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Anisotropic-Fermi-liquid theory of ultracold fermionic polar molecules:
Landau parameters and collective modes
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We study the Fermi liquid properties of the cold atomic dipolar Fermi gases with the explicit dipolar anisotropy
using perturbative approaches. Due to the explicit dipolar anisotropy, Fermi surfaces exhibit distortions of the
dr2−3z2 type in three dimensions and of the dx2−y2 type in two dimensions. The fermion self-energy, effective mass,
and Fermi velocity develop the same anisotropy at the Hartree-Fock level proportional to the interaction strength.
The Landau interaction parameters in the isotropic Fermi liquids become the tridiagonal Landau interaction
matrices in the dipolar Fermi liquids which renormalize thermodynamic susceptibilities. With large dipolar
interaction strength, the Fermi surface collapses along directions perpendicular to the dipole orientation. The
dynamic collective zero sound modes exhibit an anisotropic dispersion with the largest sound velocity propagating
along the polar directions. Similarly, the longitudinal p-wave channel spin mode becomes a propagating mode
with an anisotropic dispersion in multicomponent dipolar systems.
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I. INTRODUCTION

The Fermi liquid theory is one of the most important
paradigms in contemporary condensed matter physics, which
sets up the fundamental framework to understand interacting
fermion systems [1,2]. The most prominent feature of the
Fermi liquid theory is the existence of the Fermi surface and
the long-lived low-energy fermionic quasiparticles around the
Fermi surface. The interaction effects, which may not be weak,
can be conveniently described by a set of phenomenological
Landau interaction parameters Fl in different partial-wave
channels characterized by the orbital angular-momentum
number l. Physical susceptibilities, including compressibil-
ity, specific heat, and spin susceptibility, receive important
but still finite renormalizations by the Landau interactions.
Furthermore, Fermi liquid states possess collective excitations
such as the zero sound mode whose restoring force is provided
by Landau interactions.

When Landau interaction parameters are negative and large
enough, Fermi liquid states may become unstable toward
Fermi surface distortions named the Pomeranchuk instabilities
[3]. The most familiar example is ferromagnetism lying in the
s-wave spin channel. High partial wave channel instabilities in
both density and spin channels have been studied extensively in
recent years [4–11]. Another well-known, but of little practical
relevance, example is the Kohn-Luttinger superconductivity
driven by interactions in the high-angular-momentum channels
[12]. The density Pomeranchuk instabilities in high partial
wave channels exhibit anisotropic Fermi surface distortions
which are electronic version of the nematic liquid crystal states
[4–7]. Non-s-wave spin channel Pomeranchuk instabilities
are essentially “unconventional magnetism,” in analogy to
unconventional superconductivity. They include both isotropic
and anisotropic phases dubbed α and β phases as the
counterparts of 3He-B (isotropic) and A (anisotropic) phases
[4,8–11], respectively [1].

On the other hand, the rapid experimental progress of
cold atomic physics provides an exciting opportunity to
study quantum many-body systems with electric and magnetic

dipolar interactions [13–17]. When electric dipole moments
are aligned by the external field, dipolar interaction decays
as 1/r3 and thus is long-ranged in three dimensions (3D)
but remains short-ranged in two dimensions (2D). More
importantly, the most prominent feature of dipolar interaction
is its spatial anisotropy which possess the dz2−3r2 anisotropy in
3D and the dx2−y2 anisotropy in 2D, respectively. Considerable
progress has been made in studying exotic properties in
anisotropic condensations of the dipolar bosonic systems as
reviewed in Refs. [18–21].

Furthermore, dipolar fermionic systems provide another
exciting opportunity to study exotic anisotropic many-body
physics of fermions, including anisotropic Fermi liquid states
and Cooper paring states. Physical observable should exhibit
the same anisotropy accordingly such as the shape of the Fermi
surface [22–24]. Anisotropic Cooper pairing and Wigner
crystallization of dipolar Fermi gases has been theoretically
investigated [25–29]. Recently, Fregoso et al. [30] studied
the biaxial nematic instability in the dipolar Fermi gases as
the d-wave channel Pomeranchuk instability and generalized
the Landau interaction parameters to the tridiagonal Landau
interaction matrices.

Anticipating a great deal of experimental and theoretical
activity in the near future in polar molecular and atomic
interacting fermionic systems, we have provided in this article
a comprehensive Landau Fermi liquid theory for polar inter-
actions including the full effects of anisotropy. The explicit
dimensionless perturbation parameter is the ratio between
the characteristic dipolar interaction energy and the Fermi
energy. The standard textbook isotropic Fermi liquid theory
is generalized into the anisotropic version which exhibits
many different features of both single-fermion and collective
properties. Our theory is a leading-order perturbative theory
in the polar interaction coupling constant, which is equivalent
to a Hartree-Fock approximation of the interaction. We expect
our theory to be quantitatively accurate in the weak coupling
regime, but the qualitative aspects of our theory, e.g., the
effect of anisotropy on the Fermi liquid parameters, should
be generally valid. Our work considers only the explicit
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anisotropy due to the alignment of the molecular electric
dipolar moment. The spontaneous anisotropic phase as a
ferronematic state of the dilute magnetic dipolar Fermi gases
has been recently studied by Fregoso et al. in Ref. [31].

In Sec. II, the Fourier transforms of the dipolar interactions
in 3D and 2D are summarized, which nicely exhibit the
dr2−3z2 symmetry and the dx2−y2 symmetry, respectively. The
anisotropic interactions result in anisotropic Fermi surfaces.
The angular dependence of Fermi wave vectors, Fermi
velocities, and effective masses are presented in Sec. III. All of
them exhibit the same isotropy proportional to the the dipolar
interaction strength at the leading order.

Because the dipolar interaction mixes different partial-
wave channels, the Landau interaction parameters in isotropic
systems becomes Landau interaction matrices. In Sec. IV, the
Landau interaction matrices in 3D calculated in Ref. [30]
are reviewed, and those in 2D are constructed. Fortunately
due to the dz2−3r2 symmetry of the dipolar interaction, the
mixing turns out to result in the tridiagonal matrix between
l and l ± 2 in 3D. The thermodynamic susceptibilities would
be renormalized by the generalized Landau matrices as will
be discussed in Sec. V. In this section, we will also explore
the thermodynamic instability, where Fermi surface collapses
along directions perpendicular to the dipole orientation.

In Sec. VI, we study the 3D collective modes in both
the density and spin channels, respectively, focusing on the
anisotropy effect. The dynamic collective zero sound mode
exhibits an anisotropic dispersion. The sound velocity is
largest if the propagation direction is along the north and
south poles and becomes softened as the propagation deviates
from them. For directions close to the equator of the Fermi
surface, the zero sound cannot propagate. The spin-channel
collective modes do not exist in the s-wave spin wave
channel. Nevertheless, well-defined propagating collective
modes appears in the longitudinal p-wave spin channel, which
has not been observed in condensed matter systems before.
Conclusions and outlooks are made in Sec. VII.

II. THE DIPOLAR INTERACTION IN THREE
AND TWO DIMENSIONS

The most prominent feature of the dipolar interaction is
its spatial anisotropy, i.e., it depends on not only the distance
between two dipoles but also the angles between their relative
vectors and dipole orientations. In the case that all the dipoles
are orientated along the external electric field �E set as the z

axis, the dipolar interaction between dipoles at �r1 and �r2 reads

V3D(�r1 − �r2) = d2

|�r1 − �r2|3 (1 − 3 cos2 θ�r1−�r2 )

= − 2d2

|�r1 − �r2|3 P2(cos θ�r1−�r2 ), (1)

where θ�r1−�r2 is the angle between �r1 − �r2 and the �E field; d

is the electric dipole moment. The anisotropy exhibits in the
angular dependence of the V3D with the form of the second
Legendre polynomial. V3D is repulsive for θ̄0 < θ�r1−�r2 < π −
θ̄0 and attractive otherwise, where

θ̄0 = cos−1 1√
3

≈ 55◦. (2)

FIG. 1. (Color online) Schematic sketch of a 2D dipolar system.
The external electric field �E controls the dipole orientation and thus
the dipolar interaction.

If the spatial locations of dipoles are confined in a two-
dimensional plane, and the �E field is set in the xz plane with
an angle of θ0 relative to the plane as depicted in Fig. 1, then
Eq. (1) reduces to

V2D( �r1 − �r2, θ0) = d2

|�r1 − �r2|3 (1 − 3 sin2 θ0 cos2 φ)

= d2

|�r1 − �r2|3
{
P2(cos θ0) − 3

2
sin2 θ0 cos 2φ

}
,

(3)

where φ is the azimuthal angle relative to the x axis.
Equation (3) is decomposed into the isotropic component and
an anisotropic d-wave component, whose relative weight is
tunable by varying the parameter angle θ0. If �E is perpendicular
to the plane, i.e., θ0 = 0, V2D is isotropic and repulsive. On
the other hand, at θ0 = θ̄0, V2D is purely anisotropic with the
d-wave form factor cos 2φ. As the external electric field is
tilted, i.e., θ0 varies from 0 to π

2 , the 2D dipolar interaction
gradually changes from an isotropic repulsive to an attractive
one at large value of θ0.

