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Rotation of a Bose-Einstein condensate held under a toroidal trap
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The aim of this paper is to perform a numerical and analytical study of a rotating Bose-Einstein condensate
placed in a harmonic plus Gaussian trap, following the experiments of Bretin et al. [Phys. Rev. Lett. 92, 5 (2004)].
The rotational frequency � has to stay below the trapping frequency ω of the harmonic potential and we find that
the condensate has an annular shape containing a triangular vortex lattice. As � approaches ω, the width of the
condensate and the circulation inside the central hole get large. We are able to provide analytical estimates of the
size of the condensate and the circulation both in the lowest Landau level limit and in the Thomas-Fermi limit,
providing an analysis that is consistent with experiment.
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I. INTRODUCTION

The investigation of rotating gases or liquids is a central
issue in the theory of superfluidity since they give rise
to quantized vortices [1,2]. During recent years, several
experiments using rotating atomic Bose-Einstein condensates
have led to the observation of vortices. These condensates
are usually confined in a harmonic potential with cylindrical
symmetry around the rotation axis z. Two limiting regimes
occur depending on the ratio of the rotation frequency � and
the trap frequency ω in the xy plane. When � is notably smaller
than ω, only one or a few vortices are present at equilibrium
[3,4]. A Thomas-Fermi analysis can be performed to analyze
this regime because the coupling constant describing the
interactions is often large in the experiments [5,6]. When �

approaches ω, since the centrifugal force nearly balances the
trapping force, the radius of the rotating gas increases, and
the vortices arrange themselves on a triangular lattice [7–10].
A new class of phenomena in this regime of fast rotation is
predicted in relation with quantum Hall physics [6,11–17].
Indeed the one-body Hamiltonian written in the rotating frame
is similar to that of a charged particle in a uniform magnetic
field and one can use the Landau levels structure to analyze
the ground state of the condensate and describe the properties
of the lattice.

In order to analyze the regime of fast rotation, one approach
consists in adding a quartic potential to the harmonic potential.
For this type of potential, the trapping force is always greater
than the centrifugal force so that the regime � > ω can be
explored. The condensate is then seen to exhibit a more
complex structure with regards to its density distribution and
the arrangement of vortices [17–24]. In particular, a multiply
quantized vortex, or giant vortex, appears for large values of
the rotational frequency � and the condensate is located within
a thin annulus [21]. When � is decreased from this situation,
a circle of vortices exists inside the condensate [22].

A number of experiments have been performed in which a
laser beam is shone into an otherwise harmonically trapped
condensate [25–28], thus creating a trapping potential of
the form harmonic plus Gaussian. Often in experiments, the
laser beam is weak and hence the Gaussian term is small
and for the purpose of analysis can be expanded so that
the resulting potential can be approximated by a harmonic
plus quartic potential. A different approach to analyzing these

experiments is to consider the full harmonic plus Gaussian
trapping potential.

The aim of this paper is to perform a numerical and
analytical study of a rotating condensate placed in a harmonic
plus Gaussian trap as in the experiment of Refs. [25,26].
The specific feature of the Gaussian potential with respect
to the quartic one is that the rotation frequency � cannot get
arbitrarily large but stays below ω, the trapping frequency
of the harmonic potential. We will show that, according to
the parameters of the system, the condensate can either be
a disk or an annulus. Furthermore, we will show that as �

approaches ω, the condensate always expands to become a
large annulus with a vortex lattice inside the condensate and a
large circulation within the central hole. This is in contrast to
the harmonic plus quartic trap, which develops a giant vortex
and a thin annulus. Using the lowest Landau level (LLL) states,
we will give an analytical description of the phenomena seen
numerically. We estimate the radii R1 and R2 of the condensate
and the circulation around the inside hole. The circulation is
of order R1R2 and thus is much bigger than that given by a
uniform lattice (which would be R2

1).
This paper is organized as follows. Section II contains a

brief formalisation of the problem, introducing the energy
functional followed by various numerical observations in
Sec. III. The lowest Landau level analysis for the regime �

close to ω is presented in Sec. IV, which provides the main
analytical results of the paper. Finally, Sec. V is devoted to
extra computations in the Thomas-Fermi regime.

II. FORMULATION

A two-dimensional Bose-Einstein condensate trapped at
absolute zero temperature can be described by a macroscopic
condensate wave function (order parameter) �. The ground
state of the rotating system is determined by minimizing
the energy functional E′ = E − �Lz where Lz = �∗[ẑ · (r ×
p)]� is the z component of angular momentum along the
rotation axis (for linear momentum p). The energy functional,
in the frame rotating with angular velocity �, is then

E′ =
∫
V

[
h̄2

2m
|∇�|2 + Vtr(r)|�|2 + U0

2
|�|4 − �Lz

]
dV,

(1)
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with r2 = x2 + y2 and where the integral is carried out over
the spatial domain V . The trapping potential is composed of a
harmonic plus Gaussian term,

Vtr = V0 exp
(−2r2

/
w2

0

) + 1
2mω2r2. (2)

When the atoms are assumed to occupy the ground state of
the harmonic oscillator in the z direction, with energy h̄ωz/2
and extension az = √

h̄/mωz, suppression of the condensate
in the z direction is allowed provided the characteristic
energy h̄ωz is very large in comparison with the other energy
scales. Here ωz is the frequency of the confinement in the z

direction. The two-dimensional coupling parameter is then
U0 = √

8πh̄2asN/maz for N identical atoms with s-wave
scatting length as [17].

