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Theory of time-resolved inelastic x-ray diffraction
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Starting from a general theory of time-resolved x-ray scattering, we derive a convenient expression for the
diffraction signal based on a careful analysis of the relevant inelastic scattering processes. We demonstrate
that the resulting inelastic limit applies to a wider variety of experimental conditions than similar, previously
derived formulas, and it directly allows the application of selection rules when interpreting diffraction signals.
Furthermore, we present a simple extension to systems simultaneously illuminated by x rays and a laser beam.
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I. INTRODUCTION

Since its discovery, x-ray diffraction has become a major
tool for studying the structure of matter. Its key virtue is that,
in a time-independent framework [1], the differential cross
section for elastic scattering is just the Fourier transform of
the electronic density �e,

dσ

d�
=

∣∣∣∣
∫

d3r �e(r) eiqr

∣∣∣∣
2

, (1)

where we neglected the weak scattering from the nuclei and
expressed the cross section in units of the scattering of a
free electron. This gives almost direct access to real-space
information of the electronic structure. In contrast to optical
photons, x rays interact with all electrons, which makes the
cross section insensitive to minor variations of valence orbitals.
One can therefore often go further and use the independent
atom model (IAM), in which one models �e by the density of
the isolated atoms. Within this approximation, the diffraction
pattern becomes a function of the atomic positions in the
probed system.

It is therefore not surprising that currently, much work is
spent on the development of intense, pulsed, femtosecond
x-ray sources, namely, free electron lasers (FELs). After
exciting a system with an optical pump pulse, the subsequent
dynamics can be followed in time by a femtosecond x-ray
pulse with variable time delay. If the time-resolved scattering
can be described by a formula similar to Eq. (1), this allows
us to directly follow atomic rearrangements without the need
for complex electronic structure calculations that link the
experimental signal to the molecular dynamics. However,
similar to modern ultrafast optical pump-probe experiments,
we require an extension of the conventional static theory.

The previous work on the theoretical foundations of time-
resolved x-ray diffraction (TRXD) can be roughly divided into
two categories. In one approach, the conventional expression
(1) is used as the starting point [2–8]. Essentially, the electronic
density gets an additional time variable, and the result is
convoluted with the time-dependent intensity of the x-ray
beam to obtain the signal as a function of the delay time.
However, Eq. (1) is typically derived from Fermi’s Golden
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Rule [1,6]. In the derivation of the Golden Rule, the initial state
is assumed to be an eigenstate of the unperturbed Hamiltonian,
that is, to have no intrinsic time dependence. An alternative
derivation of (1) uses classical electromagnetic theory for
the treatment of the x-ray field [4]. Here, it is assumed
that the electric current in the target system is exclusively
induced by the incoming x-ray field, which again requires a
negligible time evolution. Furthermore, the (classical) x-ray
field and the (quantum) target system are coupled via the
dielectric constant. This quantity, however, is obtained from
time-independent perturbation theory and can therefore be
assigned only to time-independent states, not to wave packets.
Strictly speaking, formulas obtained by these derivations are
thus not valid for describing ultrafast, coherent wave-packet
motion. However, they have been applied successfully to
subpicosecond TRXD experiments [8], which suggests that,
though the derivation is different, the formulas for TRXD
should have a form similar to that of the time-independent
theory.

In another approach, one evaluates the interaction between
the studied nonstationary quantum system and the x-ray photon
field, usually within first-order perturbation theory. This has
been done with a wave-packet [9,10] or density-operator
formalism [11–13].

In general, the interaction between the x rays and
the target system can be either elastic, leaving the state of
the target systems unchanged, or inelastic, thereby changing
the population of the individual energy eigenstates. With the
exception of [12,13], previous work focused on a hybrid
“electronically elastic” scattering. It was assumed that the
scattering process is inelastic with respect to nuclear modes but
elastic with respect to electronic states, or that contributions to
electronically inelastic diffraction can be removed by special
experimental setups. It is interesting to note that the same
approximation of electronically elastic scattering has also been
used in the closely related field of time-resolved electron
diffraction (e.g., [14]). However, this approach is different
from the earliest treatments on x-ray diffraction [15], which
explicitly considered electronically inelastic components. In
this paper, we want to review the theory for TRXD without
such a hybrid scheme. We obtain a less restrictive, more
general formulation, which also permits the use of symmetry
arguments in the evaluation of the diffraction signal.

In Sec. II, we outline and discuss the general system-
independent formulation. We then focus on molecular systems
in Sec. III, and connect our results to those derived previously.
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Section IV summarizes our findings and provides an outlook
on further research. In the appendices, we discuss an extension
of the theory to systems with time-dependent Hamiltoni-
ans,and discuss in more detail some of the approximations
used in the derivations.

II. GENERAL THEORY

The key quantity of interest in x-ray diffraction is the
differential signal strength dS/d�, which we define as the
number of scattered photons arriving in a certain solid angle.
If we allow these photons to have frequencies ωs that are
different from the central frequency ω0 of the incoming beam,
we can write

dS

d�
=

∫ ω2

ω1

dωs

d2S

d�dωs

, (2)

to express it in terms of the double-differential signal strength.
This quantity is then defined as

d2S

d�dωs

= ρ(ωs) lim
t→∞〈�0|Û †(t, t0)n̂ks ,εs

Û (t, t0)|�0〉. (3)

The initial state �0 is a direct product consisting of a target in
a prepared nonstationary state � and a photon state ψuk0 that
describes the x-ray pulse on its way to the target. They interact,
and after essentially infinite time, the scattered photons hit a
detector that is modeled by the photon number operator n̂ks ,εs

,
and counts the number of photons with wave vector ks and
optionally polarization εs . Multiplication by the density of
photon states ρ yields the number of scattered photons per
solid angle. If the propagation is carried out with first-order
perturbation theory for the interaction between the target and
the x rays, we obtain (see [10] for the details)

d2S

d�dωs

=
(

dσ

d�

)
Th

ωs

ω0
s(q, ω0 − ωs), (4)

where

s(q, ω) = 1

2π

∫
dt I (t)

∫
dδ C(δ)eiωδ

×
〈
�

(
t + δ

2

) ∣∣∣∣L̂†Û

(
t + δ

2
, t − δ

2

)
L̂

∣∣∣∣�
(

t − δ

2

)〉
.