The anisotropies in the Fourier transform of dipolar
interactions in both 3D and 2D exhibit in their dependencies
on momentum orientations. In order to handle both the long-
range part and the short-distance divergence of the dipolar
interactions, we introduce a small distance cutoff ε beyond
which the dipolar interactions Eq. (1) and Eq. (3) are valid and
a large distance cutoff R. ε can be chosen, say, one order larger
than the size of the dipolar molecule and R is the radius of the
system.

A. Fourier transform of the 3D dipolar interaction

For the 3D dipolar interaction, its Fourier transform can be
performed as

V3D(�q) = 8πd2

{
j1(qε)

qε
− j1(qR)

qR

}
P2(cos θ�q)

−→ 8πd2

3
P2(cos θ�q), (4)

at qε → 0 and qR → ∞. Its angular dependence is the second
Legendre polynomial of momentum direction inherited from
the real space form of Eq. (1); j1(x) is the first-order spherical
Bessel function with the asymptotic behavior j1(x) → x

3 as
x → 0, and j1(x) → 1

x
sin(x − π

2 ) as x → ∞.
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Equation (4) does not depend on the magnitude of q after
the limits of qε → 0 and qR → +∞ are taken because of the
spatial integral over 1/r3 renders the result dimensionless. At
�q = 0, V3D(�q = 0) = 0 arising from the fact that the spatial
average of the 3D dipolar interaction is zero. However, V3D(�q)
is not analytic as �q → 0 in the limit of R → +∞ due to the
angular variation. In fact, the smallest value of qR is at the
order of O(1), this nonanalyticity even exist for large but finite
value of R.

An interesting feature of the above Fourier transforms is
that V3D(�q) is most positive when �q is along the z axis, but
most negative when �q is in the equator plane, which is just
opposite to the case of V3D(�r) in real space. This can be
intuitively understood as follows. Considering a dipole density
wave propagating along the z axis, the wave fronts (equal
phase lines) are perpendicular to the dipole orientation, thus
the interaction energy is repulsive. On the other hand, if the
dipole density wave vector lies in the equator, then the wave
fronts are parallel to the dipole orientation which renders the
interaction negative.

B. Fourier transform of the 2D dipolar interaction

In two dimensions, the Fourier transform of Eq. (3) is more
subtle, which can be expressed as

V2D(�q, θ0) = 2πd2P2(cos θ0)

{
1

ε
− J0(qR)

R

+ q[J1(qε) − J1(qR)] − qI2(qε, qR)

}

+πd2 sin2 θ0 cos 2φqq

{
3

[
J2(qR)

qR
− J2(qε)

qε

]

− [J3(qR) − J3(qε)] + I2(qε, qR)

}
, (5)

where J0,1,2(x) are the Bessel functions of the first, second,
and third orders, respectively; I2 is the integral defined as

I2(qε, qR) =
∫ qR

qε

dxJ2(x), (6)

and I2(0,+∞) = 1. In the regular limit of qε → 0 and qR →
+∞, the complicated form of Eq. (5) can be simplified into

V2D(�q, θ0)

= 2πd2P2(cos θ0)

(
1

ε
− q

)
+ πd2 sin2 θ0q cos 2φq. (7)

In particular, at θ0 = θ̄0, Eq. (7) is entirely anisotropic,

V2D(�q, θ0 = θ̄0) = 2πd2

3
q cos 2φq, (8)

as one can see from the real space interaction in Eq. (3).
Equation (7) even holds in the long-wavelength limit qR →
O(1). On the other hand, for the short-wavelength limit x = qε

at the order of O(1), additional terms should be added into
Eq. (7) as

�V2D(�q → 0, θ0) = 2πd2P2(cos θ0)
1

ε
[xJ1(x) + xI2(0, x)]

+πd2 sin2 θ0 cos φq

1

ε
[3J2(x)

+ xJ3(x) − xI2(0, x)]. (9)

In the dilute limit, where the Fermi wave vector kf satisfies
kf ε � 1, we need to use q only up to the order of kf . Thus
in the sections below, we shall use Eq. (7) as the 2D Fourier
transform of our dipolar interaction.

The anisotropic component of V2D(�q) [second term of
Eq. (7)] has a similar feature to the 3D case, which is repulsive
along the x axis but negative along y axis. Notice that there
is also an isotropic component for V2D which can be either
positive or negative depending on the external parameter θ0.
Therefore, in momentum space, the dipolar interaction in 2D
contains both s- and d-wave components, while it only has a
d-wave symmetry in 3D.

III. HARTREE-FOCK SELF-ENERGY AND FERMI
SURFACE DEFORMATION

The anisotropy of the dipolar interaction exhibits in
the fermion self-energy at the Hartree-Fock level, which
results in anisotropic Fermi surface distortions as studied in
Refs. [22,23,30]. A convenient dimensionless parameter to
describe the interaction strength is defined in 3D and 2D as [30]

λ3D = E3D
int

E3D
kf 0

= d2mk3D
f0

3π2h̄2 ,

(10)

λ2D = E3D
int

E2D
kf 0

= d2mk2D
f0

4π3/2h̄2 ,

where k
3D,2D
f 0 are the noninteracting Fermi wave vectors in 3D

and 2D, respectively; Eint is the average dipolar interaction

and E
3D,2D
kf 0

= h̄2(k3D,2D
f 0 )2

2m
are the kinetic energies at the Fermi

surface in the absence of interaction. Since that λ3D and λ2D

are at the same order, we will not distinguish them but use
λ = λ3D for both 2D and 3D. In this section, we shall evaluate
the Hartree-Fock self-energy in 2D and 3D perturbatively at
the linear order of λ from which the Fermi surface distortion
will be determined. We will see that both the Hartree-Fock
self-energies and Fermi surface distortions possess the same
symmetries inherited from the corresponding interactions.

A. Anisotropic Hartree-Fock self-energy in 3D

We first consider the situation in 3D, the Hartree-Fock self-
energy can be expressed as

	HF
3D (�k) = 1

V

∑
k′

{V3D(�q = 0) − V3D(�k − �k′)}n �k′

= −8πd2

3V

∑
k′

P2(cos θ�k−�k′)n�k′

= −8πd2

3

∫
k′<kf 0

d3k′

(2π )3
P2(cos θ�k−�k′), (11)

where n�k is the Fermi occupation number; the Hartree
contribution goes to zero. In Eq. (11), the leading contribution
of the anisotropy to 	HF (�k) comes from the interaction. The
effect from the Fermi surface distortion is at a higher order
of λ, and thus is neglected, thus we will take the Fermi wave
vector in Eq. (11) as that of zero dipolar interaction k3D

f 0 . θ�k−�k′

is the angle between the momentum transfer �k − �k′ and �E,
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FIG. 2. (Color online) The dipole moments polarized by the
external �E field are along the z axis. The polar and azimuthal angles of
�k and �k′ are denoted by θk(k′) and φk(k′), respectively. θ�k−�k′ is the polar
angle of the vector difference of �k − �k′ but not the angle between �k
and �k′.

which satisfies

cos θ�k−�k′ = (�k − �k′) · Ê

|�k − �k′| , (12)

Please notice that θ�k−�k′ is not the angle between �k and �k′ (see
Fig. 2).

This Hartree-Fock self-energy can be evaluated analytically
as

	HF
3D (�k) = −2λE3D

kf 0
P2(cos θk) I3D

(
k

k3D
f0

)
, (13)

where Ekf 0 = h̄2k2
f 0/2m and

I3D(x) = π

12

{
3x2 + 8 − 3

x2
+ 3(1 − x2)3

2x3
ln

∣∣∣∣1 + x

1 − x

∣∣∣∣
}

(14)

is a monotonically increasing function as depicted in Fig. 3.
This form agrees with the self-energy calculated for the 3D
dipolar Fermi gases in Ref. [30]. Right on the Fermi surface,

	HF
3D

(
k = k3D

f 0

) = −4π

3
λE3D

kf 0
P2(cos θk). (15)

Naturally Eq. (13) exhibits the d-wave form factor P2(cos θk).
We shall see more examples below where the physical

0.0 0.5 1.0 1.5 2.0

k

kF

1

2

3

4

I3 D ( )

k

kF

FIG. 3. (Color online) The dimensionless k-dependent function
I3D( k

kf
) of the 3D Hartree-Fock self-energy in Eq. (13).

quantities possess the symmetry originated from the dipolar
nature.

