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Collective oscillations of ultracold matter
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We consider the collective oscillations of an ultracold atomic cloud by using a wave kinetic description which
retains phonon recoil effects. We derive an exact quantum-wave dispersion relation for hybrid plasma-acoustic
oscillations and the associated atomic Landau damping. The quasilinear kinetic theory is also extended into the
quantum regime, leading to a Boltzmann type of equation for the atoms in a collective force field. Comparison
with our previous quasiclassical results is considered. Diffusion in velocity space due to density fluctuations
is discussed in detail. This will us allow to establish an additional temperature limit, different from the usual
Doppler limit, below which the laser cooling process is prevented by the density fluctuations. This work could
also be useful to describe low-frequency Doppler instabilities, as well as collective phonon laser processes.
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I. INTRODUCTION

In recent years, there has been an increasing interest on
the physics of very low temperature atomic gas, confined in a
magneto-optical trap and cooled down to the micro-Kelvin
temperature range [1,2]. One of the most interesting and
surprising properties of this ultracold neutral gas is that it
manifests itself as a “non-neutral plasma” due to the existence
of an effective electric charge associated with the neutral
atoms [3]. As a consequence, neutral atoms repel each other, as
if they had the same electric charge. In the absence of magnetic
confinement, this effective charge will lead to the occurrence
of Coulomb explosion, as observed by [4]. It will also lead to
the possible occurrence of many collective processes, such as
those recently described by us [5]. In particular, new modes of
the acoustic type, but with a plasma frequency cutoff, which
we have called hybrid plasma-acoustic modes, were shown to
exist, as well as a series of internal Tonks-Dattner resonances.
They cannot be confused with similar modes and resonances
which can also be found in real cold plasmas, as recently
reviewed by Killian et al. [6], because we are not dealing with
an ionized medium, but with a gas of neutral atoms.

Here we return to the problem of collective modes in a
neutral ultracold gas by extending our previous results into the
quantum domain. This can be done by using a quantum-wave
kinetic equation where the atom recoil effects are retained.
Such an approach has been considered before [7,8]. But here,
instead of looking for recoil due to photon emission and
absorption associated with the laser cooling process, we focus
on phonon recoil effects.

We apply the wave kinetic equation to study the collective
oscillations in the ultracold gas and obtain the exact quantum-
wave dispersion relation and the atomic Landau damping. The
quasilinear kinetic theory is also discussed in the quantum
regime, leading to a Boltzmann type of equation for the
atoms in a collective force field. This extends our previous
quasiclassical work [5] into the quantum domain and clarifies
the energy and momentum exchange of the atoms with the
collective fields. A diffusion process in the atomic velocity
space is also considered, and it will be shown that it leads
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to a new temperature limit, different from the usual Doppler
limit [8], but related here to the spectrum of density fluctuations
of the gas.

II. BASIC EQUATIONS

It is well known that the wave equation describing the
evolution of an atom inside the ultracold gas can be trans-
formed into a wave kinetic equation of the Wigner-Moyal
type [9,10], by introducing the correlation function K(r,s,t) =
〈r,+s/2|r,−s/2〉, where r is the center of mass the atom
and |r, t〉 is the atomic state vector describing its translational
motion with respect to the laboratory frame. Taking its Fourier
transformation, we arrive at the atomic Wigner function

W (r, q, t) =
∫

K(r, s, t) exp(−iq · s) ds. (1)

We can then follow the usual Moyal procedure which will
allow us to establish an evolution equation for the quantity W ,
in the well-known form [11](

∂

∂t
+ v · ∂

∂r

)
W = −i

h̄

∫
V0(k′)[W (−) − W (+)]eik′ ·r dk′

(2π )3
,

(2)

where V0(k′) are the Fourier components of an applied
external potential V0(r). We want to focus on the atom density
perturbations that can occur in an atomic gas cloud and
generalize our previous quasiclassical treatment [5] to the
quantum domain. In order to do this, we need to specify the
external potential, in the following practical way, as