The system can be nondimensionalised by choosing ω,
h̄ω, and

√
h̄/(mω) as units of frequency, energy, and length,

respectively. Thus, on defining a nondimensional coupling
parameter g = mU0/h̄

2, the energy functional takes the nondi-
mensionalized form

E′ =
∫
V

[
1

2
|∇ψ |2 + V (r)|ψ |2 + g

2
|ψ |4 − �Lz

]
dV, (3)

for external toroidal potential trap

V (r) = Ae−l2r2 + 1
2 r2, (4)

with A = V0/h̄ω and inverse waist l = (2h̄/mωw2
0)1/2. The

energy functional (3) is subject to the normalization∫
V

|ψ |2r dV = 1. (5)

In this scaling, large rotation implies that � gets close to 1.
Note that in experiments l is often small so that the potential
V (r) in Eq. (4) can be expanded to give

V (r) ∼ 1
2 (1 − 2Al2)r2 + 1

2Al4r4, (6)

from which a critical frequency around 1 − 2Al2 is observed
[21]. However, in this paper we retain the toroidal potential
given by Eq. (4) for the numerical and analytical analysis.

We will perform a full numerical analysis of the experi-
mental case of [25], which will lead us to a numerical and
analytical description of several model cases which prove to
be different from the harmonic plus quartic trap considered
in [21,22]. In particular, as � gets close to 1, the condensate
has an annular shape, its width always becomes large, and a
vortex lattice is present with a circulation inside the annulus.
We are able to estimate these various quantities.

III. NUMERICAL OBSERVATIONS

A. The effective potential

When the condensate is put into rotation, the effective
trapping potential to be considered is not given by Eq. (4)
but is instead given by

Veff = V (r) − 1
2�2r2. (7)

Therefore according to the values of A, l, and �, this effective
potential can produce either a disk condensate or an annular
condensate. To see this, notice first that the effective potential

(7) has a minimum that occurs for r = r0 � 0 given by

r2
0 = 1

l2
log

(
2Al2

1 − �2

)
, (8)

provided

q ≡ 2Al2

1 − �2
� 1. (9)

If q � 1, the effective potential has a local minimum and it
can lead to two different situations: Either the condensate is
a disk or an annulus. For existence of an inner boundary, we
must have q � 1 + δ for some positive (not necessarily small)
δ. As � → 1, q � 1 + δ is always satisfied and so an inner
boundary is created. The determination of the value of δ is not
readily obtained as it depends on the normalization condition
(5). Conversely, if q < 1, then the condensate is always a disk.

Figure 1 shows three examples of the effective potential
(7) plotted against radial distance from the center of the
condensate along constant θ for the parameters {g,A, l} =
{100, 25, 0.03}, {1000, 10, 0.75}, and {500, 100, 0.9}, with
� = 0. In the first parameter set q < 1, the condensate is a
disk and the density maximum is at the center. In the second
parameter set, there is a local density minimum at the center
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FIG. 1. The effective potential given by Eq. (7) as a function
of radial position (left) and the associated density (ρ = |ψ |2)
plots taken along y = 0 (right). Three parameter sets are con-
sidered: (a) {g, A, l} = {100, 25, 0.03}, (b) {1000, 10, 0.75}, and
(c) {500, 100, 0.9}, all with � = 0. Distances are measured in
units of

√
h̄/(mω), density in units of mω/h̄, and potentials in

units of h̄ω.
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of the condensate, but the condensate is still a disk. The third
parameter set displays an inner boundary and the condensate
is thus annular.

The effective potential plotted in Fig. 1 only considers a
nonrotating condensate, � = 0. When the condensate is placed
under rotation, vortices form and the shape and size of the
condensate are altered. Numerical simulations on the Gross-
Pitaevskii equation are carried out to explore the effect of � on
a range of parameter sets for {g,A, l}. The two-dimensional,
dimensionless, Gross-Pitaevskii equation comes directly from
the energy functional (3) and is

i
∂ψ

∂t
= − 1

2
∇2ψ+[V (r) + g|ψ |2]ψ − i�

(
y

∂ψ

∂x
− x

∂ψ

∂y

)
,

(10)

for V (r) given by (4). The Gross-Pitaevskii equation is solved
numerically in imaginary time (see [21,23]) by evolving an
initial wave function for a range of values of � < 1 in
order to find the ground state. Three cases of interest, which
summarize the numerical results well, are presented in the
following. The three reported parameter sets are {g,A, l} =
{955.95, 24.83, 0.07}, {14, 1000, 5}, and {500, 60, 0.1}.

B. The experimental case of Bretin et al. [25]

A natural case to numerically simulate is that considered
experimentally by Bretin et al. [25], where a harmonically
trapped condensate is put in rotation with a weak laser beam
shone at the origin, modeled by a Gaussian term. This experi-
mental case can be described by a two-dimensional system as
explained in the introduction, using the dimensional reduction
which leads to the definition of U0. The experimental values of
[25] correspond to {g,A, l} = {955.95, 24.83, 0.07}. A series
of contour plots of the density is shown in Fig. 2. (This figure
can be compared to the experimental results of [25]: See Fig. 1
of [25], with the appropriate rescaling of rotational velocities,
so that the �

(2)
stir = 60 of [25] corresponds to � = 0.795 in

this paper and �
(2)
stir = 69 corresponds to � = 0.914. The

rotational velocity is calculated from [25] using the value of
the frequency in the x and y direction, ω(0)

⊥ /2π = 75.5 Hz, and
not the second stirring phase frequency ω⊥/2π = 64.8 Hz.)