B. Anisotropic Hartree-Fock self-energy in 2D

Similarly, for 2D system, the HF self-energy is evaluated
as

	HF
2D (�k, θ0) = λE2D

kf 0

{
P2(cos θ0) I iso

2D

(
k

k2D
f 0

)

− sin2 θ0 cos 2φk I ani
2D

(
k

k2D
f 0

)}
, (16)

where k2D
f 0 is the Fermi wave vector at zero dipolar interaction

and

I iso
2D(x) = 12π

∫ 1

0
dx ′x ′|x + x ′|E

(
2
√

xx ′

x + x ′

)

I ani
2D (x) = 2π

∫ 1

0
dx ′ x

′|x + x ′|
x2

{
(x − x ′)2K

(
2
√

xx ′

x + x ′

)

+ (2x2 − x ′2)E

(
2
√

xx ′

x + x ′

)}
. (17)

The functions K(y) and E(y) are the standard complete elliptic
integral of the first and second kinds, respectively, as

K(y) =
∫ π

2

0
dα

1√
1 − y2 sin2 α

,

(18)

E(y) =
∫ π

2

0
dα

√
1 − y2 sin2 α.

The behavior of I iso
2D(x) and I ani

2D (x) are plotted in Fig. 4.
Equation (16) indicates that the self-energy in 2D comprises
of an isotropic and an anisotropic terms. The former shifts
the chemical potential µ, while the latter distorts the Fermi

0.5 1.0 1.5 2.0

k

kF

10

20

30

40

50

60

I2 D ( )
k

kF

FIG. 4. (Color online) The k-dependent components of the 2D HF
self-energies in 2D. The solid (blue) and dashed (red) curves represent
the dimensionless functions I ani

2D (k/kf ) and I iso
2D(k/kf ) defined in

Eq. (16).
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surface. At k = k2D
f 0 , Eq. (16) reduces into

	HF
2D

(
k = k2D

f 0 , φk, θ0
)

= −λE2D
kf 0

{
−32π

3
P2(cos θ0) + 16π

5
sin2 θ0 cos 2φk

}
.

(19)

Again, Eq. (16) contains the same angular dependence as the
2D interaction does. Both Eqs. (13) and (16) indicate that
the Hartree-Fock self-energy changes monotonically with the
momentum k in 2D and 3D (Fig. 3 and Fig. 4).

C. Hartree-Fock self-energy for two-component dipolar systems

In two-component dipolar systems, the exchange part
of the Hartree-Fock self-energy only exists intracomponent
interaction, and the Hartree part exists in both intra- and
intercomponent interactions. Since the Hartree contribution
vanishes in the 3D dipolar systems, the Hartree-Fock self-
energy remains the same as in the single-component systems.
In the 2D dipolar systems, there is an extra contribution from
the intercomponent Hartree interaction as

�	HF
2D = 3π2

k2D
f 0 ε

λEkf 0P2(cos θ0), (20)

where ε is the 2D phenomenological cutoff constant we
discussed before. This extra self-energy contribution is mo-
mentum independent and can be offset by an overall shift of
the chemical potential.

D. Anisotropic Fermi surface distortions

The anisotropic Hartree-Fock self-energy from the dipolar
interaction naturally results in anisotropic Fermi surface dis-
tortions. With Eqs. (13) and (16), we determine the distortions
by solving:

εHF (�kf ) = ε0(�kf ) + 	HF (�kf ) = µ(n, λ). (21)

Here, n is the particle density and we recall that k3D
f0

is the
Fermi wave vector for λ = 0. With nonzero λ, the dependence
of �kf on the polar angle in 3D is solved as

k3D
f (θk)

k3D
f 0

= 1 − 4π2

45
λ2 + 2π

3
λP2(cos θk). (22)

Similarly, in 2D, the dependence of �k on the azimuthal angle
is solved as

k2D
f (φk, θ0)

k2D
f 0

= 1 − 16π2

25
sin4 θ0λ

2 + 8π

5
sin2 θ0λ cos 2φk.

(23)

The anisotropic Fermi surface distortions in 2D and 3D
show linear dependence on dipolar interaction strength λ. Due
to particle number conservation, there are small shrinking of
Fermi momentum in both 2D and 3D at the quadratic order of
λ. Notice that these two equations are correct to the order of λ.
The λ2 terms appear to conserve particle numbers due to this
lowest-order Fermi surface deformation. When higher-order
contribution is considered, anisotropy can also enter in the

−1.0 −0.5 0.5 1.0
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kF

−1.5
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−0.5

0.5

1.0

1.5

kz

kF

FIG. 5. (Color online) The deformed Fermi surface for λ = 1
2π

in the 3D dipolar system obtained by the perturbative (solid) and
variational (dashed red) approaches. The external electric field lies
along the z axis here.

second order of λ and particle conservation will in turn lead to
an isotropic λ3 correction.

We emphasize here again that the results obtained based
on Eq. (13) and Eq. (16) are perturbative and are correct
for λ � 1, while they provide qualitative features for λ < 1.
As a comparison with the variational approach suggested in
Ref. [23], we plot the deformed Fermi surface in Fig. 5 for
λ = 1

2π
in 3D, which corresponds physically to the stability

limit of the dipolar system (to be discussed in Sec. V). Our
perturbation results give rise a less prolate shape of the Fermi
surface than those obtained from the variational approach.
Figure 6 shows the same distorted Fermi surfaces in 2D. At
θ0 = 0, the interaction is isotropic and does not deform the
Fermi surface. It becomes prolate when θ0 increases. We would
like to emphasize that the interaction is most anisotropic at
θ0 = θ̄0, though a larger θ0 will stretch the Fermi surface more.

E. Anisotropic Fermi velocities and effective masses

The Fermi velocities become anisotropic in both 2D and 3D
at nonzero λ. In comparison to interacting electron systems,
the Hartree-Fock contributions to the 2D and 3D dipolar
Fermi gases are less singular, i.e., the radial derivatives at the
Fermi surface remain continuous: the Hartree correction of
Fermi velocity is continuous because the Fourier transforms
of the dipolar interaction are finite as �q → 0. Furthermore,
the difference of the Hartree-Fock self-energies for the single
component and multicomponent dipolar gases is momentum
independent, thus the Fermi velocities are the same for both
cases and we will not distinguish them in this subsection.

We first consider the 3D case. After taking into account the
Hartree-Fock correction, the projections of Fermi velocities
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FIG. 6. (Color online) The 2D distorted Fermi surfaces for
λ = 0.02. The solid (black), dashed (red) and blue (dotted) curves
corresponds to an external electric field configuration at θ0 = 0, θ̄0,
and π

2 , respectively. The electric field is projected to x axis in this 2D
system.

along the radial direction k̂ and angular direction êθ are defined
as k̂ · �v3D

f (�k) and êθ · �v3D
f (�k) as

k̂ · �v3D
f (�k) = k3D

f (θk)

m
+ ∂	HF

3D (k, θk)

∂k
,

(24)

êθ · �v3D
f (θk) = ∂	HF

3D (k, θk)

k3D
f ∂θk

.

Taking into account the angular dependence of Fermi wave
vector in Eqs. (22) and (23), we arrive at the radial and angular
Fermi velocities corrections to the linear order of λ as

k̂f · �v3D
f (θk) = k3D

f 0

m

{
1 − π

3
λP2(cos θk)

}
,

(25)

êθ · �v3D
f (θk) = k3D

f 0

m
πλ sin 2θk.

There are two opposite contributions to k̂f · �v3D
f : (1) the

Fermi surface deformation, kf (θk) and (2) the Hartree-Fock
self-energy modification. In 3D dipolar system, the latter is
stronger and thus the radial Fermi velocity is suppressed at
north and south poles but enhanced along the equator of the
Fermi surface.

According to Eq. (25), we define the longitudinal and
transverse effective masses m∗

3D,‖ and m∗
3D,⊥ in 3D as

1

m∗
3D,‖(θk)

= k̂f · �v3D
f (θk)

k3D
f (θk)

= 1

m
{1 − πλP2(cos θk)} ,

(26)
1

m∗
3D,⊥(θk)

= êθk
· �v3D

f (θk)

k3D
f (θk)

= 1

m
πλ sin 2θk.

For the 2D case, the projections of Fermi velocity in 2D
along the radial k̂ and the azimuthal angle êφk

directions are

calculated as

k̂ · �v2D
f (φk, θ0)

= k2D
f 0

m

{
1 + λ

[
4πP2(cos θ0) − 6π

5
sin2 θ0 cos 2φk

]}
, (27)

êφk
· �v2D

f (φk, θ0) = k2D
f 0

m

16π

5
λ sin2 θ0 sin 2φk. (28)

For a general value of θ0 �= θ̄0, there is an additional isotropic
renormalization to v2D

f (φk, θ0) in Eq. (27), which comes from
the isotropic part of the 2D dipolar interaction.

This means that in 2D, we also have a reduced radial Fermi
velocity at φk = 0, π , while it is boosted when φk = ±π

2 .
Accordingly, similar to the 3D situation, we can also compute
the longitudinal and transverse effective masses m∗

2D,‖ and
m∗

2D,⊥ in 2D as

1

m∗
2D,‖(φk, θ0)

= 1

m

{
1 + λ

[
4πP2(cos θ0)

− 14π

5
sin2 θ0 cos 2φk

]}
, (29)

1

m∗
2D,⊥(φk, θ0)

= 1

m

16π

5
λ sin2 θ0 sin 2φk.

