lsol‖ are the
initial radial and axial widths of the wave function [see
Fig. 12(a)].

In Eq. (94), the exact 1D soliton solution [Eq. (25)] has been
chosen for the longitudinal direction, whereas in the transverse
direction a Gaussian ansatz is the optimal one. To reveal the
basic properties of 3D matter-wave solitary waves, we have
solved numerically the nonautonomous GP equation [Eq. (74)]
by applying an operator-splitting method based on 3D fast
Fourier transform (FFT) which, since its discovery by Feit
and Fleck [47], is a well-developed computational method
in nonlinear optics, acoustics, and self-focusing theory. The
condition of validity of 1D soliton self-compression [Eq. (29)]
has been tested by solving Eq. (74) with initial conditions
given by Eq. (94) and taking as the managing functions R(t)
and �2

ho‖(t) several profiles given by Eqs. (85)–(93).
In order to simulate an extremely strong 1D-to-3D trans-

formation of the initially cigar-shaped cloud of atoms into
the BEC bullet, the varying-in-time nonlinearity R(t) was
chosen as R(t) = 1/(1 − 0.1t2) in accordance with Eqs. (88).

The initial state presents a cigar-shaped density of condensed
N = 103 atoms with axial and radial sizes Lsol‖ = 15 µm
and L⊥ = 1.5 µm, respectively, and with initial 3D peak
density n0 = 0.5 × 1013 cm−3. Axial and radial trapping
harmonic potential frequencies have been chosen as �ho⊥ =
2π × 52 Hz and �ho‖ = 2π × 0.52 Hz, respectively, and
initial scattering length was chosen as as(t = 0) = −2a0 to
simulate its increasing up to ten times as(t = tfin) = −20a0

and to calculate corresponding self-compression of the atom
cloud by a factor of ten.

The main results of computer simulations are presented in
Fig. 12 at different dimensionless time scales: (a) −t = 0,

(b) −t = 2.25, (c) −t = 2.75, and (d) −t = 3.0, which are
normalized on Tint = 30 ms and correspond to 67.5 ms (b),
82.5 ms (c), and 90 ms (d) in Fig. 12. In Figs. 12(a)–12(c),
the condensate density n(r, t) is normalized to the initial
peak density value n0 = 0.5 × 1013 cm−3. Direct computer
experimentation enables us to draw the following conclusions.
First, our simulations confirm the quadratic in time soliton
compression scenario at the initial stage of self-compression,
in full accordance with analytical expressions Eqs. (29)
and (32). Second, the essential finding in our simulations
is that during the self-compression, the elongated soliton
separates on two ball-shaped solitarylike structures. In Fig. 12,
we show both a typical soliton self-compression scenario
and the initial stage of soliton necking and splitting near
the resonance time when the peak density rises dramatically
with time [see Fig. 12(d)]. It is this effect that disrupts the
solitonic structure of the atom cloud and breaks the effect
of soliton adaptation to the external potential given by the
exact integrability conditions [Eqs. (88)]. As a matter of fact,
based on computer simulations, we conclude that a 1D nonau-
tonomous GPE model accurately describes the matter-wave
soliton self-compression until the axial Lsol‖ and radial L⊥
widths of a soliton satisfy the following “empirical” condition:
L2

sol‖(t) � 3L2
⊥. Because of this, the main assumption based on

the factorized form Eq. (94) holds true only within the limits
L2

sol‖(t) � 3L2
⊥. By using the simplest approximation for a

1D soliton width in the quasi-1D BEC with varying-in-time
scattering length,

L2
sol‖(t)n1D(t) ≈ L2

⊥
4|as(t)| , (95)

where n1D(t) = N/Lsol‖(t) represents the 1D density of the
condensate, we can find the following “empirical” condition of
the validity of the 1D nonautonomous soliton concept, namely,
the 1D nonautonomous matter-wave soliton [Eq. (25)] exists
under exact integrability conditions [Eq. (82)] if and only if
varying-in-time scattering length as(t) and 1D density n1D(t)
satisfy the following inequality:

|as(t)|n1D(t) � 1/12 ≈ 0.1. (96)

To date, bright matter-wave solitons and trains of bright
solitons have been studied in experiments with Bosonic lithium
having attractive interactions [8,9]. The negative value of the
scattering length for 7Li prevents the formation of a condensate
with more then a few thousand atoms [8,9]. If we consider
the typical experimental conditions for the generation of
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FIG. 12. (Color online) Self-compression of matter-wave soliton near the Feshbach resonance calculated within the framework of the
nonautonomous GPE model (74) after choosing the soliton management functions R(t) = (1 + γ t2)−1 and �2(t) = −2γ (1 + γ t2)−1 with
negative γ = −0.1 at different dimensional time scales normalized to Tint = 30 ms. (a) −t = 0, (b) −t = 2.25, (c) −t = 2.75, and
(d) −t = 3.0, which correspond to (b) 67.5 ms, (c) 82.5 ms, and (d) 90 ms. The initial state represents a quasi-1D cigar-shaped cloud
of condensed N = 103 atoms with axial and radial sizes Lsol‖ = 15 µm and L⊥ = 1.5 µm, respectively. In all figures the condensate density
n(r, t) is normalized to the initial peak value n0 = 0.5 × 1013 cm−3. Axial and radial widths are given in microns.

matter-wave solitary waves in quasi-1D 7Li condensate [8,9]
with typical radial width aho⊥ = 1.0 µm, we conclude that 1D
approximation is still valid when the width of a compressed
BEC soliton is of the order of Lsol‖ = 1.7 µm.