(5)

Here, (dσ/d�)Th is the classical Thomson cross section of a
free electron,

I (t) = 2ε0c

h̄ω0

〈
ψuk0

∣∣Ê(−)Ê(+)
∣∣ψuk0

〉
(6)

is the photon number intensity of the incoming beam,

L̂ =
#electrons∑

i=1

eiqr̂i (7)

is the scattering operator with q = k0 − ks being the scattering
vector, and

C(δ) =
∫

dω′F (ω0 + ω′)eiω′δ (8)

defines the coherence function of the x-ray beam in terms of the
normalized power spectrum F , which is centered around ω0.

The typical decay time Tc of the coherence function is inversely
proportional to the width �ω0 of F . Note that the convention
for some of the symbols differs from [10] for convenience, and
to be more in line with the classic literature.

As discussed in [10], the result is also valid for the important
practical case where the x-ray beam is not a coherent photon
state but described by incoherent ensembles. This result was
derived using two important assumptions. We assumed that
the beam is fully characterized by its intensity and power
spectrum. This only holds for special cases, such as FELs in the
linear regime [16] or ensembles of identical Gaussian pulses.
Furthermore, we have neglected wave-vector dispersion of
the x-ray beam. In the classical limit, this translates to the
substitution of the electric field

E(r, t) = E0h(r, t)ei(k0r−ω0t) ≈ E0h(R, t)ei(k0r−ω0t), (9)

that is, the envelope function h is only evaluated at the position
R of the target system. The incoming beam is thus assumed
to have a fixed wave vector k0, but varying frequencies.
The idea is that the wave vector of the incoming photon
only enters through the scattering vector q, whose variations
can be neglected. We discuss this approximation in the next
subsection when we also vary the length of the wave vector of
the scattered photon, ks .

In the following, we will discuss the limit of inelastic
diffraction in more detail, using an analysis similar to the work
of Cao and Wilson [9]. For more convenient manipulation, we
start by transforming (5) to an energy eigenstate representation.
If the Hamiltonian Ĥ of the probed system is time independent
(for time-dependent systems, see Appendix A), the wave
function can be expanded as

�(t) =
∑

i

ciϕie
−iEi t/h̄, Ĥϕi = Eiϕi. (10)

Inserting this and performing standard manipulations yields

s(q, ω0 − ωs) =
∫

dt I (t)
∑
ijk

c∗
i cj e−i(Ej −Ei )t/h̄L∗

kiLkj

×F

(
ωs + 1

h̄

(
Ek − Ei + Ej

2

) )
, (11)

with Lik = 〈ϕi |L̂|ϕk〉.

A. Inelastic limit

Let us first consider the limit of elastic diffraction Lij =
δijLii . Equation (11) simplifies to

s(q, ω0 − ωs) =
∑

i

|ci |2|Lii |2F (ωs)
∫

dtI (t), (12)

and the diffraction image becomes independent of time. The
reason is that the interference terms i �= j in (11) hold the
information about the time evolution of the quantum system,
but they do no contribute here. We conclude thus that we are not
interested in purely elastic scattering, but we have to include
inelastic terms.
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To do so, we insert (11) and (4) into (2) and change the
order of integration and summation, which yields

dS

d�
=

(
dσ

d�

)
Th

∫
dtI (t)

∑
ijk

c∗
i cj e

−i(Ej −Ei )t/h̄

×
∫ ω2

ω1

dωs L∗
kiLkj

ωs

ω0
F

(
ωs+1

h̄

(
Ek − Ei+Ej

2

) )
.

(13)

This expression is difficult to simplify because the summation
over i, j, k, and the integration over ωs are entangled. This
happens through the argument of F , but also through the
scattering operator L̂, since ks , and thus q, is a function
of the frequency ωs . However, this problem is not unique
to time-resolved diffraction. For systems in their stationary
ground state, ci = cj = δi0, Eq. (13) corresponds to time-
independent diffraction, and the entanglement of the remaining
k summation and the ωs integration is still in there. In this
context, a solution for this problem is well known under the
name “static approximation” [15,17]. To get an insight into the
approximations and limitations when applying this to TRXD,
we shall go through the derivation in some detail.

The probed target system is in a nonstationary state whose
energy spread is at most a few eV, that is, |Ei − Ej | 	 h̄ω0.
Furthermore, the basis of the static approximation is the
assumption that the matrix elements Lik can be neglected
unless |Ek − Ei | 	 h̄ω0, which we discuss in detail in
Appendix B. Thus, although we formally retain the unre-
stricted sums over i, j, k, only those summands with |�E| =
|Ek − (Ei + Ej )/2| 	 h̄ω0 contribute to the signal.

To exploit this relation, we require the interval [ω1, ω2]
to include ω0. We also assume that the power spectrum
F has a not too large width �ω0 	 ω0. The integrand is
then dominated by contributions with |ωs − ω0| <∼ |�E|/h̄ +
�ω0 	 ω0, otherwise, either F or the matrix elements Lki ,
Lkj vanish.

As a result of this, we find that the scattering vector remains
almost constant when integrating over ωs . For example, we find
from geometric relations that∣∣∣∣q2

q2
0

− 1

∣∣∣∣ �
∣∣∣∣�E

h̄ω0

∣∣∣∣ +
∣∣∣∣�ω0

ω0

∣∣∣∣
2

+
∣∣∣∣�ω0�E

h̄ω2
0

∣∣∣∣
+

( |�E| + 2h̄�ω0

h̄cq0

)2

, (14)

where q0 is the magnitude of the scattering vector for
elastic scattering ks = k0, and c is the speed of light. For
typical FEL parameters h̄ω0 ≈ 10 keV, �ω0/ω0 = 10−3 [18],
and assuming |�E| � 100 eV (see Appendix B), and q0 =
0.5–8 Å−1, the relative variation |q/q0| is less than 3%.