For the slow rotational velocities (� <∼ 0.5) of Fig. 2, the
condensate is a disk with a small number of vortices [with 12
vortices being present when � = 0.5; see Fig. 2(b)] with the
vortices forming a triangular lattice. As the rotational velocity
is increased, the radius of the outer boundary increases while
more vortices are accommodated into the condensate. The
dynamics here mimic those observed in harmonic traps.

Above some angular velocity the density at the center of the
condensate begins to deplete and eventually an inner boundary
(and hence an annulus) is created. In the experiments of [25],
a density minimum at the center first occurred for � ∼ 0.874
(corresponding to �

(2)
stir = 66; see Fig. 1(c) in [25]). The numer-

ical simulations here suggest the onset of the density minimum
to be � ∼ 0.887; see Fig. 2(d) where the density minimum first
appears. Clearer pictures of the development of the depletion
of density at the center can be seen in Figs. 2(e) and 2(f). The
depletion of density distorts the vortex lattice in much the same
way that the outer boundary does. In Sec. IV we note that, under
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FIG. 2. (Color online) Density profiles of a rotating condensate
with {g, A, l} = {955.95, 24.83, 0.07} corresponding to the (nondi-
mensionalised) experimental values of [25] for (a) � = 0.25, (b) � =
0.5, (c) � = 0.874, (d) � = 0.887, (e) � = 0.901, (f) � = 0.914,
(g) � = 0.92, and (h) � = 0.93. Distances are measured in units of√

h̄/(mω).

the LLL approximation, the vortex lattice inside the central
hole is distorted from a regular vortex lattice such that the
number of zeros in the hole is given by R1R2, to get a number
of order R2

1, where R1 and R2 are the inner and outer radii.
Increasing the angular velocity still further, thus exploring
the fast rotation regime � → 1, details how the density at
the center of the condensate continues to diminish until for
� ∼ 0.92 a central hole develops [see Fig. 2(g)] and the
condensate becomes annular. The central hole grows rapidly;
for � = 0.93, the central hole is large and there is a circulation
equivalent to 11 vortices [see Fig. 2(h)]. Our simulations have
been carried out up to � ∼ 0.95. These higher angular velocity
simulations suggest that both the outer and inner radii and also
the width of the condensate increase in size as � → 1.
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The experiments of Bretin et al. [25] provide an example
of the transition from a disk condensate with the density
maximum at the center to a disk condensate with a local
minimum at the center. It is reasonably safe to assume that if the
angular velocity could be further increased in the experiments,
the condensate would become annular, with a large persistent
current. The depletion of density, which occurs for � >∼ 0.887,
creating a distortion in the vortex lattice and requiring a longer
time of convergence for the numerical simulations, must be
one of the reasons that explain the experimental difficulties in
observing the condensate at these rotation frequencies.

C. The annulus

Manipulating the values of the parameters {g,A, l} can
have the effect of altering the shape of the condensate. Here we
will consider a parameter set that creates an annular condensate
that is present for all � < 1. The parameter set is thus chosen
to be {g,A, l} = {14, 1000, 5}. A selection of contour plots
for various angular velocities is given in Fig. 3. The choice of
this parameter set is made to illustrate the behavior as � gets
close to 1.

For low rotational velocities [see Fig. 3(a)], the condensate
does not contain vortices in the annulus. However, as �

approaches unity, both the radius of the inner and outer
boundaries increase, but so too does the width of the
condensate. When � = 0.9 [Fig. 3(b)], the condensate still
does not contain any vortices, but for � = 0.99 [Fig. 3(c)],
the condensate contains two complete rings of vortices. For
� = 0.99, there is a multiply quantized vortex at the center of
the condensate providing a persistent flow with a quantum of
circulation ν = 3. The phase profiles also show that there are
further singularities of phase (“invisible” vortices) in the outer
regions of the condensate.
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FIG. 3. (Color online) Density profiles of a rotating conden-
sate with {g,A, l} = {14, 1000, 5} for (a) � = 0.25, (b) � = 0.9,
(c) � = 0.99, and (d) � = 0.994. Distances are measured in units of√

h̄/(mω).

Note that, for all �, the condensate is always an annulus
with the inner and outer radii both increasing as � increases.
Furthermore, the width of the condensate also increases so
that a thin annulus is never created. The increase in size of
the condensate for � > 0.9 is marked. This parameter set
explicitly shows the presence, at large �, of a central hole
containing circulation together with a vortex lattice in the bulk
of the condensate.

The choice of this parameter set, especially the value of g,
is specifically chosen with reference to the LLL analysis in
Sec. IV. As will be noted in Sec. IV, to use the LLL approx-
imation requires g(1 − �2) to be small. As a consequence,
for the numerical simulations to be capable of resolving at �

close to 1, g must not be too large, though the main features
are preserved while increasing g. We note here that an annular
condensate, existing at all �, can be created for a wide range
of values of g.

D. Density dip at the center

As a final numerical example, one can consider the
parameter set {g,A, l} = {500, 60, 0.1}. The choice of
these parameters actually forces, for � = 0, the ground state
to have a local nonzero minimum of density at the center. For
these parameters the density maximum is located at r = 4.2
when � = 0 and the condensate is a disk; a contour plot of the
condensate at � = 0 is given in Fig. 4 along with a selection
of other plots for various angular velocities.