F. Renormalization of density of states

Now we study the renormalization of the density of states
(DOS) at the Fermi surface due to the dipolar interaction at
the Hartree-Fock level. We define the 3D differential DOS of
the single component N3D(�k) in the direction of �k as

N3D(�k)
d�k

4π
= k3D

f (θk)d�k

(2π )3v3D
f (θk)

√√√√[
k3D
f (θk)

]2 +
(

dk3D
f

dθk

)2

= mk3D
f 0

h̄(2π )3

[
1 + 5π

3
λP2(cos θk)

]
d�k. (30)

At the linear order of λ, N3D(�k) develops the same
anisotropy of P2(cos θ ). The total DOS reads

N3D =
∫

d�k

4π
N3D(�k), (31)

which does not change at the linear order of λ compared to
that of the free Fermi gas. This means that the specific heat,
which is proportional to the total DOS at the Fermi surface,
is not renormalized to the linear order of λ. In considering
the actual area of Fermi surface is enlarged, the correction at
higher orders of λ should increase the total DOS.

Similarly, we consider the anisotropic case in 2D. The
2D differential DOS of the single component N2D(�) at the
Fermi surface along the direction of the azimuthal angle φk is
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defined as

N2D(φk)
dφk

2π
= dφk

(2π )2v2D
f (φk)

√√√√[
k2D
f (φk, θ0)

]2 +
(

dk2D
f

dφk

)2

= mdφk

(2π )2

{
1 + λ

[
− 4πP2(cos θ0)

+ 14π

5
sin2 θ0 cos 2φk

]}
, (32)

which clearly exhibits the d-wave anisotropy. The integrated
total DOS at 2D is not changed at the linear order of λ either.
Similarly, the 2D specific heat is not renormalized to the
linear order of λ.

IV. LANDAU INTERACTIONS FOR THE DIPOLAR
FERMI LIQUIDS

In this section, we construct the Landau Fermi liquid
Hamiltonian for the dipolar fermion gas which has also been
studied by Fregoso et al. [30] before. In the isotropic systems,
the interaction effects in the Fermi liquid theory are captured
by a set of Landau parameters Fl in different partial-wave
channels. In dipolar systems, the anisotropic interaction leads
to the mixing of interactions in different partial-wave channels,
thus we need to generalize the concept of Landau parameters
into the Landau matrices.

A. Landau interaction matrix for the single component
dipolar gases

In order to have a common reference Fermi surface for
different but small values of λ, we choose it as that of the free
fermion gas with the same particle density. Define the variation
of the Fermi distribution at momentum �k,

δn�k = n�k − n0,k, (33)

where n0(k) = 1 − θ (k − k3D
f0

). Assuming a small variation of
the fermion distribution δn�k close to the Fermi surface, the
ground-state energy of the Fermi liquid state changes as

δE =
∑

k

εkδnk + 1

2V

∑
�k,�k′

f (�k, �k′)δn�kδn�k′ , (34)

where �k, �k′ are momenta close to the Fermi surface; f (�k, �k′)
is the interaction function describing the forward scattering
amplitude. εk includes the bare parabolic dispersion ε0

k and
the self-energy correction 	HF (�k) which exhibits the dr2−3z2

anisotropy. At the Hartree-Fock level, f (�k, �k′) is expressed as
f (�k, �k′) = V (�q = 0) − V (�k − �k′) where the first and second
terms are the Hartree and Fock contributions, respectively. Due
to the explicit rotational symmetry breaking, f (�k, �k′) depends
on directions of both �k and �k′, not just the relative angle
between �k and �k′ as in isotropic Fermi liquids. For the 3D
dipolar system, the classic Hartree term vanishes because the
spatial average of the dipolar interaction is zero. However,
due to the nonanalyticity of the V3D(�q) as �q → 0, in the
calculation of the zero sound collective excitation in Sec. VI,
the dependence of �q in the Landau interaction needs to be

included as

1

2V

∑
�k,�k′

f (�k, �k′; �q)n�k,�qn�k,−�q, (35)

where f (�k, �k′; �q) = V (�q) − V (�k − �k′) and n�k,�q = c
†
�k+�qc�k .

1. 3D Landau interactions

In this part, we review the Landau parameter calculation
performed in Ref. [30]. Since quasiparticle excitations are
close to the Fermi surface, we integrate out radial direction
and obtain the angular distribution. In the 3D system,

δn(��k) =
∫

k2dk

(2π )3
δn�k. (36)

We expand δn(��k) in terms of the spherical harmonics as

δn(��k) =
∑
lm

Ylm(��k)δnlm, (37)

where Ylm’s satisfy the normalization convention∫
d�Y ∗

lm(�)Ylm(�) = 1. Due to the anisotropy of the
dipolar interaction, its spherical harmonics decomposition
becomes

f 3D(�k, �k′) =
∑
l,l′;m

4πf 3D
ll′;m√

(2l+1)(2l′ + 1)
Y ∗

lm(�k)Yl′m(��k′), (38)

where fll′;m remains diagonal for m but couples partial-wave
channels with l′ = l, l ± 2. This is a direct result from Wigner-
Eckart theorem because the dipolar interaction possesses the
symmetry of dr2−3z2 . The mixing between l′ and l with l′ =
l ± 1 is forbidden because the dipolar interaction is parity
even.

For the 3D systems, the matrix elements fll′;m are tridiago-
nal and have been calculated by Fregoso et al. in Ref. [30] as

f 3D
ll′;m = d2[a(1)

lm δl,l′ + a
(2)
lm δl,l′−2 + a

(2)
l′mδl′,l−2

]
, (39)

where

a
(1)
lm = 4π (l2 + l − 3m2)(2l + 1)

l(l + 1)(2l + 3)(2l − 1)
,

a
(2)
lm = − 2π

(l + 1)(l + 2)(2l + 3)
(40)

×
√

[(l + 1)2 − m2][(l + 2)2 − m2],

except for the l = l′ = m = 0 channel, where we have
f 3D

00;0(�q) = V3D(�q). Please note that in Eq. (38), we use the
standard normalization convention in Refs. [1,2] which differs
from that in Ref. [30], thus the parameters in Eq. (40) are
modified accordingly. Sign errors in the original expressions
of Ref. [30] are corrected here. It can be proved that for each
l, f 3D

ll′;m’s satisfy the relation that∑
m

f 3D
ll′=l;m = 0. (41)

We define the average effective radial mass as

m̄∗
3D = 1

4π

∫
d�km

∗
3D,‖(�k). (42)
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The perturbative result in Eq. (26) correct to the linear
order of λ shows m̄∗ = m. Following the standard method
to make the Landau matrix dimensionless, we multiply the
single component DOS. F 3D

ll′;m = m̄∗
m

N3D
0 f 3D

ll′;m, where N3D
0 =

(mk3D
f 0 )/(2h̄π2) is the DOS of free Fermi gas.

To gain some intuition, we present some values of the low-
order Landau matrix elements in terms of λ as

F 3D
00;0(��q) = 4πλP2(cos θq), F 3D

02;0 = −πλ;

F 3D
11;0 = 18π

5
λ; F11;±1 = −9π

5
λ;

F 3D
22;0 = 10π

7
λ; F 3D

22;±1 = 5π

7
λ; F 3D

22;±2 = −10π

7
λ.

F 3D
13;0 = −3π

5
λ, F 3D

13;±1 = −
√

6π

5
λ,

F 3D
33;0 = 14π

15
λ, F 3D

33;±1 = 7π

10
λ, F 3D

33;±2 = 0,

F 3D
33;±3 = −7π

6
λ, (43)

2. 2D Landau interactions

Similarly, in the 2D system, we define the angular distri-
bution δn(φ�k) and its decomposition in the basis of azimuthal
harmonics eimφ�k as

δn(φ�k) =
∫

kdk

(2π )2
δn�k =

∑
m

eimφ�k δnm. (44)

The Landau interaction can be represented by a matrix as

f 2D(�k, �k′) =
∑
m,m′

f 2D
mm′e

−imφ�k eim′φ�k′ , (45)

where f 2D
mm′ is nonzero when m′ = m,m ± 2.

We further present our calculation for fmm′ in 2D which
reads

f 2D
mm′(θ0) = k2D

f 0 d2
{
P2(cos θ0)b(1)

m δm,m′

+ sin2 θ0

(
b(2)

m δm,m′−2 + b
(2)
m′ δm′,m−2

)}
, (46)

where

b(1)
m = − 8

(2m − 1)(2m + 1)
,

(47)
b(2)

m = − 2

(2m + 1)(2m + 3)
.

At θ0 = θ̄0, where P2(cos θ̄0) = 0, the dipolar interaction is
purely anisotropic [see Eq. (8)] and the diagonal matrix
elements vanish. At this particular angle, the interaction has
angular momentum m = 2, and the matrix element is nonzero
only when m′ = m ± 2 as a result of the Wigner-Eckart
theorem.