Since the length of the scattering vector stays almost
constant, and diffraction patterns are usually not overly
sensitive to the value of q (see, e.g., examples in [1] and
discussion in [10]), we now replace the scattering operator L̂

by the elastic version L̂0 = L̂(q|ks = k0), and move its matrix
elements outside of the integral. Using all the approximations
so far, and setting ωs/ω0 ≈ 1, the remaining integral∫ ω2

ω1

dωs F

(
ωs + 1

h̄

(
Ek − Ei + Ej

2

))
(15)

gives a constant of unity for all i, j, k, if ω1 → 0 and ω2 → ∞,
i.e., if the detector collects all photons. We can then rewrite
the differential signal strength as

dS

d�
=

(
dσ

d�

)
Th

∫
dt I (t)〈�(t)|L̂†

0L̂0|�(t)〉. (16)

This is the inelastic limit of x-ray diffraction. A similar
expression has been derived in the context of TRXD be-
fore [9,10]. However, the previous works do not stress its
fundamental importance for time-resolved diffraction. As our
more detailed derivation shows, (16) is the relevant limit if the
static approximation is valid, and the following experimental
conditions hold:

1. The system evolves freely during the scattering process.
2. Only states with low energies are excited, that is, |Ei −

Ej | 	 h̄ω0, which should be fulfilled for all but a few
exotic experiments.

3. The incoming x-ray beam has a sufficiently narrow
bandwidth �ω0 	 ω0.

4. We collect all scattered photons, ω1 → 0, ω2 → ∞.

Since these resemble typical experimental conditions, we
conclude that the inelastic limit should be generally chosen
as the starting point for further theory. This limit also has
properties that are of special importance in the context of
time-resolved diffraction.

First, it is not restricted to a special representation of the
wave function. This allows us to use the same basic formula
(16) for different tasks such as mapping atomic orbitals [2] or
measuring atomic rearrangements within a molecule. We can
also trivially recast the result using a density operator �̂. If
we neglect decoherence (i.e., statistical mixing with a thermal
bath) during the interaction with the x-ray pulse, we can write
directly

dS

d�
=

(
dσ

d�

)
Th

∫
dtI (t)Tr[�̂(t)L̂†

0L̂0]. (17)

For completeness, we want to point out that a more detailed
derivation would show that this density-operator formulation
holds as long as we can neglect decoherence during the
coherence time of the x-ray pulse, which is at most about
a femtosecond [19]. For this, we first rewrite (5) with a density
operator [see also Eq. (42) in [12]]. If decoherence can be
neglected during the coherence time, an expansion equivalent
to (10) can be performed. The rest of the discussion about the
static approximation only involved matrix elements of L̂, and
it is equally valid for all representations of the quantum state.

The only restriction we had to put on the target system is
a time-independent Hamiltonian. By examining carefully why
and how we did this, we can find a simple extension of the
theory to systems irradiated by lasers if the laser parameters
change sufficiently slowly. This is detailed in Appendix A.

Finally, the operator L̂
†
0L̂0 is symmetric under space

inversion, which allows the use of symmetry arguments in
the evaluation of expectation values. This is in contrast to the
operator L̂ that has no trivial symmetry properties.
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B. Symmetry considerations

In many experiments, we study systems whose total
Hamiltonian is symmetric under space inversion, for example,
free molecules in the gas phase. The energy eigenstates, which
are typically the initial states for the pump-probe experiments,
also obey this symmetry. If we assume that spin is a good
quantum number, they are either even or odd functions with
respect to the inversion of all (nuclear and electronic) space
coordinates.

The same argument holds for systems in contact with
a thermal bath, such as small sections in a liquid sample.
In thermal equilibrium, the density operator of the system
commutes with the Hamiltonian [Ĥ , ρ̂] = 0. In the absence
of degeneracies, and for Hamiltonians symmetric under inver-
sion, each eigenstate of this density operator (or, equivalently,
each member of the thermal ensemble) is then an even or odd
function of the coordinates.

The excitation of the system with a linearly polarized pump
laser involves the dipole operator µ̂, which is odd under space
inversion. It is known from elementary group theory that each
application then changes the symmetry of the state. If we excite
the system by absorption of an odd number of photons, we thus
create a coherent superposition of a ground state �g and an
excited state wave packet �e

|�(t)〉 = |�g(t)〉 + |�e(t)〉, (18)

with �g,�e transforming differently under space inversion.
When calculating (16), contributions of the form

〈�g(t)|L̂†
0L̂0|�e(t)〉 = 〈�g(t)|

Ne∑
i �=j

eiq(r̂i−r̂j )|�e(t)〉 (19)

are zero, because the operator L̂
†
0L̂0 is invariant under space

inversion. The diffraction image is thus an incoherent sum of
the images of the ground and excited state wave function.

However, this argument does not hold under certain
circumstances:

1. If the Hamiltonian is not symmetric under inversion,
the eigenstates have no symmetry properties, and the
previous argument is void. The typical example here are
molecules at interfaces.

2. For systems that are oriented prior to the arrival of the
pump pulse, the symmetry of the initial state is destroyed
by the orientation.

3. If the excitation includes an even number of photons,
�g,�e have the same symmetry properties.

In these cases, the interference terms (19) also show up in
the diffraction pattern, which is now the coherent sum of the
two states. We thus have the possibility to include or exclude
specific contributions to the signal.

III. APPLICATION TO MOLECULES

We use the well-known Born-Huang representation [20] to
apply the theory to molecules. For this, we decompose the
system into nuclei and electrons and denote their collective
coordinates as R and r. The total wave function is factorized

into “nuclear” and “electronic” wave functions

�(R, r, t) =
∑
m

�m(R, t)λm(r; R). (20)

For each R, the electronic states λm are chosen to form an
orthonormal basis set in the electronic subsystem

〈λm(R)|λn(R)〉r = δmn. (21)

Here and in the following, we use the subscript r to denote an
integration over only the electronic coordinates. Furthermore,
we will drop the explicit R dependence of λm. For most
applications, only a few electronic states need to be considered,
which greatly reduces the dimensionality of the quantum
system.