Vortices first appear close to the maximum of density
instead of close to the center of the condensate. As � is
increased, the vortex lattice develops close to this initial circle
of vortices. The increase in size of the condensate is visible,
as is the depletion of density at the center of the condensate,
which turns into a hole: An annulus is formed.

y

−10 0 10
−10

−5

0

5

10

−10 0 10
−10

−5

0

5

10

−10 0 10
−10

−5

0

5

10

x

y

−10 0 10
−10

−5

0

5

10

x

(a) (b)

(c) (d)

FIG. 4. (Color online) Density profiles of a slow rotating conden-
sate with {g, A, l} = {500, 60, 0.1} and (a) � = 0, (b) � = 0.225,
(c) � = 0.35, and (d) � = 0.5. Distances are measured in units of√

h̄/(mω).
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IV. LOWEST LANDAU LEVEL ANALYSIS

We turn to the analysis of the ground state of the energy
(3), where V (r) is given by Eq. (4) and � tends to 1. We will
use a lowest Landau level analysis [11,17,29]. Recall that the
spectrum of the Hamiltonian

H� = − 1
2∇2 + 1

2 r2 − �Lz (11)

has a Landau level structure. The lowest Landau level is defined
as

f (x + iy)e− �
2 (x2+y2), f analytic. (12)

For such functions, 〈H�ψ,ψ〉 can be simplified (see [17]) so
that E′ = � + ELLL(ψ), where

ELLL(ψ) =
∫
V

(
V (r) − 1

2
�2r2

)
|ψ |2 + g

2
|ψ |4dV. (13)

The minimization of Eq. (13) without the analytic con-
straint provides the Thomas-Fermi profile for the coarse-grain
density:

|ψ |2 = ρTF := λ − 1

g

(
V (r) − 1

2
�2r2

)
. (14)

Such a function can be recovered in the LLL by the presence
of the vortex lattice and this only changes the coefficient g into
bg, where b is the Abrikosov parameter as we explain further
in the following.

We recall that the orthogonal projection for a general
function ψ onto the LLL is explicit [30,31] and given by

�LLL(ψ) = 1

π

∫
e− 1

2 (|z|2−2zz′+|z′|2)ψ(x ′, y ′)dx ′dy ′, (15)

where z = x + iy and z′ = x ′ + iy ′. If an LLL function ψ

[i.e., ψ satisfies Eq. (12)] minimizes the energy, Eq. (13), it is
a solution of the projected Gross-Pitaevskii equation:

�LLL[(V (r) − �2r2/2 + g|ψ |2 − µ)ψ] = 0, (16)

where µ is the chemical potential.
When � is close to 1, and V (r) is the harmonic

plus Gaussian potential, Eq. (16) can be approximated by
�LLL[g|ψ |2ψ] = µψ, which is the equation of the Abrikosov
problem (see [11,29,32]). A solution can then be constructed
using the theta function (see [29] for the details):

φ(x, y; τ ) = e
1
2 (z2−|z|2)�

(√
τI

π
z, τ

)
, (17)

where τ = τR + iτI is the lattice parameter. The zeros of

the function φ lie on the lattice
√

π
τI

(Z ⊕ Zτ ) and |φ| is

periodic. The optimal lattice, that is, the one minimizing
µ(τ ) = ∫ |φ|4/(

∫ |φ|2)2, is hexagonal, which corresponds to
τ = e2iπ/3 (where the integrals are taken on one period). For
τ = e2iπ/3, µ(τ ) = b ∼ 1.16.

As in [29], we can construct an approximate ground state by
multiplying the solution, Eq. (17), of the Abrikosov problem
by a profile ρ varying on the same scale as ρTF, which is large.
Since this product is not in the LLL, we project it onto the LLL
and define v = �LLL(

√
ρ(x, y)φ(x, y; e2iπ/3)). Estimating the

energy of v yields

ELLL(v) ∼
∫
R2

(
V (r) − 1

2
�2r2

)
ρ(x, y) + gb

2
ρ(x, y)2.

In this computation it is assumed that φ and ρ do not vary on
the same scale; hence the integrals can be decoupled. Then,
minimizing with respect to ρ implies that ρ must be a Thomas-
Fermi profile [Eq. (14)] with g changed into bg:

ρ(x, y) = λ − 1

bg

(
V (r) − 1

2
�2r2

)
. (18)

This approximation is valid provided the energy obtained,
ELLL(v), is much smaller than the gap between two Landau
levels, which is of the order unity.

In the case of the harmonic potential V (r) = r2/2, the
Thomas-Fermi profile provides a disk condensate of radius
R = {4gb/[π (1 − �2)]}1/4, which is large when � gets close
to 1. Moreover, ELLL(v) is of order

√
g(1 − �2), which is

indeed small when � is close to 1 and g is not too large,
so that the LLL approximation is satisfied. In the case of the
toroidal potential (4), we have to compute the Thomas-Fermi
profile from Eq. (18) and discriminate whether it is a disk
or an annulus. Then we have to check whether the LLL
approximation is justified, that is, whether ELLL(v) is small.

A. Disk condensate

Suppose that the condensate is a disk (recall that this
requires that q is not too large), so that only an outer boundary
exists and we write

gb|ψ |2 = µ + 1
2 (�2 − 1)r2 − Ae−l2r2

. (19)

To find approximations to the radius of the outer boundary one
can proceed by taking Eq. (19) and the normalization condition
(5), which provide the necessary starting equations in order to
compute µ. A check on the validity of the LLL approximation
is to verify, in the limit � → 1, that the chemical potential µ

is small.
To begin, substitute the density, |ψ |2, from Eq. (19) into

the normalization condition (5) and integrate over the domain
between 0 and R2, where R2 is defined as the radius of the
outer boundary. It follows that

gb

π
= µR2

2 + 1

4
(�2 − 1)R4

2 + A

l2

(
e−l2R2

2 − 1
)
, (20)

which explicitly contains the chemical potential µ. To remove
µ from the calculations, one can note from Eq. (19) that

µ − Veff(r)

gb

∣∣∣∣
R2

= |ψ |2∣∣
R2

= 0, (21)

from which

µ = Ae−l2R2
2 − 1

2 (�2 − 1)R2
2 . (22)

Using Eq. (22) in Eq. (20) gives

gb

π
= 1

4
(1 − �2)R4

2 + A

[
R2

2e
−l2R2

2 + 1

l2

(
e−l2R2

2 − 1
)]

.