Similarly, for 2D, we also define the average radial effective
mass m̄∗ which equals to m at the first order of λ. After mul-
tiplying the 2D DOS of the single component Fermi gas, the
Landau matrix becomes dimensionless F 2D

mm′ = m̄∗
m

N2D
0 f 2D

mm′

where N2D
0 = m/(2πh̄2) is the DOS of 2D free Fermi gas.

Some low-order Landau matrix elements are presented in

terms of λ at the linear order as

F 2D
00 = 12πP2(cos θ0)λ; F 2D

11 = −4πP2(cos θ0)λ;

F 2D
22 = −4π

5
P2(cos θ0)λ; (48)

F 2D
02 = −π sin2 θ0λ; F 2D

1,−1 = 3π sin2 θ0λ.

Equations (39) and (46) generalize the usual Landau pa-
rameters in isotropic Fermi liquid systems to Landau matrices
in the dipolar systems. In fact, matrix formalism is a natural
generalization as long as anisotropy enters the system. It is
the dipolar nature that constrains our Landau matrices to be
tridiagonal as shown above.

B. Landau interaction matrix for two-component dipolar
Fermi gases

We next consider the Landau interaction matrix a two-
component dipolar Fermi gas in 3D. The intracomponent Lan-
dau interaction contains both Hartree and Fock contributions
as in Eq. (35). The intercomponent Landau interaction contains
only the Hartree contribution. The general Landau interaction
function is decomposed into density channel response fs and
spin-channel response as fa

fαβ,γ δ(�k, �k′) = f s(�k, �k′)δαβδγ δ + f a(�k, �k′)σαβσγ δ, (49)

where fs and fa at the Hartree-Fock level are expressed as

f s(�k, �k′; �q) = V (�q) − 1
2V (�k − �k′);

(50)
f a(�k, �k′; �q) = − 1

2V (�k − �k′).

Because the DOS at the Fermi surface for the two-component
Fermi gases is doubled compared to that of the single-
component gases, the Landau matrix elements in the density
channel F

3D,s
ll′;m and in the spin channel F

3D,a
ll′;m at the Hartree-

Fock level equal to those F 3D
ll′;m defined for the single-

component case

F
3D,s
ll′;m = F

3D,a
ll′;m = F 3D

ll′;m, (51)

if at least one of l and l′ are nonzero. The case of l = l′ = 0 is
special, for 3D we have

F s
00;0 = 2F00;0; Fa

00;0 = 0. (52)

In 2D, a similar conclusion applies at the Hartree-Fock level
as

F
2D,s
mm′ = F

2D,a
mm′ = F 2D

mm′ , (53)

if at least one of m and m′ are nonzero. For m = m′ = 0, we
have

F
2D,s,a
00 = F 2D

00 ± λ
3π2

εk
2D,0
f

P2(cos θ0), (54)

where ε is the short range cutoff defined in Sec. II.

C. Landau interaction matrix for N-component dipolar
Fermi gases

The general N -component case is essentially similar in
which N arises from the hyperfine multiplets. The SU(N )
symmetry is very accurate since the electronic dipolar inter-
action is independent of the internal hyperfine components.
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A Fermi liquid theory for the four-component Fermi gas with
SU(4) and Sp(4) symmetry has been constructed by one of
us in Refs. [32,33], which can be easily generalized to the
N -component case here. For the convenience of presentation,
we first define our convention of the N2 − 1 generators of the
SU(N ) group[

M
(1)
ij

]
lk

= δilδjk + δikδjl (1 � i < j � n),[
M

(2)
ij

]
lk

= −i(δilδjk − δikδjl) (1 � i < j � n), (55)[
M3

j

]
lk

= diag[1, . . . , 1,−(j − 1), 0, . . .]√
j (j − 1)/2

(2 � j � n),

where M1, M2, and M3 are the SU(N ) version of the Pauli
matrices of σ1, σ2, and σ3, respectively. Then the SU(N ) Fermi
liquid Landau interaction can be written as

fαβ,γ δ(�k, �k′) = f s(�k, �k′)δαβδγ δ + f a(�k, �k′)

×
⎧⎨
⎩
∑
ij

(
M1

ij ;αβM1
ij ;γ δ + M2

ij ;αβM2
ij ;γ δ

)

+
∑

i

M3
i;αβM3

i;γ δ

}
, (56)

where fs and fa are expressed as

f s(�k, �k′; �q) = V (�q) − 1

N
V (�k − �k′);

(57)
f a(�k, �k′; �q) = − 1

N
V (�k − �k′).

Again due to the DOS at the Fermi surface is N -times
enhanced, the Landau matrix elements for the N -component
dipolar gas in the density channel F 3D,s

ll′;m and in the spin channel

F
3D,a
ll′;m at the Hartree-Fock level equal to those F 3D

ll′;m defined
for the single component case as

F s
ll′;m = Fa

ll′;m = Fll′;m (58)

when at least one of l and l′ are nonzero. When l = l′ = 0, we
have

F s
00;0 = NF00;0; Fa

00;0 = 0. (59)

In other words, F s
00;0 has a large N -enhancement compared to

all of the other Landau matrix elements.
Again, in 2D, a similar conclusion applies at the Hartree-

Fock level as

F
2D,s
mm′ = F

2D,a
mm′ = F 2D

mm′ , (60)

if at least one of m and m′ are nonzero. For m = m′ = 0, we
have

F
2D,s
00 = F 2D

00 + λ(N − 1)
3π2

εk
2D,0
f

P2(cos θ0),

(61)

F
2D,a
00 = F 2D

00 − λ
3π2

εk
2D,0
f

P2(cos θ0).

V. THERMODYNAMIC QUANTITIES

We next consider the renormalization to the thermodynamic
properties from Landau interaction matrices. For the simplicity

of presentation, we only consider the single-component dipolar
systems here. With slight modifications, the results also apply
to the multicomponent cases.

A. Effective mass and Landau interaction matrix elements

In this subsection, we rederive the effective mass renor-
malization discussed in subsection III E using Landau matrix
formalism. We will see how the Landau parameters in
Eqs. (39) and (46) enter in the effective masses in 3D and
2D, respectively. The formalism below is general for any
anisotropic Fermi liquid system (with azimuthal symmetry
in 3D).

In Galilean invariant systems, the fermion effective mass
renormalization m∗/m = (1 + 1

3F s
1 ) is an important result of

the isotropic Fermi liquid theory. This results in the same
renormalization factor for the DOS at Fermi surface and the
specific heat as CFL/CFG = m∗/m, where CFL and CFG are
specific heat for Fermi liquid and ideal Fermi gas, respectively.

For the anisotropic 3D dipolar systems with the Galilean
invariance, we present a similar result. The relation connecting
effective mass and bare mass still holds for anisotropic
interactions [34,35]

∂ε(�k)

∂ �k =
�k
m

+
∫

d3�k′

(2π )3
f 3D(�k; �k′)

∂n(ε(�k′))

∂ �k′ . (62)

However, for anisotropic systems, a self-consistent solution to
Eq. (62) has to be done numerically. To the linear order of λ,
we perform the analytic calculation by approximating ε(�k′) in
the right-hand side of Eq. (62) with the free fermion energy as
follows. We take the radial derivative of Eq. (62),

1

m∗
3D,‖(θk)

= 1

m
− N3D

0

m

∫
d�k′f 3D(�k − �k′)(k̂ · k̂′)

= 1

m
[1 − F̃11,‖(θk) − F̃13,‖(θk)], (63)

where m∗
3D,‖(θk) is the radial effective mass given in Eq. (26).

F̃11,‖(θk) and F̃13,‖(θk) in Eq. (63) are the angular-dependent
Landau parameters defined as follows

F̃11,‖(θk) = 4π

3

∑
m

F 3D
11;m

3
|Ylm(θk, 0)|2

= 18πλ

5
P2(cos θk), (64)

F̃13,‖(θk) = 4π

3

∑
m=0,±1

F 3D
13;m√
21

Y ∗
3m(θk, 0)Y1m(θk, 0)

=
√

21π

5
λP2(cos θk). (65)

Equation (63) is a generalization to that of the isotropic case
of m∗/m = 1 + F s

1
3 which can be rewritten as

1

m∗ = 1

m
− N3D

0

m

f s
1

3
. (66)

Thus to the linear order of λ,

1

m∗
3D,‖(θk)

= 1

m
{1 − πλP2(cos θk)}, (67)
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which agrees with Eq. (26). At the linear order of λ, as an av-
eraged effect, there should be no specific heat renormalization
due to the dipolar interaction.