We can directly insert the Born-Huang representation (20)
into (16) and obtain the diffraction signal of a molecule.
Writing out the integration over the nuclear coordinates
explicitly, we obtain

dS

d�
=

(
dσ

d�

)
Th

∫
dt I (t)

∑
n,m

×
∫

dR �∗
m(R, t)�n(R, t) smn(R), (22)

smn(R) = 〈λm|L̂†
0L̂0|λn〉r . (23)

For density operators, the Born-Huang representation corre-
sponds to the expansion

�̂(t) =
∑
mn

�̂mn(t)|λn〉〈λm|, (24)

where the operators �̂mn act on the nuclear degrees of freedom
only. We write out the trace over the electronic degrees of
freedom explicitly and evaluate the trace over the nuclear
coordinates in a local basis. Equation (17) becomes then

dS

d�
=

(
dσ

d�

)
Th

∫
dtI (t)

∑
m,n

∫
dR�mn(R, t)smn(R),

(25)

�mn(R, t) = 〈R|�̂mn(t)|R〉. (26)

The terms �mm(R) are the nuclear densities and define the
probability density of finding a nuclear configuration R with
a certain electronic state |λm〉. The nondiagonal terms �mn(R)
are the nuclear coherences; the corresponding terms describe
interferences between the different electronic states in the
diffraction pattern.

For practical use, and to gain more insight, we shall now
consider additional approximations to connect the general
result (25) to those derived previously [9–11].

A. Connection to other derivations

While the results so far are applicable to an arbitrary
electronic basis λm, we now restrict our choice to the adiabatic
basis. If we write the Hamiltonian as a sum

Ĥ = T̂R + ĥ (27)

of the kinetic energy T̂R of the nuclei and an “electronic
Hamiltonian” ĥ, the adiabatic basis are those electronic states
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that diagonalize ĥ. This is a common choice and has been
selected by other authors we wish to compare our results to.

We start by having a closer look at the coherences �mn(R).
For slow nuclear motion, they oscillate with a frequency of
roughly the inverse electronic energy spacing. If the length of
the x-ray pulse and the timing jitter between the pump and
probe pulses are small enough to resolve these oscillations,
the coherences show up as “beating” patterns in the diffraction
image.

However, these terms can often be neglected. For well-
separated electronic states, the time resolution needs to be on
the order of single femtoseconds to measure them. If one of
the states m, n is populated through excitation from the other
state by absorbing an odd number of photons, the coherence
terms between these two states will not contribute due to
the symmetry arguments outlined earlier. Most importantly,
we argue in Appendix B that for many systems, the matrix
elements smn are significantly smaller than the diagonal terms
smm, thus reducing the contribution from the coherences.

If we drop the contributions of the nuclear coherences, only
a single sum in (25) is left. To simplify the evaluation of the
remaining matrix elements smm(R), we use a resolution of
identity 1r = ∑

n |λn〉〈λn| to formally separate them into an
elastic and a purely inelastic contribution

smm = |〈λm|L̂0|λm〉r |2 +
∑
n�=m

|〈λn|L̂0|λm〉r |2. (28)

Inserting this into (25) yields, after neglecting the nuclear
coherence terms,

dS

d�
=

(
dσ

d�

)
Th

∫
dtI (t)

∑
m

×
∫

dR �mm(R, t)|〈λm|L̂0|λm〉r |2 + Sinel. (29)

The first term gives the “electronically elastic” scattering and
has a simple interpretation. The matrix element 〈λm|L̂0|λm〉
is the Fourier transform of the electronic density of state
m. Thus, the first term is similar to the standard result of
x-ray diffraction [see Eq. (1)] weighted by a time-averaged
distribution of nuclear geometries. Sinel denotes the purely
inelastic contribution to the signal. Its interpretation and
evaluation is much more cumbersome, so we wish to remove
it in one way or the other.

Two solutions have been proposed in the literature. In one
approach [5], it is assumed that the inelastic contribution can be
neglected because the nondiagonal elements 〈λn|L̂0|λm〉r are
small compared to the diagonal terms. This general result stems
from the fact that only a single orbital contributes to the matrix
element (see Appendix B), while all electrons contribute to
the elastic scattering. However, this argument is problematic
because, even though the single matrix elements are small
(see Appendix B), the sum in (28), and thus Sinel includes many
terms. For atoms, this inelastic scattering contribution has been
tabulated (e.g., [21]). Even for heavy species, such as iodine,
the elastic and inelastic contributions are similar in magnitude
for q >∼ 6 Å−1, so this seems too crude an approximation.

Other references suggested an energy-scale separation
(vaguely described in [9], implicitly used in [10], and
explicitly pointed out in [11]). For this, we note that (11)

only gives a significant contribution if the argument of F is
approximately ω0. The intuitive picture that emerges is that
each excitation of the system leads to a corresponding energy
loss of the outgoing photon. For a nearly monochromatic
source, F (ω) ≈ δ(ω − ω0), the energy of the outgoing photons
exhibits a peak for each resonance. We can now use the
Born-Oppenheimer approximation, and we assume that energy
levels corresponding to an excitation of nuclear modes (which
we wish to include) have much smaller energy spacing than
the electronic states (which we want to remove). By filtering
out the latter contributions (i.e., photons deviating from ω0

by more than, say, 1 eV) before they reach the detector, we
can remove all electronically inelastic components from the
diffraction pattern, so that Sinel = 0.

However, this argument has several problems as well. The
energy-scale separation becomes meaningless for close-lying
electronic states. Thus, this line of thought excludes nonadia-
batic transitions, which are very common in photochemistry.
Furthermore, the required excessive filtering of the incoming
and outgoing photons might reduce the signal by orders of
magnitude, which makes this setup somewhat unattractive.