(23)
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At this stage we introduce the parameter p, defined as

p ≡ gl4

π (1 − �2)
. (24)

We are interested in the limit � close to 1 (i.e., p � 1),
which corresponds to l2R2

2 � 1. Then the exponential terms
in Eq. (23) immediately disappear and it follows that

R2 ∼
(

4

(1 − �2)

[
gb

π
+ A

l2

])1/4

(25)

and

µ ∼
(

(1 − �2)

[
gb

π
+ A

l2

])1/2

. (26)

This implies that l2R2
2 is large and µ is small since � is close

to 1. Recall that the assumption of a disk condensate requires
q to be bounded, q < 1 + δ, and thus (as δ is not large)

Al2 <
(1 + δ)(1 − �2)

2
, (27)

so that the ratio Al2 has to be small in this regime.

B. Annular condensate

Expressions (25) and (26) are valid strictly when there is no
inner boundary, which occurs when q < 1 + δ. If q � 1 + δ

then an inner boundary, at r = R1, develops.
One again starts from Eq. (19), but this time the integration

is taken over the domain between R1 and R2. It then follows
that

gb

π
= µ

(
R2

2 − R2
1

) + 1

4
(�2 − 1)

(
R4

2 − R4
1

)
+ A

l2

(
e−l2R2

2 − e−l2R2
1
)
, (28)

which again explicitly contains the chemical potential µ. To
remove µ from the calculations, we note from Eq. (19) that

µ − Veff(r)

gb

∣∣∣∣
R1,R2

= |ψ |2∣∣
R1,R2

= 0, (29)

from which we recover Eq. (22) and

e−l2R2
2 − e−l2R2

1 = 1

2A
(�2 − 1)

(
R2

2 − R2
1

)
. (30)

Upon substitution of Eq. (22) and Eq. (30) into Eq. (28) and
writing the “area” of the annulus as X ≡ R2

2 − R2
1, we get

gb = 1

2
πX(�2 − 1)

[
Xe−l2X

e−l2X − 1
+ 1

l2
− X

2

]
. (31)

Since p is large (because � is close to 1), we can assume that
l2X is large so that the first term in the square brackets of
Eq. (31) is negligible, which leaves

gb = 1

2
πX2(�2 − 1)

[
1

l2X
− 1

2

]
. (32)

Now, as l2X is taken to be large, one can neglect 1/l2X in
front of the factor of a half in the square brackets. Formally,

this corresponds to the following being satisfied:

1

1 − �2
� π

gl4
. (33)

Thus one obtains an expression for X,

X ∼
√

4gb

π (1 − �2)
, (34)

so that l2X is indeed large when � gets close to 1. Furthermore,
from (30)

e−l2R2
1 = (�2 − 1)X

2A
(
e−l2X − 1

) , (35)

which, on using the derived approximation for X, Eq. (34),
implies that

R1 ∼ 1

l

[
ln

(
A

√
π

gb(1 − �2)

)]1/2

, (36)

giving an expression for the radius of the inner boundary. The
value of the chemical potential can then easily be found by
taking Eq. (29) evaluated at R1, with the expression for R1

following directly from Eq. (36):

µ = 1

2
(1 − �2)R2

1 + Ae−l2R2
1

∼
√

gb(1 − �2)

π
, (37)

provided

ln

(
A

√
π

gb(1 − �2)

)



(
4gbl4

π (1 − �2)

)1/4

. (38)

In the limit � → 1, we see indeed that µ → 0, thus justifying
the LLL approximation provided g is not too large. The radius
of the outer boundary can be found by taking Eq. (22) with µ

given by (37). Then

R2 ∼
(

4gb

π (1 − �2)

)1/4

, (39)

which is just
√

X, implicitly implying through (38) that R2
2 �

R2
1.
To find the width of the condensate, d = R2 − R1, it is

necessary that R1 be neglected in front of R2 (i.e., that
R1/R2 
 1), which again is equivalent to Eq. (38) being
satisfied. Thus, the width of the condensate d is found from

X = (R2 − R1)(R1 + R2)
(40)

⇒ d = X

R1 + R2
∼ X

R2
=

(
2gb

π (1 − �2)

)1/4

.

Notice that both the width of the condensate d and the inner
boundary R1 and outer boundary R2 get larger as � increases
and eventually tend to infinity as � → 1. However, while the
width of the condensate and the outer boundary grow like (1 −
�2)−1/4, the inner boundary grows like ln[(1 − �2)−1/2]1/2.
Thus, in the limit � → 1, the condensate forms an infinitely
thick annulus with both the inner and outer boundary tending
to infinity and with an infinitely large central hole.
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TABLE I. A comparison, for parameters {g, A, l} =
{14, 1000, 5}, of the values of the inner radius R1, outer radius R2,
and quantum of circulation ν for fast rotation calculated in the LLL
and given by Eqs. (36), (39), and (42), respectively. Numerical
values are provided (subscripts n) as a comparison. The chemical
potential µ, calculated from Eq. (37), is also given.