V0(r) = VB(r) + Veff(r), (3)

where VB(r) is the static confining potential of the magneto-
optical trap and the effective potential Veff(r) describes the
collective influence of the nearby atoms. It is well known that
VB(r) can approximately be described by a three-dimensional
parabolic potential [12]. On the other hand, the effective
potential is determined by the local atomic density n(r), as [5]

∇2Veff = −Qn ≡ −Q

∫
W (r, v, t) dv (4)
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with

Q = (σR − σL)σLI0/c, (5)

where σR and σL are the radiation and the laser absorption
cross sections as defined by [4] and others, and I0 is the laser
intensity. In Eq. (4), we have normalized the Wigner function
such that∫

dr
∫

dv W (r, v, t) =
∫

n(r, t) dr = N, (6)

where N is the total number of confined atoms. In this sense,
Eq. (2) will describe the evolution of N identical atoms,
assumed as independent, except for the mean-field potential
Veff which creates an effective collective force associated with
the exchange of photons between nearby atoms. It is well
known that such a force results from the balance between
a negative shadow force term [13] and a positive repulsive
force term [3], as stated by the two terms with opposite sign
appearing in the definition of the quantity Q.

III. LINEAR DISPERSION RELATION

We now consider the linear evolution of atom density
perturbations around some equilibrium value defined by W0, as
determined by the confining potential VB and the equilibrium
collective potential. We therefore assume perturbations of the
atom quasiprobablity distribution W and of the collective
potential Veff of the form

W̃ , Ṽeff ∝ exp(ik · r − iωt). (7)

Perturbative analysis of Eqs. (4) and (2) then lead to the
following two expressions:

Ṽeff = Q

k2

∫
W̃dv (8)

and

W̃ = Ṽeff
[W (−)

0 − W
(+)
0 ]

h̄(ω − k · v)
(9)

with

W
(±)
0 = W0(v±) ≡ W0(v ± h̄k/2M). (10)

From these equations, we can easily get the dispersion relation
for density perturbations with wave vector k and frequency ω

in the ultracold gas, as

1 − Q

h̄k2

∫
[W (−)

0 − W
(+)
0 ]

(ω − k · v)
dv = 0. (11)

Before discussing the properties of the dispersion relation
in this exact form, it is useful to consider its quasiclassical
limit, where the momentum carried by an emitted or absorbed
phonon h̄k can be considered negligible with respect to the
atomic translational momentum h̄q = h̄Mv. In this case, we
can use the approximate expressions

W (±) � W (r, q, t)±k
2

· ∂W

∂q
+ ∂

∂q
· kk

4
· ∂

∂q
W ± · · · . (12)

From this we get

[W (−) − W (+)] = −k · ∂W

∂q
. (13)

In the quasiclassical limit, the dispersion relation (11) reduces
to

1 + Q

Mk2

∫
k · ∂W0/∂v
(ω − k · v)

dv = 0, (14)

which coincides with our previous result [5].
Going back to the exact dispersion relation (11), we can

now consider the important case of a monoenergetic atomic
beam, as determined by the equilibrium Wigner function

W0(v) = n0δ(v − v0), (15)

which describes ultracold atoms in the T → 0 limit, moving
with velocity v0 with respect to the laboratory frame. The result
is

1 − Qn0

Mk2

[
1

(ω − k · v−)
− 1

(ω − k · v+)

]
= 0, (16)

where v± are defined by Eq. (10). Noting that (v+ − v−) =
h̄k/M , and introducing the effective plasma frequency ωp =√

Qn0/M , we arrive at the following result:

1 − ω2
p

(ω − k · v+)(ω − k · v−)
= 0. (17)

In the classical limit, we can use v± � v0, and we recover
another expression of our previous work [5]

ω2
p = (ω − k · v0)2, (18)

which describes oscillations of the atomic gas at the plasma
frequency in its proper frame. In the particular case where the
atoms are at rest, Eq. (17) leads to

ω2 = ω2
p + h̄2

4

k4

M2
, (19)

which describes these same collective oscillations but with a
quantum dispersion term.