Parallel analysis can be carried out for the 3D transverse
effective mass as

1

m∗
3D,⊥(θk)

= 1

m
[F̃11,⊥(θk) + F̃13,⊥(θk)], (68)

where

F̃11,⊥(θk) = 1

6

(
F 3D

11;0 − F 3D
11;1 + F 3D

11;−1

2

)
sin 2θk,

F̃13,⊥(θk) = −4π

3

√
2

21

[
F 3D

13;0Y11(θk, 0)Y30(θk, 0)

+ Y10(θk, 0)

2

(
Y3,−1(θk, 0)F 3D

13;−1

−Y31(θk, 0)F 3D
13;1

)]
. (69)

For the 2D effective mass, the Landau parameters renormal-
izations are summarized below:

1

m∗
2D,‖(φk, θ0)

= 1

m

[
1 − F 2D

1,1 − (
F 2D

1,−1 + F 2D
3,1

)
cos 2φk

]
,

(70)
1

m∗
2D,⊥(φk, θ0)

= 1

m

(
F 2D

3,1 − F 2D
1,−1

)
sin 2φk,

They all agree with the previous results in subsection III E
based on the Hartree-Fock calculation, just as expected.

B. Thermodynamic susceptibilities

We study the variation of the ground-state energy of the
dipolar Fermi gas respect to Fermi surface distortion. We
define the variation of the angular distribution is defined as

δn(�k) =
∫

dk
k2

(2π )3
δn(k,�k), (71)

where only the radial integral of k is performed. The total
density variation can be expressed as δn = ∫

d�kδn(�k). The
spherical harmonic expansion of δn(�k) is defined as

δn(�k) =
∑
lm

δnlmYlm(�k). (72)

The corresponding ground-state energy is represented as

δE

V
= δEkin + δEint − 4πhex

lmδnlm, (73)

where the first two terms are the variation of kinetic and
interaction energies, respectively, and the last term is the
coupling to the external fields with partial-wave channels of
lm. Expanding the Hartree-Fock single particle energy around
k3D
f0

as

εHF
3D (k,�k)

= ε0
(
k3D
f 0

) + 	HF
3D

(
k3D
f 0 ,�k

) + h̄k3D
f0

m∗
3D,‖(�k)

(
k − k3D

f 0

)
.

(74)

The variation of the kinetic energy is represented as

δEkin

V
=

∫
d�k

{
2π

[
m∗

3D,‖(�k)

m
N3D

0

]−1

[δn(�k)]2

+
HF∑
3D

(
k3D
f0

,�k

)
δn(�k)

}
, (75)

Equation (75) can be expressed as

δEkin

V
= 2π

(
N3D

0
m̄∗

m

)−1 ∑
ll′m

δn∗
l′mM3D

ll′;mδnlm − 4πh0
20δn20,

(76)

where h0
20 = 2

3

√
π
5 λE3D

kf 0
and m̄∗ is defined in Eq. (42). The

perturbative results at the linear order of λ give rise to

M3D
ll′;m = m

(1)
lmδll′ + m

(2)
lmδl,l′−2 + m

(2)
lmδl,l′−2, (77)

where

m
(1)
lm = 1 + π

(l2 + 2l − 3m2)

(2l + 3)(2l − 1)
λ

= 1 + l(l + 1)

4(2l + 1)
a

(1)
lmλ, (78)

m
(2)
lm = − 3π

2(2l + 3)

√
[(l + 1)2 − m2][(l + 2)2 − m2]

(2l + 1)(2l + 5)
λ

= 3(l + 1)(l + 2)

4
√

(2l + 1)(2l + 5)
a

(2)
lmλ. (79)

The variation of the interaction energy reads

δEint

V
= 1

2

∑
lm

f 3D
ll′,mδn∗

lmδnlm. (80)

With the total field hlm = hex
lm + h0

20, the ground-state
energy is represented as

δE

V
= δEkin + δEint − 4πhlmδnlm

= 4π

{
1

2χ0

∑
ll′;m

δn∗
lmδnl′mK3D

ll′;m − hlmδnlm

}
, (81)

where χ0 = m̄∗
m

N3D
0 . The matrix kernel Kll′ reads

K3D
ll′;m = M3D

ll′;m + F 3D
ll′;m√

(2l + 1)(2l′ + 1)
. (82)

The the expectation value of the δnlm in the field of hlm can be
straightforwardly calculated as

δnlm = χ0
(
K3D

ll′;m
)−1

hl′m. (83)

Thus χ0(K3D
ll′;m)−1 is the renormalized susceptibility matrix for

a 3D dipolar Fermi system.
A parallel study can be applied to 2D, where we replace

the quasiparticle density fluctuation δnlm by δnm as defined in
Eq. (44). The corresponding result is similar to the 3D case,
except we replace the M3D

ll′m matrix by

K2D
mm′ = M2D

mm′ + F 2D
mm′ , (84)
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where

M2D
mm′ = [1 + 4πλP2(cos θ0)]δmm′

− 7π

5
λ sin2 θ0(δm,m′−2 + δm′,m−2). (85)

The renormalized susceptibility in 2D has the same form
as in Eq. (83).

C. Thermodynamic stability

In isotropic Fermi liquids, Fermi surface becomes unstable
if anyone of the Landau interaction parameters Fl is negatively
large enough, i.e., Fl < −(2l + 1). This can be understood
by treating Fermi surface as elastic membrane. The kinetic
energy always contributes to positive surface tension, while
interaction contributions can be either positive or negative
depending of the sign of Fl in each channel. If the negative
contribution from interaction exceeds the kinetic energy cost,
Fermi surface distortion occurs.

In the 3D anisotropic dipolar Fermi gas, we diagonalize the
interaction matrix K3D

ll′;m as

K3D
ll′;m = T −1

m diag
{
µm

0 , µm
1 , µm

2 , . . .
}
Tm. (86)

The thermodynamic stability conditions can be similarly stated
as each of µm

i is positive, i.e.,

µm
i > 0 (87)

for arbitrary m and i. It is not difficult to observe that in 2D, we
simply need to replace the matrix by K2D

mm′ defined in Eq. (84).
In the isotropic systems, K3D

ll′;m becomes diagonal, and this
stability criterion reduces back to that of the Pomeranchuk.

For our anisotropic dipolar system, we diagonalize the
K-matrix numerically and determine the instability conditions.
For example, we compare two strongest instabilities in the
sectors of m = 0 and that of m = ±2 with even l. The former
mainly lies in the s-channel and the latter mainly lies in the
dx2−y2±2ixy-channel, both of which hybridize with other even
partial-wave channels with the same values of m = 0,±2,
respectively. Their eigenvalues are denoted as µs and µd±2 ,
respectively. The F 3D

00;0(�q) explicitly depends on the orientation
of �q. We put �q along the equator which results in the minimal
eigenvalues of K3D

ll;m and plot µs and µd±2 in Fig. 7 The
s-channel eigenvalue becomes zero at λs = 0.135, and the

m=0

m=± 2

0.1 0.2 0.3 0.4

0.2

0.4

0.6

0.8

1.0
lowest
mµ

λ

FIG. 7. (Color online) A plot of the lowest eigenvalues µm
i of

K3D
ll′;m versus λ for m = 0, ±2. The instabilities of the s channel (solid

blue) and d±2 channel (dashed red) are revealed by the vanishing of
their eigenvalues when λ passes 0.135 and 0.35, respectively.

dx2−y2±2ixy-channel eigenvalue becomes zero at λd±2 = 0.35.
The s-channel instability corresponds to the Fermi surface
collapse perpendicular to the dipole orientation, and the
d-channel one is the biaxial nematic instability of the Fermi
surface as studied in Ref. [30]. (If we truncate the matrix
K3D

ll′;0 at l = 4, λd±2 will become 0.95, which is essentially
the finding in Ref. [30]. Therefore, the d-channel instability
actually occurs earlier than what they expect in Ref. [30].) The
s-channel instability occurs before the d-channel instability
with the purely dipolar interaction. Nevertheless, the s-channel
instability can be cured by introducing a positive nondipolar
short-range s-wave scattering potential V00;0, which adds to the
Landau parameter of F 3D

00;0 without affecting other channels.
Compared to the compressibility calculation by the vari-

ational method in Ref. [22], in which it shows a stability
condition equivalent to λ ≈ 0.42. This is larger than our crite-
rion λs = 0.135 mentioned above. However, the calculation in
Ref. [22] did not take into account the Hartree contribution to
the ground-state energy. Although it is zero for rigorously
homogeneous systems, it is actually singular due to the
singularity of the Fourier transform of the 3D dipolar inter-
action V3D(�q) as �q → 0. Assuming an infinitesimal density
wave vector �q in the ground state, the Hartree self-energy
contribution appears in F00;0(�q)3D and becomes most negative
at θq = π

2 . In other words, Ref. [22] sets F 3D
00;0(�q) = 0 which

overestimates the stability of the 3D dipolar gas. Our result is
supported by the numerical calculation given in Ref. [36], in
which the Fermi surface instability manifests as the onset of an
unstable collective mode at λs ∼ 0.14. For the multicomponent
case, the critical value should be further suppressed by a factor
of 1/N because DOS is N times large, where N is the number
of components.

Similar static instability also occurs in the 2D dipolar
system. Let us consider the specific case θ0 = θ̄0, which
corresponds to the most anisotropic dipolar gas in 2D
[Eq. (8)]. We numerically diagonalize the K2D

mm′ matrix in
Eq. (83). The result shows that an instability would occur
at λ ∼ 0.15.