� R1 R1n R2 R2n ν νn µ

0.9 0.53 0.66 3.23 3.25 1.70 2 0.99
0.99 0.57 0.69 5.68 5.71 3.22 3 0.32
0.994 0.58 0.70 6.45 6.38 3.72 3 0.25

The Cauchy formula allows us to compute the number of
zeros ν(R1) inside the disk of radius R1:

ν(R1) = R1R2

2π

∫ 2π

0
dθ

∫
e

R1
R2

z′
e−|z′ |2z′√ρ(z′)φ(z′e−iθ , τ )dz′∫

e
R1
R2

z′
e−|z′ |2√ρ(z′)φ(z′e−iθ , τ )dz′

,

(41)

where φ comes from (17). Using a Laplace method to evaluate
the integrals, we see that, for large R1, since R1/R2 tends to 0,

ν(R1) ∼ R1R2. (42)

Note that a regular lattice in a disk of radius R1 would give
ν(R1) ∼ R2

1, which is much smaller.

C. Summary of the main results

We have derived that, as � approaches 1, the condensate
has an annular shape with a triangular vortex lattice inside.
Equations (36), (39), (37), and (42) provide the inner and
outer radii of the condensate, the chemical potential, and the
circulation in the inside hole. In the LLL approximation,
we must have

√
g(1 − �2) 
 1. Therefore, in the limit

� → 1, the parameter set {g,A, l} = {14, 1000, 5}, described
in Sec. IIIC and with a series of contour plots (Fig. 3)
showing that the condensate is always annular, satisfies this
condition. Table I gives a comparison between the numerical
and analytical values for this parameter set and provides a
good check on the estimates derived in Eqs. (36), (37), (39),
and (42).

V. THOMAS-FERMI APPROXIMATION

In the case of the experiments of Bretin et al. [25], � is
not very close to 1 and g is large, so the LLL analysis of
Sec. IV does not adequately describe this experiment. In order
to describe it better, and since g is large, we can use the
Thomas-Fermi (TF) approximation. In the TF approximation,
the vortex cores are a small perturbation with respect to the
density profile and yield similar equations to those previously
derived in Sec. IV, except that now there is no factor b entering
the TF density profile of Eq. (19) since the vortex cores
are small. These computations are similar to those in [21];
however, due to the Gaussian trapping potential used here,
the condensate becomes a thick annulus, with many vortices,
instead of a thin annulus with no vortex as in [21]. This changes
significantly the approximations and requires the analysis of

several cases according to the magnitude of l2R2, with R being
the radius of the condensate.

A. Disk condensate

If there is no inner boundary then the Thomas-Fermi
approximation leads to

g|ψ |2 = µ + 1
2 (�2 − 1)r2 − Ae−l2r2

. (43)

We substitute the density |ψ |2 from Eq. (43) into the normal-
ization condition (5) and integrate over the domain between 0
and R2, where as before R2 is defined as the radius of the outer
boundary. It follows that

g

π
= µR2

2 + 1

4
(�2 − 1)R4

2 + A

l2

(
e−l2R2

2 − 1
)
, (44)

which explicitly contains the chemical potential µ. To remove
µ from the calculations, one can note from Eq. (43) that

µ − Veff(r)

g

∣∣∣∣
R2

= |ψ |2∣∣
R2

= 0, (45)

from which we get

µ = Ae−l2R2
2 − 1

2 (�2 − 1)R2
2, (46)

which is the same as (22). Using Eq. (46) in Eq. (44) yields

g

π
= 1

4
(1 − �2)R4

2 + A

[
R2

2e
−l2R2

2 + 1

l2

(
e−l2R2

2 − 1
)]

.

(47)

If l is taken to be small as in the experiments, we can
assume that p is small and thus that l2R2

2 is small. Then the
exponentials in l2R2

2 can be expanded and it readily follows
that

p ∼ 1
4 l4R4

2(1 − q) + 1
6ql6R6

2, (48)

where we have used the expressions for q and p [Eqs. (9) and
(24), respectively]. Equation (48) is a cubic equation in l2R2

2.
When q < 1, the last term in Eq. (48) can be neglected and we
get

R4
2 ∼ 4p

l4(1 − q)
= 4g

π [(1 − �2) − Al2]
. (49)

When q becomes larger than 1, then 1 − q < 0, but since we
assume that we have a disk condensate, we recall that 1 − q

is small. In such situations, the last term in Eq. (48) cannot be
neglected and is crucial to get the correct sign on the right-hand
side of (48).

The chemical potential is derived from Eq. (46),

µ ∼ A

(
1 − p

q

)
+ 1

2
R2

2(1 − �2)(1 − q)

+ 1

4q
Al4R4

2(1 + q), (50)

with the value of R2 obtained from Eq. (48). This allows
us to check that g|ψ(0)|2 ∼ µ − A is large, provided 1 − �2

is not too small, g is large, and l is small so that p is
small. Hence, this justifies our use here of the TF approx-
imation. This is in particular the case for the parameters
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TABLE II. A comparison, for parameters {g, A, l} =
{955.95, 24.83, 0.07}, for � such that the condensate is a
disk. The value of the radius of the condensate for different
rotational velocities calculated asymptotically from Eq. (48) under
the assumption of the TF approximation and calculated numerically
is shown.

� R2 (asymptotically) R2 (numerically)

0.1 6.29 6.18
0.25 6.40 6.19
0.5 6.87 6.70
0.795 8.97 9.00
0.821 9.44 9.49

{g,A, l} = {955.95, 24.83, 0.07} corresponding to the exper-
iments of [25].