However, we note that practical experiments often use
difference diffraction techniques for TRXD (e.g., [4,22]).
That is, two diffraction images are taken, one with the
pump laser turned on and off, respectively, and the two
signals are subtracted to yield a difference signal. If we are
interested in the difference signal, we do not have to require
that the inelastic contribution vanishes. If it is independent
of the atomic arrangement, and the electronic state, the
corresponding terms cancel already due to norm conservation.
Furthermore, in many experiments, the scattering signal is
evaluated using the independent atom model (IAM) (e.g.,
[1,9,10]) for the description of the electronic densities. The
IAM approximates the electronic structure of a molecule by
that of its independent constituent atoms. It does therefore
not describe the reorganization of electronic densities due to
chemical binding. As detailed in Appendix B, we can show
that Sinel is roughly independent of the molecular structure
within the limit of the IAM, and it can thus be ignored in
difference diffraction images. A similar argument has been
used previously for the case of gas-phase electron diffraction
by Liu and Lin [23]. This solution allows us to approximate
the scattering with molecular targets as being electronically
elastic, solves all of the problems mentioned earlier, but still
allows us to employ, for example, symmetry rules derived in
the inelastic limit.

We finally assume that the scattering from all electronic
states is similar, as only a few valence orbitals are rearranged,
and replace the matrix elements by the IAM form factor (see,
e.g., [9,10], and Appendix B3)

〈λm|L̂0|λm〉r ≈ fIAM(q; R) =
#atoms∑

α

fα(q) eiqRα , (30)

with the atomic form factors

fα(q) =
∫

d3r�α(r)eiqr, (31)

and �α and Rα the ground-state electronic density and position
of atom α. Since we deal with difference patterns, we
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further denote by ��mm the difference densities between our
diffraction pattern and a reference pattern (e.g., obtained by
turning the excitation laser off). Equation (29) gives

d�S

d�
=

(
dσ

d�

)
Th

∫
dtI (t)

×
∫

dR

[∑
m

��mm(R, t)

]
|fIAM(q; R)|2. (32)

The quantity in brackets is the difference in the probability
density of finding a certain nuclear geometry R at time
t . Within the limit of the IAM and neglect of coherence
terms, the diffraction signal is therefore just the product
of the “time-averaged difference distribution of geometries,”∫

I (t)
∑

m ��mm(R, t) dt , and the IAM form factor, integrated
over all geometric configurations R. This final result closely
resembles the time-independent theory but with a distribution
function that depends on the pump-probe delay time.

IV. CONCLUSIONS AND OUTLOOK

In this paper, we reviewed the general result of our previous
work on time-resolved x-ray diffraction for nonstationary
systems [10] and reformulated it in a form that is more in
line with the standard results for time-independent systems.

We argued that in the context of scattering on non-
stationary systems, it is essential to allow for inelastic
scattering processes in the target system but that the scat-
tering operator only connects states whose energy differ-
ence is small compared to the energy of the incoming
photons (the “static approximation”). Furthermore, under
typical experimental conditions, we can replace the scat-
tering operator by its elastic version. This leads to the
central result for the differential signal strength given in
Eq. (16).

We applied this formalism to molecules and obtained
expressions that contain nuclear coherences between different
electronic states. This implies that the diffraction patterns are
not equal to the classical incoherent sum of signals from each
of the involved electronic states, but involve fast-oscillating
“beating” contributions [9]. We argued, however, that in many
situations, these coherences can be neglected, even for closely
spaced electronic states. Employing further results from the
widely used independent atom model, the calculation of
difference diffraction patterns can be condensed into a simple
and appealing form, Eq. (32).

Having established the formalism allows future investi-
gation of new questions. It is, for example, well known
that wave packets created by ultrashort laser pulses can
show strong dispersion. In contrast to vibrational ground
states typically encountered in stationary systems, these wave
packets can easily span distances of several Ångströms. The
impact of this on the obtainable information from diffraction
patterns is basically unknown. Furthermore, we argued that
the nuclear coherence terms can be usually neglected. For
systems composed of light atoms, however, they might show
up in diffraction patterns. Identifying promising systems and
describing the resulting diffraction patterns requires a more
detailed quantitative analysis.
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APPENDIX A: SYSTEMS WITH TIME-DEPENDENT
HAMILTONIAN

In the course of our formal derivations, we required that
the system evolves under a time-independent Hamiltonian,
Eq. (10). In this appendix, we review this restriction. As it turns
out, this restriction can be relaxed to encompass systems driven
by a laser with slowly varying parameters. We first employ
Floquet theory to formally remove the periodic oscillation of
the electric field, then we use the adiabatic theorem to treat
nonperiodic (pulsed) laser fields.

The limit of an overlapping laser and x-ray pulse is
important for two reasons. First, by illuminating molecules
with a laser, we can create nonequilibrium structures that
can then be probed by the x-ray beam. For example, it has
been proposed to align gas-phase molecules with a laser while
scattering off them [11]. Since the distribution of molecular
orientations is then no longer isotropic, this would yield
additional information about the structure. Second, we find
that the final result has the same basic form as in the case
of time-independent Hamiltonians, so if the x-ray pulse and
the excitation pulse happen to overlap, the corresponding
diffraction images do not need to be discarded or treated in
any special way.

1. Floquet theory

Within semiclassical theory and electric-dipole approxima-
tion, the Hamiltonian of a system under the influence of a
continuous-wave laser with amplitude ε0 is

Ĥ (t ; θ ) = Ĥ0 + µ̂ε0 cos(ωt + θ ), (A1)

where Ĥ0 is the time-independent Hamiltonian of the unper-
turbed system, and µ̂ the dipole operator. Our goal is to trans-
form this time-dependent problem into a time-independent
description by using Floquet theory [24–27]. As the basic idea,
the Schrödinger equation with Hamiltonian (A1) is solved for
all initial phases θ simultaneously. For this, one first defines
an enlarged Floquet space [26]

K = H ⊗ L2(S1; dθ/2π ) (A2)

as the direct product of the original Hilbert space H and the
space of square-integrable, 2π -periodic functions of θ . This
space is equipped with a natural scalar product