VI. COLLECTIVE EXCITATIONS IN THE DENSITY
AND SPIN CHANNELS IN 3D

In this section, we study the density-density response of
the dipolar Fermi liquid and the corresponding collective
excitations. The spin channel collective modes will also be
studied in multicomponent systems. Due to the anisotropic
nature of the dipolar interaction, the response function exhibits
anisotropic features. It shows the collective excitation of the
zero sound which only propagates within a certain range of
directions with anisotropic dispersion relations but become
damped in other directions.

In the following, we will first present the generalized
dynamical response of the dipolar system for 2 and 3D in
subsection VI A, which is followed by the 3D collective
excitations in subsection VI B. In order to obtain a clearer
picture about the contribution of each mode toward the zero
sound, we first consider the simplest s-wave channel in 3D
only, where we will see how the zero sound propagation
is restricted in certain propagation direction relative to the
external electric field orientation. We then proceed to a more
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quantitative calculation by considering the correction from the
p channel. After that, we discuss the possible spin collective
spin mode in subsection VI C.

A. Generalized dynamical response functions

For the purpose to study collective modes, we define
δν �p as the variation of Fermi distribution respect to the
equilibrium Fermi surface with the dipolar interaction strength
λ. Compared to the definition δn �p in Eq. (33) and δn(�k)
in Eq. (71) which refer to the noninteracting Fermi surface,
their spheric harmonic components are the same except δν20 =
δn20 − δn0

20 in the channel of (l, m) = (2, 0). n0
20 refers to the

equilibrium Fermi surface nematic distortion.
To start with, we consider the standard Boltzmann transport

equation for the Fermi liquid [2,37]

δν �p + �v3D
�p · �q

ω − �v3D
�p · �q

∂np

∂εHF,p

∫
d3p′

(2π )3
f 3D( �p, �p′)δν �p′ = 0.

(88)

where �v3D
�p is the Fermi velocity in Eq. (25), εHF,p is the

Hartree-Fock single-particle spectrum and f 3D( �p, �p′) being
the 3D Landau interaction in Eq. (35). This equation is
equivalent to

δν(�p) − N3D(�p)�v �p · �q
ω − �v �p · �q

∫
d�p′

4π
f �p �p′δ�ν(�p′) = 0. (89)

After the spherical harmonic decomposition, we arrive at
the generalized transport equation:∑

l′m′

{
δll′δmm′ +

∑
l′′

χ3D
ll′′;mm′ (ω, �q)F 3D

l′′l′;m′

}
δνl′m′ = 0, (90)

where

χ3D
ll′;mm′ (ω, �q) = − 1√

(2l + 1)(2l′ + 1)

∫
d�p

N3D(� �p)

N3D
0

× Y ∗
lm(� �p)

�v3D
p · �q

ω − �v3D
p · �q Yl′m′ (� �p), (91)

where F 3D
ll′;m is the Landau parameters defined in Eq. (39). Due

to the dipolar anisotropy and the propagation direction of �q,
δνlm in different channels are coupled. The dispersion of the
collective modes can be obtained by equating the determinant
of the above matrix equation to zero. The formalism above is
not restricted to dipolar system and can by applied to any 3D
Fermi liquid with azimuthal but not rotational symmetry.

Generally speaking, in order to calculate the zero sound
propagation of these anisotropic systems, one has to deal with
the above infinite matrix equation. However, in this 3D dipolar
system, it turns out that the physics of zero sound is well
captured by considering only the s and longitudinal p channels.
In order to avoid complication, in the following, we start by
examining the s channel only, where the anisotropic feature of
zero sound already appears in terms of a limited propagation
direction and an anisotropic sound velocity. Afterward, we
consider the effect of the longitudinal p-wave mode, where
a quantitative zero sound velocity is obtained as a function
of propagation angle and this is in good agreement with a
numerical study performed in Ref. [36].

B. The 3D density channel collective mode: zero sound

1. The s-wave channel

Let us warm up by only keeping the s-wave channel
component in Eq. (91). To the lowest order of λ, we only keep
the anisotropic Landau parameter of F00;0(�q) which explicitly
depends on the direction of �q and completely neglect the
anisotropic DOS and Fermi velocity. Thus the χ3D

00;00(ω, �q)
is simply the standard textbook result which reads at small
values of s = ω/v3D

f 0 q � 1 as

χ3D
00;00(�q, ω) = N3D

0

{
1 − s

2
ln

∣∣∣∣1 + s

1 − s

∣∣∣∣ + i
π

2
s�(s < 1)

}
.

(92)

The collective excitation is determined by the pole of it:

1 + F 3D
00;0(��q)χ3D

00;00 = 0, (93)

s > 1 is needed to ensure the collective mode underdamped.
Equation (93) gives rise to an anisotropic zero sound veloc-

ities which explicitly depends on the propagation direction of
θq as

ω
(0)
3D(q, θq) = c

(0)
3D(θq)q, (94)

where

c
(0)
3D(θq)

v3D
f 0

=
⎧⎨
⎩

1 + 2e
− 1

4πλP2(cos θq ) ; 8πλP2(cos θq) � 1√
8π
3 λP2(cos θq); 8πλP2(cos θq) � 1

(95)

for θq < θ̄0 or θq > π − θ̄0, where θ̄0 is defined in Eq. (2). The
zero sound is well defined around the north and south poles
of the Fermi surface, where the interaction is most repulsive.
On the other hand, for θ̄0 < θq < π − θ̄0, F00;0(�q) becomes
negative, the solution shows s < 1 which means the dispersion
goes into the particle-hone continuum and ceases to be a sharp
collective mode.

In order to refine the above calculation, one has to take into
account the anisotropic Hartree-Fock single particle spectra
and thus the anisotropic Fermi surface. In this sense, the full
χ3D

00;00(ω, �q) function is given by

χ3D
00;00(ω, �q) = −

∫
d�p

4πN3D
0

N3D(�p)[�q · ∇pεHF ( �p)]

ω − �q · ∇pεHF ( �p) + iη

= 1 −
∫

d�p

4π

N3D(�p)

N3D
0

s

s − f (�p,�q) + iη
,

(96)

where N3D(�p) = N0[1 + 5π
3 P2(cos θp)] defined in Eq. (30)

and εHF (�k) is the Hartree-Fock single particle spectra. The
angular form factor f (�p,�q) is defined as

f (�p,�q) = �q · ∇pεHF ( �p)

v3D
f 0 q

=
[
1 − π

3
λP2(cos θp)

]
× [sin θq sin θp cos φp + cos θq cos θp]

+ λπ sin 2θp(sin θq cos θp cos φp

− cos θq sin θp), (97)

where the propagation direction �q is chosen in the xz plane
with the polar angle θq . Equation (93) is solved numerically
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FIG. 8. Dispersions of the zero sound s(θq ) = ω(θq )/v3D
f 0 q for the

pure dipolar interaction including the coupling between the s-wave
and the longitudinal p-wave modes for λ = 1

3π2 , 1
π2 . The s-wave

approximation is included for comparison which is valid in the limit of
a large component number N with the replacement of λ → Nλ. When
the sound speed hits the particle hole continuum, the sound becomes
damped. These results are in good agreement with a numerical study
in Ref. [36]. (The parameters are chosen for a better comparison with
the Ref. [36], where their parameters D = 3π 2λ are chosen to be 1
and 3.)

and plotted in Fig. 8 along with the edge of particle-hole
continuum and the further refined result including the p-
wave channel correction. (We postpone the discussion of it
until we include the p-channel correction in the following
subsection.)

So far, we neglect the coupling between the s-wave and
other high partial wave channel Fermi surface excitations. This
approximation is valid if the Landau matrix elements in other
channels are small compared to that in the s-wave channel.
This is justified in the multicomponent case with a large N

in which F00;0 has a large N -enhancement compared to all of
other matrix elements. Thus the result of Eq. (95) is correct in
the large N limit with the replacement of λ by Nλ. However,
for the single component dipolar interaction, i.e., N = 1, the
zero sound dispersion is modified from the coupling to the
longitudinal p-wave channel modes as explained below.

2. The correction from the coupling to the longitudinal
p-wave channel

The coupling between the s-wave and other high partial
wave channel Fermi surface excitations, say, the p-wave
longitudinal excitation, can significantly change the zero
sound dispersion. This effect is particularly important if the
Landau interaction in the F1 channel is not small compared
to F0. For example, the zero sound velocity is measured as
s = 3.6 ± 0.01 in 3He at 0.28 atm, while F s

0 = 10.8 only gives
s = 2. The inclusion of the coupling to the p-wave channel
F s

1 = 6.3 gives rise to the accurate value of s = 3.6 [37].
Below we consider this coupling for the single component
dipolar Fermi gas.