Let us now consider temperature corrections. We return to
the general dispersion relation (11) and assume an arbitrary
equilibrium distribution W0(v). It is useful to write this
equation in the form

1 + χ (ω, k) = 0, (20)

where the atomic susceptibility is defined by

χ (ω, k) = − Q

h̄k2

∫
[W (−)

0 − W
(+)
0 ]

(ω − k · v)
dv. (21)

It is now useful to introduce the parallel and perpendicular
velocity components, such that

v = u
k
k

+ v⊥. (22)

We clearly see from Eq. (21) that there is a resonant velocity,
u0 = ω/k, such that the atom moves in phase with the wave
propagation. We can also write the atomic susceptibility in
terms of the parallel velocities as

χ (ω, k) = − Q

h̄k3

∫
G(u)

[
1

u − u
(−)
0

− 1

u − u
(+)
0

]
du, (23)

where we have introduce the parallel quasidistribution G(u) =∫
W0(u, v⊥)dv⊥ and used the quantities u

(±)
0 = u0 ± h̄k/2M .
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FIG. 1. (Color online) Dispersion relation, representing the
dimensionless variables, frequency (ω/ωP ) versus wave number
(kλD). The red plain curve was obtained for the dimensionless
quantum parameter H ≡ h̄2/4M2u2

s λ
2
D = 1. The blue dashed line

was obtained for H = 0.1 and represents the quasiclassical regime.

We should notice that the integral in this expression can be
divided into its principal part and its resonant contribution.
This leads to a complex susceptibility of the form

χ (ω, k) = χr (ω, k) + iχi(ω, k). (24)

We can easily solve the principal part of the integral using
the plausible assumption that the root-mean-square velocity
deviation of the atoms in the cloud is much smaller than
the phase velocity of the wave perturbation. This means that
the main contribution to the integral comes from regions
where u � u0. Assuming an even function G(u) = G(−u),
and noting that

n0 =
∫

G(u)du, u2
s = 1

n0

∫
G(u)u2du, (25)

where us can be called the sound speed, we arrive at the
following result for the real part of the dispersion relation
(Fig. 1):

1 − Qn0

h̄k2

[
k · (v−−V+)

(ω − k · v−)(ω−k · v+)

](
1+ k2

ω2
u2

s

)
= 0. (26)

This leads to

ω2 = ω2
p

(
1 + k2

ω2
u2

s

)
+ h̄2

4

k4

M2
, (27)

which for ω2 � ω2
p allows us to write

ω2 = ω2
p

(
1 + k2λ2

D

) + h̄2

4

k4

M2
, (28)

where the Debye length λD = us/ωp is the characteristic
scale length for the collective interactions. This dispersion
relation generalizes our previous result on hybrid (or plasma-
acoustic) modes [5] by including quantum dispersion. Apart
from its cutoff frequency ωp, it also strongly resembles the
dispersion relation of Bogolioubov oscillations in a Bose-
Einstein condensate [14]. Neglecting the cutoff and quantum
dispersion terms, we would get the dispersion relation for the
usual acoustic waves in the gas, ω2 = k2u2

s .

Let us now turn to the imaginary part of the atomic
susceptibility. By solving the resonant contribution to the
integral (23), we get

χi(ω, k) = πQ

h̄k3
[G(−)(u0) − G(+)(u0)]. (29)

This imaginary part implies the existence of a complex mode
frequency ω = ωr + iγ , where γ is the damping (or growth)
rate, for a given wave vector k. For |γ | � ωr , it is known that

γ = − χi(ωr, k)

(∂χr/∂ω)r
, (30)

where the derivative is taken at ω = ωr . We then get the
expression for the atomic Landau damping of the hybrid
plasma-acoustic modes, as determined by

γ = −πQ

h̄k3

[G(u0 − h̄k/2M) − G(u0 + h̄k/2M)]

(∂χr/∂ω)r
. (31)

This result retains the exact atom recoil due to the emission or
absorption of an hybrid phonon. The resulting damping rate
is due to the difference in population for translational states
distant by an amount of momentum h̄k. For an inversion of
population, we get an instability, γ > 0, and the collective
oscillations of the ultracold gas can start to grow from out
of noise. This instability could lead to the phonon laser effect
with the coherent emission of hybrid plasma-acoustic phonons.
In that respect this process would generalize the recently
demonstrated process of a phonon laser for a single trapped
ion [15,16] to the case where real phonons are emitted in a
gaseous medium.