A more detailed description of our computer experiment
will be provided in a separate presentation.

VI. CONCLUSIONS

In summary, we have studied the main features of nonau-
tonomous matter-wave solitons near the Feshbach resonance
with continuously tuned scattering length. We have focused
on the situation in which the generalized 1D GPE model with
varying nonlinearity was found to be exactly integrable from
the point of view of the IST method. We stress that exact soliton
solutions exist only under certain conditions and that varying-
in-time nonlinearity and confining harmonic potential cannot
be chosen independently; they satisfy the exact integrability
conditions given by Eqs. (21)–(23). That means, in particular,
that near the Feshbach resonance the matter-wave soliton
can be stabilized even without a trapping potential. We
have considered the two most physically important examples
where the applied magnetic field varies in time linearly or
periodically. In the case of periodically varying nonlinearity,
variations of the external harmonic potential are found to
be sign-reversible (periodic attractive and repulsive). We
have investigated two bound soliton states and demonstrated
their stability by means of direct computer experiments.
The conditions of the validity of the nonautonomous soli-
ton concept have been tested by solving general 3D GPE
taking as the managing functions several profiles given by

Eqs. (86)–(93). The interplay between the time-dependent
nonlinearity and 1D-to-3D transformation of trapping poten-
tial leads to the necking and splitting of the elongated input
soliton on two separate parts. It is this effect that disrupts
the solitonic structure of the atom cloud and breaks the
validity of 1D theory. Based on computer simulations, we
have found that a 1D nonautonomous matter-wave soliton
exists if and only if varying-in-time scattering length as(t) and
1D density n1D(t) satisfy the following “empirical” condition:
|as(t)|n1D(t) � 0.1.

The results reported in this article are of general physics
interest and offer many opportunities for further scientific
studies. For example, the Feshbach resonance makes it
possible to investigate experimentally the self-compression
of bright and dark matter waves and realize the so-called
nonlinear soliton pairing effect [10,48]. These states, often
called “nonlinear pairing” or “symbiotic” solitons, have been
considered for the first time in nonlinear optics [48].

Notice that in the real experiments with BEC, the trapping
potential is not the harmonic oscillator potential extending to
infinity but the truncated one. The interesting possibilities have
been found for the autonomous GP model with the tanh-shaped
potential in [49]. The problem of the nonautonomous soliton
dynamics in the truncated potential remains open.

It should be emphasized that the nonautonomous NLSE
model implies the existence of many fundamental nonlinear
phenomena, independent of the physical origin of the nonlin-
earity and dispersion. The classification of dynamic systems
into autonomous and nonautonomous is often convenient
and can correspond to different physical situations in which,
respectively, the external time-dependent driving force is
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present or absent. If the system is subjected to some form of
external time-dependent force γ (t), the GPE model transforms
to the following nonautonomous equation:

i
∂ψ

∂t
+ 1

2
D(t)

∂2ψ

∂x2
+

[
σG(t)|ψ |2 − 2α(t)x − 1

2
�2(t)x2

]
ψ

= i

2
γ (t)ψ, (97)

where the dispersion management function D(t) is being
introduced. The GPE model (97) becomes similar to Eq. (21),

i
∂Q

∂t
+ 1

2
D(t)

∂2Q

∂x2
+

[
σR(t)|Q|2 − 2α(t)x − 1

2
�2(t)x2

]
Q

= 0, (98)

after the following transformations,

ψ(x, t) = Q(x, t) exp

[
1

2

∫ t

0
γ (τ )dτ

]
, (99)

R(t) = G(t) exp

[∫ t

0
γ (τ )dτ

]
, (100)

and all results obtained in the present article can be easily
generalized for the case of the BEC with time-dependent loss
or gain and with the self-induced soliton phase shift ϕ(x, t) in
Eq. (19) defined as ϕ(x, t) = �(t)x2/2,

�(t) = −W [(R(t),D(t)]

D2(t)/R(t)
, (101)

and dependent on the Wronskian W (R,D) = RD′
t − DR′

t .
The Lax equation (9) provides the nonautonomous model

(98) under the condition that dispersion D(t), nonlin-
earity R(t) [dependent now on gain or loss according
Eq. (100)], and the harmonic potential satisfy the following
relations,

�2(t)D(t) = W (R,D)

RD

d

dt
ln R(t) − d

dt

[
W (R,D)