Table II gives a comparison between the numerical values
and analytical values [calculated from Eq. (48)] for the
boundary of the condensate when the condensate is still a
disk (� <∼ 0.92), with the agreement found to be extremely
good.

A specific feature of our numerics in the case {g,A, l} =
{500, 60, 0.1} is to find, for certain values of the parameters,
since the maximum of the density is not at the origin, that
vortices appear on a specific circle rather than at the origin
[see Fig. 4(b)]. We call ρ(r) the average of |ψ |2 on a circle
of radius r . Then ρ is not far from the TF approximation of
|ψ |2 given by (43), but not exactly since the presence of the
circle of vortices has an influence on its shape. A computation
similar to that in [22] would be required to determine ρ in
this setting. Once this is done, one should be able to use the
results of [33] (Chap. 3): that the radius where the circle of
vortices appears is given by the location where the function
ζ/ρ reaches its maximum, where ζ (r) = ∫ R

r
sρ(s)ds, with

R being the radius of the condensate. This follows from an
expansion of the Gross-Pitaevskii energy, where the leading
order is given by the energy of vortices of order ρ(r) ln ξ ,
where ξ is the scattering length, minus the Lz term, which can
be estimated as −�ζ (r). Thus, the lowest � for nucleation
of vortices is achieved when there is a radius where ζ/ρ is
minimal.

B. Annular condensate

When the condensate is an annulus, then in the TF
approximation, we need to take into account the quantum of
circulation ν in the inner hole of the condensate. We assume
that ψ = |ψ |eiνS , where S is the phase. Note that this is
not needed in the LLL approach, because the circulation is
incorporated into the LLL wave function and we can compute
it directly from (41).

The TF density expression (43) is adjusted to

g|ψ |2 = µ̃ + 1

2

[
(�2 − 1)r2 − ν2

r2

]
− Ae−l2r2

, (51)

where µ̃ = µ + �ν. The TF density (51) and the normal-
ization condition (5) provide the starting points from which
approximations to the values of the radii of the condensate
boundaries and thus the width of the condensate can be found.

It follows then that

0 = µ̃ + 1

2

[
(�2 − 1)r2 − ν2

r2

]
− Ae−l2r2

∣∣∣∣
R1,R2

, (52)

and eliminating µ̃ from Eq. (52) gives

ν2 = R2
1R

2
2

[
(1 − �2) + 2A

X
e−l2R2

1
(
e−l2X − 1

)]
, (53)

where X is the “area” of the condensate and is again defined
as X ≡ R2

2 − R2
1. From integration of the normalization

condition (5) between R1 and R2 it ensues that

g

π
= 1

4
(1 − �2)X

(
R2

1 + R2
2

) − 1

2
(1 − �2)R2

1R
2
2 ln

(
R2

2

R2
1

)

+Ae−l2R2
1
(
e−l2X − 1

) [
R2

1 + 1

l2
− R2

1R
2
2

X
ln

(
R2

2

R2
1

)]

+AXe−l2Xe−l2R2
1 . (54)

A further expression that connects the quantum of circula-
tion and the inner and outer radii is readily obtained from the
minimization of the free energy per particle, F = E′ − µN̄ ,
where N̄ is the number of bosons in the condensate [21]. The
following integral identity results:

g� = 2νπ

∫ R2

R1

1

r
[g|ψ |2]dr. (55)

Integration of Eq. (55) using Eq. (43), together with the
expressions for µ̃ and ν already given, results in

g�

πν
=

[
1

2
(1 − �2)

(
R2

1 + R2
2

) + Ae−l2R2
2

+ AR2
1

X
e−l2R2

1
(
e−l2X − 1

)]
ln

(
R2

2

R2
1

)
− X(1 − �2)

−Ae−l2R2
1
(
e−l2X − 1

) + 2A

∫ R2

R1

1

r
e−l2r2

dr. (56)

In order to proceed it becomes important to estimate the last
integral in Eq. (56) according to the size of l2r2. The following
sections detail two possible limits.

1. l2 R2
2 small

If l2R2
2 is assumed to be small, then it follows that l2R2

1 is
small as well. Thus expanding the exponential terms in Eq. (53)
up to terms of order l6R6

2 gives

ν2 ∼ R2
1R

2
2

[
(1 − �2)(1 − q) + Al4R2

2

]
, (57)

where we have assumed that R2
2 � R2

1, which implies that we
can write exp(−l2X) ∼ exp(−l2R2

2). In the case of an annular
condensate, we have that q > 1, so that the first term in Eq. (57)
is negative. Therefore in order for the right-hand side of Eq.
(57) to be positive, it is required that

l2R2
2 >

(q − 1)(1 − �2)

Al2
= 2

(
1 − 1

q

)
. (58)
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Expansion of Eq. (54) to order l6R6
2 (again by assuming

that R2
2 � R2

1) results in an expression for R2:

p ∼ 1

4
(1 − q)l4R2

2

{
R2

2

[
1 + ql2

(1 − q)

(
R2

2

3
− R2

1 ln
(
R2

2

))]

− 2R2
1 ln

(
R2

2

)}

∼ l4R4
2(1 − q)

4
+ ql6R6

2

6
, (59)

where we assume that R2
2 � R2

1 ln(R2
2/R

2
1) ∼ R2

1 ln(R2
2). No-

tice that (59) is actually the same approximation for R2 as
calculated for the disk condensate in the TF approximation
[see Eq. (48)]. Finally, we can consider Eq. (56). Expanding
the exponential under the integral in powers of l2r2 and
simplifying (56) gives

g�

πν
∼ 1

2
(1 − �2)R2

2

[
ln

(
R2

2

) − 2
]