Now, we consider the coupling between the s-wave and the
longitudinal p-wave channel modes in our 3D dipolar system.
The formalism developed in subsection VI A have 3 p-wave
modes; l = 1 and m = 0,±1, which mixes the longitudinal
and transverse modes. It turns out that it is better to reformulate
the generalized response function by putting the spherical
harmonic expansion Ylm relative to the �q direction. Due to
the explicit anisotropy, the longitudinal and transverse p-wave
components should be mixed. Nevertheless, the transverse
p-wave channel mode is overdamped for small positive value
of Landau parameters, thus they do not affect the zero sound
much. We only keep the mixing between s-wave and the
longitudinal p-wave modes.

The corresponding transport equation becomes a 2 × 2
matrix equation and the collective mode can be solved from:

Det[1 + N (�q, ω)] = 0, (98)

where the matrix kernel of N (�q, ω) reads

N (�q, ω) =
⎛
⎝χ3D

00;00(�q, ω)F 3D
00;0(�q) χ̃3D

10;00(�q, ω) F̃ 3D
110(�q)

3

χ̃3D
10;00(�q, ω)F 3D

00;0(�q) χ̃3D
11;00(�q, ω)

F̃ 3D
11;0(�q)

3

⎞
⎠ . (99)

F̃ 3D
11;0(�q) is the longitudinal p-wave Landau parameter defined

as

F̃ 3D
11;0(�q) = N3D

0

∫
d�pd�′

pf 3D( �pF , �p′
f )(q̂ . p̂)2

= cos2 θqF
3D
11;m=0 + sin2 θqF

3D
11;m=∓1

= F 3D
11,m=0P2(cos θq) = 18π

5
P2(cos θq). (100)

The relevant response functions are correspondingly modified
as:

χ̃3D
10;00(�q, ω) = −

√
3
∫

d�p

4π

N3D(�p)

N3D
0

(q̂ · p̂)f (�p,�q)

s − f (�p,�q)

χ̃3D
11;00(�q, ω) = −3

∫
d�p

4π

N3D(�p)

N3D
0

(q̂ · p̂)2f (�p,�q)

s − f (�p,�q)

(101)

where �q lies in the xz plane with the polar angle θq , and
q̂ · k̂ = sin θq sin θk cos φk + cos θq cos θk .

Before we solve Eq. (98), we can get a qualitative
picture by approximating the Fermi surface and density of
state to be spherical first. Under this approximation, in the
long-wavelength limit �q → 0, Eq. (98) can be analytically
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simplified to:

−1

F 3D
00;0(�q) + s2F̃ 3D

11;0(�q)

1+ F̃3D
11;0(�q)

3

= 1 − s

2
ln

∣∣∣∣1 + s

1 − s

∣∣∣∣ , (102)

which resembles the usual zero sound condition by considering
only F0 and F1 parameters in an ordinary isotropic Fermi
liquid [37]. The difference is that the Landau parameters now
have an explicit �q dependence. Because F00;0(�q) and F11;0(�q)
have the same angular dependence, including the longitudinal
p-wave channel mode does not change the propagation angular
regime but enhances the zero sound velocity.

Now, we solve Eq. (98) numerically by taking into account
the anisotropic fermion spectra and Fermi surface. The zero
sound propagation as a function of θq is plotted in Fig. 8. The
calculation that involves only the s channel is also included
for comparison. There are two features: a restricted zero sound
propagation angle and an anisotropic propagation velocity, s.
The first feature is due to the fact that the sound enters the
particle-hole continuum for large θq and is thus damped. It
is clear that, in terms of the critical angle where zero sound
terminate, the s-wave approximation is qualitatively justified.
However, when we consider the zero sound speed as a function
of θq , the longitudinal p-wave mode modifies it considerably.
These results are in good agreement with a fully numerical
calculation based on the same Boltzmann transport theory [36].
This indicates that the physics of collective excitation of the
3D dipolar system is well captured by considering only the s

and longitudinal p channels.
The zero sound velocity is affected by both the value

of Landau parameters and the Fermi velocity as shown in
Eq. (95). For the relatively large value of λ = 1

π2 , the Landau
parameters play a more important role. Thus the sound velocity
is largest for �q along the north and south poles where F 3D

00;0(�q)
and F 3D

11;0(�q) are largest. As the propagation deviates from
them, the sound velocity first becomes softened. As the
velocity hits the upper edge of the particle-hole continuum, the
zero sound ceases to propagate. At a small value of λ = 1

3π2 ,

FIG. 9. The ratio between the longitudinal p wave and the s

components in the eigenvectors of the 3D zero sound, i.e., R =
δν10;0/δν00;0, for λ = 1

3π2 and 1
π2 .

FIG. 10. 3D collective spin mode in the longitudinal p channel
for λ = 1

π2 . The sound speed continuously decreases as θq increases
and terminates at certain critical angle.

Fig. 8 shows the upturn of zero sound velocity before it hits
the particle-hole continuum, which is largely determined by
the anisotropic Fermi velocity. We also plot the eigenvector
for the zero sound mode for the solution of Eq. (98) in
Fig. 9. The s- and the longitudinal p-wave components are
comparable to each other.

C. 3D collective spin mode in the longitudinal p-wave channel

In addition to the zero sound mode, collective excitations
may also exist in the spin channel. Because F

3D,a
00;0 = 0

[see the definition in Eq. (50)], there is no well-defined
s-wave channel spin excitations. Nevertheless, the longitudinal
p-wave channel mode becomes a propagating mode. The
formalism to determine its dispersion is very similar to
Eq. (90) by replacing F s

ll′;m to Fa
ll′;m. Only keeping the

longitudinal p-wave channel, we have

1 + F̃
3D,a
11;0 (�q)χ̃3D

11;00(�q, ω) = 0. (103)

F̃
3D,a
11;0 (�q) = Fa

11;0P2(cos θq) which is the same as F̃
3D,s
11;0 (�q)

at the Hartree-Fock level, and χ̃3D
11;00 is also the same as in

Eq. (101). The dispersion for this p-wave longitudinal spin
collective mode is plotted in Fig. 10 for λ = 1

π2 . Again, we have
an anisotropic sound velocity subject to a finite propagation
regime, where the excitation is damped when its dispersion
enters the particle-hole continuum.

In N -component dipolar gases with the SU(N ) symmetry,
there are N2 − 1 branches of longitudinal p-wave spin model.
They are essentially the fluctuating longitudinal spin current
mode. The is a novel collective mode which has not been
observed in condensed matter systems before.

VII. CONCLUSIONS AND OUTLOOK

In summary, we studied the anisotropic Fermi liquid states
of the cold atomic dipolar Fermi gases which possesses many
exotic features. The feature of the dz2−3r2 symmetry of the 3D
dipolar interaction and the dx2−y2 symmetry of the 2D dipolar
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interaction nicely render most analytic calculations possible.
The same anisotropy exhibits at the leading order of perturba-
tion theory in many ways such as the Fermi surface anisotropy,
Fermi velocity, and effective masses. The Landau parameters
in isotropic Fermi liquid states are generalized to the Landau
interaction matrix which has the tridiagonal structure as a
result of the Wigner-Eckart theory. Physical susceptibilities
receive renormalization from the Landau interaction matrix.
With large dipolar interactions, dipolar Fermi surfaces become
collapse along the directions perpendicular to the dipolar ori-
entation. We also studied the collective mode in the density and
spin channels. The zero sound exhibits anisotropic dispersion
relation with largest propagation velocity along polar direction.
The p-wave longitudinal spin channel mode is a well-defined
propagating mode for any propagation directions.

So far, we have considered only the spatial homogeneous
systems. However, the realistic experimental systems have
confining traps, which should bring corrections to properties
discussed above as studied in Refs. [22,23,38]. In the case of
soft confining trap potentials, we can treat the inhomogeneity
by using the local density approximation. Around each
position �r , we can define a local Fermi energy and the local
Fermi surface which are determined by the local molecule
density. The molecule density is the highest at the center
of the trap, thus both the absolute interaction energy scale
and the dimensionless interaction strength are strongest at the
center. Thus the thermodynamic instabilities are strongest at
the center of the trap and become weaker moving toward the
edge. For the collective excitation of zero sound, the local
sound velocity is largest in the center. As a result, the local

propagation wave vector increases from the center to the edge
to maintain the excitation eigenfrequency the same in the entire
trap. The collective modes have more severe damping in the
edge area because the molecule density is low and thus is less
quantum degenerate than the center. A detailed study of all the
above effects will be presented in a later publication.

Other open questions to be studied in the future include
the issues of higher-order (i.e., beyond Hartree-Fock theory)
interaction corrections and finite temperature corrections. The
theory developed in this work is strictly valid for weak interac-
tion and low temperatures. For example, an important aspect of
the dipolar Fermi gas is the finite lifetime and the Fermi liquid
wave-function renormalization factor Z of quasiparticles. Both
of them naturally also develop anisotropies due to the dipolar
interaction. However, they begin to appear at the level of
the second-order perturbation theory beyond the Hartree-Fock
level, thus their anisotropies should be of even higher-order
spheric harmonics than the d wave. Another issue is the
screening effect in the dipolar Fermi gases which may change
its long range negative in 3D. These effects will be outlined in
another article [39].
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