〈〈ξ |η〉〉 = 1

2π

∫ 2π

0
dθ 〈ξ (θ )|η(θ )〉 . (A3)

The single brackets 〈|〉 denote the scalar product in H. We now
lift the initial state that we wish to propagate, ϕ0(x) = ϕ(x, t0),
to K by

ξ0(θ ) = ϕ0 ⊗ 1θ , (A4)

and propagate ξ0 such that

ϕ(x, t ; θ0) ≡ ξ(x, θ0 + ω(t − t0), t) (A5)
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is the solution when propagating ϕ0 with the Hamiltonian
Ĥ (t ; θ0) from (A1). It can be shown [26] that the propagator ÛK

of ξ is generated by a time-independent Floquet Hamiltonian

K̂(θ ) = Ĥ (t = 0; θ ) − ih̄ω∂θ . (A6)

The time dependence of the original Hamiltonian is hidden
in the mapping K → H for fixed initial phase. To formally
remove this time dependence, we can evaluate expectation
values directly in K. Any operator Â that is independent of the
phase θ can be trivially lifted to the Floquet space. Calculating
the expectation value then gives

〈〈ξ (t)|Â|ξ (t)〉〉 = 1

2π

∫ 2π

0
dθ 〈ϕ(t ; θ )|Â|ϕ(t ; θ )〉. (A7)

Thus, by using Floquet theory, we can formally remove any
periodic time dependence in the Hamiltonian at the cost of
an integration over all initial phases. The scattering of x-ray
photons is described by the scattering operator L̂, which is not
correlated with the excitation laser, so Eq. (5) can be retained
with all scalar products evaluated in K, and propagators
replaced by the Floquet propagators ÛK .

This leaves open the problem of evaluating the phase
average (A7). Qualitatively, the averaging removes laser-
induced oscillations ∼ cos nωt (n ∈ Z), and is therefore often
referred to as averaging over a period of the laser (e.g., [28],
where the derived Hamiltonian can also be obtained from
Floquet perturbation theory [25]).

2. Adiabatic Hamiltonians

Floquet theory itself removes only the periodic time
dependence. In practice, however, we encounter lasers with
a time-dependent amplitude and possibly a chirp, which are
not strictly periodic. In this case, we can separate out the
central frequency as periodicity and write the Hamiltonian in
(A1) with a time-dependent field strength ε0 = ε0(t). While
we can still evaluate Eq. (5) in the Floquet space, and thereby
remove oscillations ∼ cos nωt , the Floquet Hamiltonian is
now time-dependent K̂(θ, t). This leads to a problem, because
the discussion leading to the inelastic result (16) revolved
around an expansion of the wave function in the basis of energy
eigenstates.

To solve this problem, we make use of the adiabatic theorem
[29]. For this, we first expand the wave function in the basis
of instantaneous eigenstates of K̂ in analogy to (10)

|�(t)〉〉 =
∑

i

ci(t)|ϕi(t)〉〉 (A8)

with

K̂(t)|ϕi(t)〉〉 = Ei(t)|ϕi(t)〉〉. (A9)

The transformation to an eigenstate basis was done by inserting
various resolutions of identity into (5). The instantaneous
eigenstates also form a complete set of eigenstates, so we

can do the same here to obtain

∑
ijkl

c∗
i (t)cj (t)

〈
〈ϕi(t)| ÛK

(
t, t + δ

2

)
L̂†

∣∣∣∣ϕk

(
t + δ

2

)〉〉

×
〈〈

ϕk

(
t + δ

2

) ∣∣∣∣ ÛK

(
t + δ

2
, t − δ

2

) ∣∣∣∣ϕl

(
t − δ

2

)〉〉

×
〈〈

ϕl

(
t − δ

2

) ∣∣∣∣ L̂ ÛK

(
t − δ

2
, t

)
|ϕj (t) 〉

〉
. (A10)

If the laser parameters, and thus the Floquet Hamiltonian K̂(t)
change slowly in time with respect to the coherence time
of the beam (i.e., the value of δ), we can use the adiabatic
approximation [29]

ÛK (t ± δ, t)|ϕi(t)〉〉 ≈ |ϕi(t ± δ)〉〉e∓iEi (t)δ/h̄

≈ |ϕi(t)〉〉e∓iEi (t)δ/h̄. (A11)

Inserting (A10) and (A11) into (5) yields

s(q, ω0 − ωs) =
∫

dt I (t)
∑
ijk

c∗
i (t)cj (t)

×〈〈ϕi(t)|L̂†|ϕk(t)〉〉〈〈ϕk(t)|L̂|ϕj (t)〉〉

×F

(
ωs + 1

h̄

[
Ek(t) − Ei(t) + Ej (t)

2

])
,

(A12)

which is just Eq. (11) lifted to the Floquet space, and with
time-dependent energies and states. If the intensity of the
laser is not too strong, and the photon energy not too high,
we can expect the instantaneous Floquet states to be “well-
behaved” and fulfill all important restrictions (e.g., the static
approximation). All derivations can be performed as in the
time-independent case with all expectation values or traces
evaluated in K. Especially, Eqs. (17) and (32) maintain their
form and interpretation.

Note, however, that formally all eigenstates in (A12)
have to change adiabatically, those that are occupied as well as
those that can be occupied due to inelastic scattering events.
Because of the energy scales involved in these scattering
events, the adiabatic approximation (A11) cannot be rigorously
validated in practice but has to be assumed to hold. Also,
we want to point out that although (A12) uses a formally
inconvenient time-dependent expansion of the wave function,
the final representation-independent result (16) still holds.