+ A

[
2 ln

(
R2

2

) − l2R2
2

(
ln

(
R2

2

) + 1
)

+ 1

2
l4R4

2

(
ln

(
R2

2

) + 1

2

)]

∼ ln
(
R2

2

) [
1

2
(1 − �2)R2

2(1 − q) + 2A

]
, (60)

where we assume that ln(R2
2/R

2
1) ∼ ln(R2

2) � 1. It follows
that

ν ∼ 2g�

π ln
(
R2

2

) [
R2

2(1 − �2)(1 − q) + 4A
]−1

, (61)

and thus the inner radius, R1, is computed from (57) to be

R1 ∼ ν

R2

[
(1 − �2)(1 − q) + Al4R2

2

]−1/2
. (62)

There are now three equations [(59), (61), and (62)] for R2, ν,

and R1 that describe the annular condensate in the TF regime
with l2r2 small. These provide a comparison to the numerical
values corresponding to the parameters of Bretin et al. [25]. A
comparison for the case of � = 0.92 and � = 0.93 between
the numerics [cf. Figs. 2(g) and 2(h)] and analytical estimates
is given in Table III. The TF analytical expressions describing
the radii of the inner and outer boundaries are reasonably
good. However, the quantum of circulation [Eq. (61)] is
not providing a suitable estimate. Indeed ν is still small
and the inconsistency could be as a result of the difficulty

TABLE III. A comparison, for parameters {g, A, l} =
{955.95, 24.83, 0.07}, for � such that the condensate is an annulus.
The values of the inner radius R1, outer radius R2, and quantum
of circulation ν are calculated by a TF analysis and are given by
Eqs. (62), (59), and (61), respectively. Numerical values are provided
(subscripts n) as a comparison.

� R1 R1n R2 R2n ν νn

0.92 1.00 0.00 12.94 13.30 1.30 0
0.93 3.72 3.25 13.52 13.80 1.37 11

in numerically discriminating between vortices inside the
condensate and inside the inner boundary.

We note that the Thomas-Fermi approximation is justified
because the maximum of g|ψ |2 is larger than 1 (numerically
around 4). Larger values of � which are not reached by the
experiments would be better described by a LLL regime.
Nevertheless, in the TF approximation, we can still analyze
an intermediate case.

2. l2 R2
1 small and l2 R2

2 large

If we take l2R2
1 small and l2R2

2 large then this implies that
l2X is also large. Taking Eqs. (53), (54), and (56) as the starting
point we note immediately that (53) simplifies to

ν2 = R2
1R

2
2(1 − �2), (63)

while Eq. (54) simplifies to

g

π
∼ 1

4
(1 − �2)R4

2 − 1

2
(1 − �2)R2

1R
2
2 ln

(
R2

2

)
−Ae−l2R2

1

[
R2

1 + 1

l2

]

∼ 1

4
(1 − �2)R2

2

[
R2

2 − 2R2
1 ln

(
R2

2

)] − AR2
1

(
1 + 1

l2R2
1

)

∼ 1

4
(1 − �2)R4

2 − A

l2
, (64)

where we have assumed that

R2
2 � R2

1,

R2
2 � 2R2

1 ln
(
R2

2

)
,

the first condition following directly from the assumption that
l2R2

1 is small and l2R2
2 is large. Furthermore, Eq. (56) simplifies

as

g�

πν
∼

[
1

2
(1 − �2)R2

2 − 2AR2
1

X

]
ln

(
R2

2

) − R2
2(1 − �2)

+A + A

e
− 2A ln(lR1) − A

l2R2
2

e−l2R2
2

∼ 1

2
(1 − �2)R2

2

[
ln

(
R2

2

) − 2
]

∼ 1

2
(1 − �2)R2

2 ln
(
R2

2

)
, (65)

since∫ R2

R1

1

r
e−l2r2

dr ∼ − ln(lR1) + 1

2e
− 1

2l2R2
2

e−l2R2
2 , (66)

in the limits l2R2
1 small and l2R2

2 large. Thus we get an
expression for the outer boundary, from Eq. (64), as

R2 ∼
[

4

(1 − �2)

(
g

π
+ A

l2

)]1/4

, (67)

and from Eq. (65) we get an expression for the quantum of
circulation,

ν ∼ 2g�

π (1 − �2)R2
2 ln

(
R2

2

) , (68)

with R2 found from Eq. (67). Notice how the value of ν gets
large in the limit � → 1. Putting Eqs. (67) and (68) into
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Eq. (63) we arrive at the expression for the inner boundary:

R1 ∼ g�R2

2π ln
(
R2

2

) [
(1 − �2)1/2

(
g

π
+ A

l2

)]−1

, (69)

again for R2 given by Eq. (67).
Such a case is not reached experimentally and is just before

the LLL regime. One could perform similar computations
assuming that l2R2

1 is also large.

VI. CONCLUSION

Motivated by the experiments of [25], we provide numerical
and analytical computations which describe the properties
of a condensate placed in a harmonic plus Gaussian trap.
We have seen that, however close � gets to the harmonic

trapping frequency, the condensate becomes a large annulus
containing a triangular vortex lattice, contrary to what is seen
for a condensate with a quadratic plus quartic term where the
width of the condensate decreases. We estimate the circulation
in the central hole, which is higher than that corresponding
to a regular lattice in this region. Also in a Thomas-Fermi
approximation, when the rotational velocity � is not too close
to the harmonic trapping frequency, we estimate the radii of
the condensate and the circulation in the inside hole, in a way
which is consistent with numerics.
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