It is now useful to take the quasiclassical limit where this
momentum increment can be considered negligible and where
we can approximately write

G(−) − G(+) � −h̄k

M

(
∂G

∂u

)
ω/k

. (32)

By taking the derivative in the denominator of (31) as ∼1/ω,
we can then recover the expression derived in our previous
work [5]

γ = π

ω

Q

Mk2

(
∂G

∂u

)
ω/k

. (33)

We can then see that the quasiclassical limit of atomic Landau
damping (or growth) rate is determined by the derivative of
the parallel distribution G(u), a result that is also known for
collective oscillations in classical plasma physics.

IV. QUASILINEAR DIFFUSION

In the previous calculations we have assumed that a given
equilibrium function W0(r, v) remains constant along the
process of atom density oscillations, and wave propagation,
with damping and growth. This is certainly valid on the time
scale of the wave period 1/ωr but is no longer valid for a much
larger time scale (larger than 1/γ ), because of the energy
exchange between the kinetic energy of the atoms and the
resonant oscillation modes.

In order to establish the long time evolution for W0, we
can go back to the exact wave kinetic equation (2) and retain
the long time contribution of the nonlinear terms due to the
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existence of fast time oscillations of the medium. The slowly
varying part of the wave kinetic equation can then be written
as (

∂

∂t
+ v · ∂

∂r

)
W0(v) = 1

ih̄

∫
Ṽeff(−k)[W̃ (v−, k)

+ W̃ (v+, k)]
dk

(2π )3
. (34)

Now, using Eq. (9) which relates the potential perturbations
Ṽeff to the perturbations of the distribution function W̃ , we
obtain(

∂

∂t
+v · ∂

∂r,

)
W0(v) = Q2

h̄2k4

∫ |ñ(k)|2
i(ω − k · v)

[W0(v − h̄k/M)

−W0(v + h̄k/M)]
dk

(2π )3
, (35)

where we have used the density fluctuations ñ(k) =
k2Ṽeff(k)/Q. This is a kinetic equation of the Boltzmann
type, associated with the inelastic collisions between the atoms
and the hybrid phonons of the density fluctuation spectrum.
Emission and absorption of one phonon will make the atom
velocity to jump between v and v ± h̄k/M , as it should be
expected.

Now, let us consider the quasiclassical limit of this equation,
when the atomic recoil becomes negligible, In this limit, the
population difference in Eq. (35) is replaced by a derivative,
and we can write(

∂

∂t
+ v · ∂

∂r

)
W0(v) = 1

ih̄

∫
Ṽeff(−k)δW̃ (k)

dk
(2π )3

, (36)

where

δW̃ (k) = −h̄k
M

· ∂

∂v
W̃ (v, k). (37)

In the same limit, we also have

W̃ (v, k) = − Ṽeff

M

k · ∂W0/∂v
(ω − k · v)

(38)

from where we get

δW̃ (k) = Ṽeff(k)
h̄k
M2

· ∂

∂v
k

(ω − k · v)
· ∂

∂v
W0. (39)

Replacing this in Eq. (36), we finally obtain[
∂

∂t
+ v · ∂

∂r
− ∂

∂v
· D(v) · ∂

∂v

]
W0(v) = 0 (40)

with the diffusion tensor in the velocity space determined by

D = Q2

M2k4

∫ |ñ(k)|2
i(ω − k · v)

kk
dk

(2π )3
. (41)

We can now explore the spectral symmetries, well known
from the quasilinear theory [17], by noting that |ñ(k)|2 =
|ñ(−k)|2. Here we are assuming that, for each mode of the
density fluctuation spectrum, there is a complex frequency
ω ≡ ω(k) = ωk + iγk, where ωk is the real part of the mode
frequency and γk is the corresponding Landau damping. We
also notice that ω−k = ωk. This allows us to rearrange the
terms inside the integral of Eq. (42), leading to the following

new expression for the diffusion tensor:

D = Q2

M2k4

∫
|ñ(k)|2 γkkk

(ω − k · v)2 + γ 2
k

dk
(2π )3

. (42)

This new expression is physically more satisfactory because
it clearly states that diffusion is a real process. Of particular
interest is the case where Landau damping is a very small
quantity, and where we can use the limit

lim
γk→0

γk

(ω − k · v)2 + γ 2
k

= πδ(ωk − k · v). (43)

We can then rewrite the diffusion tensor in a much simpler
form

D = π
ω2

p

n0k4

∫
|ñ(k)|2 kk δ(ωk − k · v)

dk
(2π )3

. (44)

This new expression for D states that diffusion in velocity space
is due to a succession of wave modes which are at a given time
in exact resonance with the atoms moving with velocity v,
as shown by the Dirac delta function. The stronger the wave
component energy, the faster diffusion occurs. The existence
of the density fluctuation spectrum will then introduce a
temperature limit for the laser cooling process.

In order to estimate this temperature limit, we have to de-
scribe the competing influence of the density fluctuations and
the laser cooling force. Including the well-known expression
for this force, we can write the quasiclassical kinetic equation
in the form(

∂

∂t
+ v · ∂

∂r

)
W0 = ∂

∂v
·
[

A + D · ∂

∂v

]
W0, (45)

where A is the friction coefficient associated with the cooling
force, as given by [18,19]

A = βv, β = 8h̄k2

�|�R|2

M(4�2 + 
2)2
, (46)

where �R is the Rabi frequency, 
 the spontaneous decay time,
and � the frequency detuning between the radiative transition
frequency and the cooling laser frequency. This expression is
valid for |ωR|2 � 
2/2. Now, assuming spherical symmetry
in velocity space, a steady-state solution for this equation can
be derived as

W0(v) = W00 exp

[
−MV 2

2Teff

]
, (47)

where W00 is a constant and the effective temperature Teff is
determined by

Teff � π2c2

h̄ω2

ω2
p

n0k2

∫
|ñ(k)|2 dk

(2π )2
. (48)

This quantity establishes a new temperature limit for the laser
cooling process, which is conceptually different and eventually
larger than the well-known Doppler limit associated with
spontaneous emission.

V. CONCLUSIONS

In this work we have applied the wave kinetic description
to the discussion of atomic density fluctuations in a confined
ultracold gas and have extended our previous results [5] into the
quantum regime. A general dispersion relation for the hybrid
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plasma-acoustic modes which includes a quantum dispersive
term was derived, and an exact quantum expression for the
atomic Landau damping of these modes was established.
Finally, a Boltzmann type of equation was derived for the
long time evolution of the atom distribution, leading in the
quasiclassical limit to a diffusion coefficient in velocity space.
In this limit, our previous results were recovered. A new
temperature limit for laser cooling, different from the usual
Doppler limit, and due to the existence of a density fluctuation
spectrum, was also established.

This approach is adequate for describing atom recoil, due
to the emission and absorption of phonons, which are the

elementary excitations of the collective field. These phonons
are the quasiparticles of the hybrid plasma-acoustic wave
modes, and the understanding of its quantum dispersive
properties was one of the main purposes of this work. In
particular, we have demonstrated that a negative Landau
damping can eventually occur, leading to the coherent emission
of hybrid phonons. This could be explored to extend the
range of single-particle phonon lasers, recently discussed in
the literature [15,16], into the collective regime where real
density oscillations of a background gas can coherently be
excited. This particular problem will be the object of a separate
publication [20].
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T. W. Hänsch, and Th. Udem, Nature Phys. 5, 682 (2009).
[17] R. C. Davidson, Methods in Nonlinear Plasma Theory

(Academic Press, New York, 1972).
[18] A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
[19] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge

University Press, Cambridge, MA, 1999).
[20] J. T. Mendonça, G. Brodin, M. Marklund, and H. Terças (to be

published).

023421-5