RD

]
(102)

= d

dt
ln D(t)

d

dt
ln R(t) − d2

dt2
ln D(t)

−R(t)
d2

dt2

1

R(t)
(103)

= D(t)
d

dt

[
γ (t)

D(t)

]
− γ 2(t)

+
[

2γ (t) + d

dt
ln G(t)

]
W (G,D)

GD

− d

dt

[
W (G,D)

GD

]
(104)

= D(t)
d

dt

[
γ (t)

D(t)

]
− γ 2(t)

+
[

2γ (t) + d

dt
ln G(t)

]
d

dt
ln

D(t)

G(t)

− d2

dt2
ln

D(t)

G(t)
, (105)

and the eigenvalues are given by


(t) = κ(t) + iη(t)

= D0R(t)

R0D(t)

[

(0) + R0

D0

∫ t

0

α(τ )D(τ )

R(τ )
dτ

]
,

(106)

where the time-invariant eigenvalues 
(0) = κ0 + iη0, D0 =
D(0), and R0 = R(0) are defined by the initial conditions.
Equations (102)–(105) are presented here in four different
representative forms, where W (G,D) = GD′

t − DG′
t . Two

Wronskians W (R,D) and W (G,D) are related by W (R,D) =
exp[

∫ t

0 γ (τ )dτ ][W (G,D) + D(t)G(t)γ (t)]. Four different
forms of the laws of the soliton adaptation to the external
potentials Eqs. (102)–(105) tell the experimentalist how to
compare various parameters in different application scenarios.

The exact integrability of the model [Eq. (98)] and novel
soliton solutions provide novel experimental opportunities
not only for the BEC physics but for the optical soliton
physics as well. The parallels in nonlinear optics may be very
fruitful. For example, let us consider the transformation of the
variables

T = x; Z = −C−1
0 ln(1 − C0t), (107)

which establishes a one-to-one correspondence between
the NLSE [Eq. (33)] with varying nonlinearity R(t) =
1/(1 − C0t) and the following NLSE with varying dispersion
D(Z),

i
∂�

∂Z
+ D(Z)

2

∂2�

∂T 2
+ |�|2� = 0, (108)

with the main difference being that dispersion is given by

D(Z) = exp(−C0Z). (109)

Matter-wave solitons near the Feshbach resonance with peri-
odically varying nonlinearity [Eqs. (49), (50)] are related to
optical solitons through a rather complicated transformation
of the variables,

T = x; Z = 2

ω
√

1 − β2
tan−1

[√
1 − β

1 + β
tan

(
ωt

2

)]
,

(110)

which establishes a one-to-one correspondence between the
NLSE with periodically varying nonlinearity [Eqs. (49)
and (50)] and the NLSE with periodically varying dispersion
D(Z),

i
∂�

∂Z
+ D(Z)

2

∂2�

∂T 2
+ |�|2� + x2

2

1

D(Z)

∂2

∂t2
ln D(Z)� = 0,

(111)

where the dispersion management function is represented by

D(Z) = 1 + β

cos2
(

1
2ωZ

√
1 − β2

) + 1+β

1−β
sin2

(
1
2ωZ

√
1 − β2

) ,

(112)

and Z is the propagation distance. Therefore, all effects
considered in this article could be experimentally discovered
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in nonlinear optics by using the dispersion-decreasing fibers
with the core diameter changed along its length [50,51].

Our theory establishes an important interconnection be-
tween the varying-in-time nonlinearity and confining potential.
A subtle interplay between nonlinear management by means
of the Feshbach resonance on the one hand and linear
management by means of confining time-dependent potential
on the other hand can result in a rich variety of matter-wave
solitons with several interesting properties. The experimental
arrangement should be inspected to be as close as possible to
the optimal map of parameters given by the laws of the soliton
adaptation to the external potentials [see Eqs. (102)–(105)].

We conclude by saying that the concept of adaptation is of
primary importance in nature, and nonautonomous solitons
that interact elastically and generally move with varying
amplitudes, speeds, and spectra adapted both to the external
potentials and to the dispersion and nonlinearity changes can
be fundamental objects of nonlinear science. The law of soliton
adaptation to an external potential [20] has come as a surprise
and this law is now the object of much concentrated attention
in the field [52–67].

Nonlinear science is believed by many outstanding scien-
tists to be the most deeply important frontier for understanding
nature. The interpenetration of main ideas and methods being
used in different fields of science and technology has become
one of the decisive factors in the progress of science as a

whole. Among the most spectacular examples of such an
interchange of ideas and theoretical methods for analysis of
various physical phenomena is the problem of solitary wave
formation in the framework of the nonlinear Schrödinger
equation models [Eqs. (97)–(100)] with linear and harmonic
oscillator potentials. These models are used in a variety of
fields of modern nonlinear science and probably will be able
to play a basic role similar to that eventually played by the
model of a quantum mechanical linear harmonic oscillator in
the development of modern physics.
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