X-ray scattering from laser-aligned molecules has been
described previously by Ho and Santra [11], who implicitly
used adiabatic Floquet theory by employing the alignment
Hamiltonian of Friedrich and Herschbach [28]. As our formal
approach demonstrates, for the special cases of periodic and
adiabatic perturbations, the scattering theory is not different
from that for time-independent Hamiltonians. Furthermore, we
want to point out that because of our more general formulation
of the diffraction process, we do not need any further
assumptions about the Hamiltonian as in [11]; specifically,
the formalism is equally valid for resonant and nonresonant
laser parameters.
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APPENDIX B: QUALITATIVE EVALUATION
OF MATRIX ELEMENTS

In this appendix, we review the static approximation,
consider the electronic cross terms of Eq. (23), and discuss how
the basic ideas of the IAM can simplify the evaluation of the
inelastic matrix elements in Eq. (28). We use the formalism of
second quantization [30] and drop nuclear and spin coordinates
for easier notation. Given a single-electron basis φp, denoting
the usual creation and annihilation operators in this basis as
â
†
p and âp, and the vacuum state as |0〉, the set of Slater

determinants
|�I〉 = â

†
I1

· · · â†
INe

|0〉 (B1)

forms an orthonormal basis in the space of Ne electrons. We
can expand electronic states in this basis

|λm〉 =
∑

I

c
(m)
I |�I〉. (B2)

The scattering operators can be written as [30]

L̂0 =
∑
pq

Lpqâ
†
pâq, (B3)

L̂
†
0L̂0 = Ne +

∑
pqrs

Lpqrs â
†
pâ†

r âs âq , (B4)

with

Lpq =
∫

d3xφ∗
p(x)eiqxφq(x), (B5)

Lpqrs = LpqL
∗
sr . (B6)

We suppress the summand Ne in (B4) in the following because
it only gives rise to a homogeneous background signal. We also
suppress the subindex 0 from the scattering operators unless
explicitly referring to the elastic scattering operator.

1. Static approximation

In the course of the derivation of the inelastic limit, we
have assumed that matrix elements 〈λk|L̂|λi〉 are zero unless
the energy difference |Ek − Ei | is sufficiently small. This static
approximation can be deduced from qualitative considerations
and inferred from somewhat limited experimental and theoret-
ical data (e.g., [31–35]).

For the qualitative discussion, we assume that each energy
eigenstate is made up of a single Slater determinant. Using the
second quantization prescriptions (B1) and (B3), we obtain for
two different eigenstates or Slater determinants

〈�K|L̂|�I〉 =
{

Lki, if |�K〉 = â
†
kâi |�I〉,

0, otherwise,
(B7)

since the single-particle operator L̂ can only change one
electronic orbital at a time. We can thus restrict the discussion

to properties of the single-electron basis. As a side note,
we want to point out that each of these inelastic matrix
elements is typically much smaller than the corresponding
elastic term 〈�K|L̂|�K〉. That is because Eq. (B7) only
contains contributions from a single electron, while the elastic
matrix element is the sum of the scattering from all occupied
orbitals.

If we choose EI < EK, the orbital φi typically represents
a bound state, while φk is some excited orbital. If EK − EI
is much larger than the binding energy Ei of the bound (core
or valence) orbital φi , then φk is essentially a plane wave
with kinetic energy p2/2me ∼ EK − EI − Eion. The matrix
element

Lki =
∫

d3rei(p+q)rφi(r) (B8)

is the high-momentum component of the bound orbital φi ,
which decays exponentially on a typical scale ∝ √

meEion. As
the density of states only grows with the energy according to a
power law (∝ E1/2 for plane waves), the contribution of states
φk to the summation in (13) decreases exponentially in the
limit of high energies.

In the extreme case, the vectors q and p can point in opposite
directions, from which we obtain a qualitative estimate for the
cutoff

|EK − EI|max = q2

2me

+ 2Ei. (B9)

For typical values of q, the right-hand side of Eq. (B9) varies
from tens to a few hundreds of eV. However, we can obtain
more accurate and reliable values from experimental data or
more elaborate calculations. As these are usually done for the
ground state, we have to assume tacitly that the results will not
change drastically for optically excited states.

The matrix elements |〈λk|L̂|λ0〉|2 occur in the context
of generalized oscillator strengths (e.g., [36] and references
therein) and are observables for inelastic scattering methods,
such as electron energy loss spectroscopy [31]. However,
the focus is often not on convergence properties, and the
experimental data are somewhat scattered. Nevertheless, the
available literature (e.g., [31–35]) also suggests a cutoff of at
most a few 100 eV, which decreases for smaller values of q.

2. Nondiagonal matrix elements of L̂†
0 L̂0

After we introduced molecular systems, we rapidly dropped
the coherence terms that connect different electronic states.
Here, we want to discuss the specific argument that nondi-
agonal terms smn defined in (23) are much smaller than the
diagonal terms smm.

We first calculate the matrix elements of L̂
†
0L̂0 for single

Slater determinants. The result is

〈�K|L̂†
0L̂0|�I〉 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
q,r,q �=r Lqqrr − Lqrrq, |�K〉 = |�I〉,∑
q �=i Lkiqq + Lqqki − Lkqqi − Lqikq, |�K〉 = â

†
kâi |�I〉, k �= i,

Lk1i1k2i2 + Lk2i2k1i1 − Lk1i2k2i1 − Lk2i1k1i2 , |�K〉 = â
†
k1

â
†
k2

âi2 âi1 |�I〉, k1/2 �= i1/2,

0, otherwise,

(B10)
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where the sums run over all occupied orbitals of determinant
�I. From this equation, we can deduce that the sum for the case
K = I contains N2

e terms, while for different determinants,
we only sum at most over Ne terms. This can be understood
intuitively because at least one pair of creation and annihilation
operators has to lift an electron from an orbital occupied in �I
to another one solely occupied in �K.

We can then calculate the nondiagonal matrix elements for
the electronic states, which might consist of multiple deter-
minants (B2). We also introduce two further approximations
based on (B10):

1. If we assume that the matrix Lpqrs is well balanced,
matrix elements 〈�K|L̂†

0L̂0|�I〉 with I = K will be
significantly larger than for different determinants.
Under this assumption, we can choose to retain only
matrix elements that involve the same determinants I, K.
The error that we introduce by this approximation should
then compare to the signal as 1/Ne.

2. We assume that all Slater determinants give the same
contribution 〈�I|L̂†

0L̂0|�I〉 = F . The underlying idea
is that all important Slater determinants differ only by
a rearrangement of a few valence electrons, which is
insignificant compared to the contribution of the core
electrons. Correspondingly, we would expect the error
to be of the order of the ratio between the number of
valence electrons and the total number of electrons.

With these approximations, we obtain

smn = 〈λm|L̂†
0L̂0|λn〉 =

∑
I,K

c
(m)∗
K c

(n)
I 〈�K|L̂†

0L̂0|�I〉

= F
∑

I

c
(m)∗
I c

(n)
I = 0, (B11)

since the latter expression is just the scalar product between
the two orthogonal electronic states.

We can therefore expect the nondiagonal elements to be
small compared to the diagonal contributions smm unless the
approximations made earlier fail. The approximations might
fail especially for molecules built of light atoms, which have
a large fraction of valence electrons.

3. Independent atom model

The IAM is usually used in the context of elastic scattering.
To apply it to the inelastic contributions, we first point out
the underlying approximations in more detail. For simplicity,
we ignore rotational averaging of the single atomic shells. To
simplify notation, we also drop the index of the electronic
state.

Obviously, as a first step, we have to assign the electrons
to specific atoms. For this, we assume that the single-electron
Hilbert space can be split up into subspaces Hi that are large
enough to hold the wave function of the isolated atom i.
We also assume that all these subspaces can be chosen to
be orthogonal.

It should be pointed out that these two requirements are mu-
tually exclusive. For practical molecular geometries, orbitals
of different atoms have nonzero overlap. The corresponding
subspaces can then not be chosen to be orthogonal and

contain the wave function of the isolated atoms. However,
assuming nonorthogonal subspaces significantly complicates
the following algebra, and as we discuss at the end of this
section, this overlap must be negligible for most orbitals
anyway if the IAM is valid, so we will ignore this detail for
simplicity.

We now introduce an orthonormal basis {φp}p∈N , where
the orbital φp shall belong to the subspace or atom Hi if p is
the element of some set Si ⊆ N. The orbitals are understood
to have a fixed form and to move around with their respective
atoms. That is,

φp(r) = gp(r − Ri), p ∈ Si, (B12)

where Ri is the position of the ith atom, and gp is the fixed
functional form of the atomic orbital.

Next, we define states of the independent atoms as

|ξi〉 = Ĉ
†
i |0〉, (B13)

where Ĉ
†
i is a (sum of) strings of creation operators â

†
p (p ∈ Si).

The electronic structure of the independent atom i shall be
independent of the position of the atom, which requires Ĉ

†
i to

be independent of Ri as well.
With the notation fixed, the IAM can now be formulated as

|λ〉 ≈ |λ′〉 =
(

Na∏
i=1

Ĉ
†
i

)
|0〉. (B14)

Here, Na is the number of atoms in the molecule. Writing out
the scattering amplitude and using the orthonormality of the
atomic subspaces, we can bring this approximation into a more
instructive form

〈λ|L̂0|λ〉 ≈
Na∑
i=1

〈ξi |L̂0|ξi〉, (B15)

that is, the molecular form factor [left-hand side of (B15)] is
the sum of the atomic form factors, where we have not factored
out the atomic coordinates explicitly. Within the IAM, we thus
neglect electronic correlations between different atoms, which
would lead to atomic cross terms.

Some identities that may help with the preceding and further
manipulations are

Lpq(Ri) = Lpq(Ri = 0)eiqRi , p, q ∈ Si, (B16)

[Ĉ†
i , âp]+ = Ĉ

†
i âp + âpĈ

†
i = 0, p /∈ Si, (B17)

[Ĉ†
i , Ĉj ]+ = 0, i �= j. (B18)

The first identity uses (B12) to factor out the geometry-
dependent complex phase from matrix elements; the second
and third relations follow from the orthogonality of the atomic
subspaces.

We now employ (B4), (B5), and (B14) to evaluate directly
the matrix elements smm in Eq. (28):

〈λ|L̂†
0L̂0|λ〉 ≈ 〈λ′|L̂†

0L̂0|λ′〉

=

⎛
⎜⎝∑

i

∑
p,q,r,s∈Si

+
∑
i �=j

∑
p,q∈Si
r,s∈Sj

+
∑
i �=j

∑
p,s∈Si
r,q∈Sj

⎞
⎟⎠

× LpqL
∗
sr〈λ′|â†

pâ†
r âs âq |λ′〉, (B19)
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where we used the orthogonality relation (B17). It ensures
that only those matrix elements contribute, where the creation
operators act on the same subspaces as the annihilation
operators.

The first summand in (B19) only involves orbitals around
a single atom. The geometry-dependent phases of Lpq and
L∗

sr then cancel, so that this contribution is independent of the
nuclear geometry.

The second summand can be shown to be identical to the
elastic term |〈λ′|L̂0|λ′〉|2 [i.e., the first term in (28)] apart from
geometry-independent contributions. To demonstrate this, use
(B15) together with (B17), and compare this to the second
summand in (B19) after insertion of (B14) and extensive use
of the commutation relations (B17) and (B18).

The last summand in (B19) contains matrix elements of
orbitals around different atoms. It is therefore sensitive to the
nuclear geometry but cannot be evaluated without detailed

knowledge of the orbital shapes and the electronic structure of
the single atoms. However, if it would contribute appreciably
to the diffraction pattern, then matrix elements of the form (B6)
and thus products φ∗

p(x)φq(x) with p ∈ Si, q ∈ Sj have to be
significant for many occupied orbitals. In this case, mutual
Coulomb repulsion between electrons of different atoms is
also significant, leading to strong correlations between many
electrons of different atoms and hence to a breakdown of
the IAM. If the IAM level of theory is sufficient to fit the
elastic part of Eq. (29), these correlations can be neglected,
usually because the scattering is dominated by tightly bound,
uncorrelated core electrons. As a consequence, the third
summand in (B19) can then be neglected for the purpose of
x-ray diffraction. The inelastic part of the diffraction pattern
Sinel in Eq. (29) is thus roughly independent of the nuclear
geometry.
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