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Paths from weak to strong coupling in NMR
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J-coupled nuclear magnetic resonance (NMR) spectroscopy in the strong coupling regime at low magnetic
field (10−7 T < B < 10−3 T) is more complex than at high field (B > 10−3 T) and at ultralow field (B < 10−7 T).
We show that several upper and lower boundaries B

up
i and B low

i of the magnetic field B exist, where the complexity
of J-coupled NMR spectra changes in terms of the number of lines. The index i = 1, 2, . . . for B

up
i at high field

specifies the perturbation order of the dominating Zeeman interaction and for B low
i at ultralow field the perturbation

order of the dominating J-coupling interaction. Mathematical expressions for these boundaries are derived for
the case of a J-coupled S-IN group where S and I are rare and abundant spins 1

2 and N counts the abundant
spins I. The entire B-field range can further be delineated into two weak coupling regimes, one at high field with
B

up
2 < B < B

up
1 (10−3 T < B < 102 T), one at low field with B low

1 < B < B low
2 (10−8 T < B < 10−7 T), and

a strong coupling regime with B low
2 < B < B

up
2 (10−7 T < B < 10−3 T). The corresponding NMR spectra for

the S-IN group are investigated by experiment and by simulation. In the strong coupling regime, the maximum
number of lines is (N + 1)2. In the weak coupling regime B low

1 < B < B low
2 at low field, symmetric multiplet

structures group around the frequencies 0, J, (3/2)J, 2J, (5/2)J, etc. These spectra determine the structure of
the S-IN group unambiguously and are in dual correspondence to the weakly coupled spectra at high field.
High-resolution NMR spectroscopy at ultralow field may open up new ways for chemical analysis by small and
mobile instruments with many applications in science and technology.
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I. INTRODUCTION

Nuclear magnetic resonance (NMR) spectroscopy and mag-
netic resonance imaging (MRI) at high field are indispensable
analytical tools for many areas in science, medicine, and
technology [1–7]. High-field NMR spectra have a simple
structure because all spin interaction energies (the chemical
shift, the direct, and the indirect spin-spin interactions [3–5])
are small compared to the large Zeeman energies so that
first-order perturbation theory is sufficient to describe the
NMR spectrum with high accuracy. At zero field, the NMR
spectrum is again simple. In the last decades, zero-field NMR
and nuclear quadrupole resonance (NQR) had their impact
in fundamental research and materials science [8–13]. Recent
developments in portable ex situ and in situ high-resolution
NMR spectroscopy in the 0.1 T regime [14,15] and studies
of high-resolution J-coupled spectroscopy at field strengths
between Earth’s field and zero field [16–23] provide new
alternatives to high-field NMR spectroscopy with portable and
inexpensive devices. One important phenomenon associated
with NMR at low field is the strong coupling regime [22,23],
which is the range of magnetic fields where the nuclear Zeeman
energies are comparable to the energies of the interactions
between the spins. Little is known about an exact delineation
[1–7] of the strong coupling regime. In this contribution we
investigate these boundaries and analyze the complexity of
the J-coupled spectra at and in between these boundaries. A
dual correspondence between NMR spectra at high field and
the corresponding spectra close to zero field is demonstrated.
In Sec. II, the boundaries are derived by example of the
S-I3 group as a special case of the chemical group S-IN
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where one rare spin S couples to N abundant spins I via
the heteronuclear J coupling. The strong coupling regime is
defined in terms of the J-coupling strength, the line width, and
the Larmor frequencies. Sec. III provides measured evidence
in support of this theory in the low-field regime. Spectra in the
ultralow-field regime could not be measured with the available
instrumentation. They are simulated and their selection rules
discussed in Sec. IV. From the analysis of the J-coupled
spectra at ultralow field the question arises whether or not
a magnetic field is needed at all in order to characterize the
chemical structure of molecules by NMR. The appendix gives
the calculation of the transitions frequencies for the S-IN spin
system with arbitrary N and derives the maximum number of
observable lines as (N + 1)2.

II. THEORY

A. General considerations

In the following we will discuss the structure of the
J-coupled NMR spectra from high field down to zero field
and explore the values of the magnetic field where the NMR
spectrum changes its structure in terms of the number of
observable lines. Consider the S-IN group [Fig. 1(a)] where
a rare spin S = 1/2 with angular momentum operator �S is J
coupled to N spins I = 1/2 with angular momentum operators
�Ik(k = 1, 2, . .N ). Assuming that all spins interact with a
magnetic field B pointing along the z direction and that J is the
heteronuclear J-coupling constant we can write the Hamilton
operator as

H = ωSSz + ωI

N∑
k=1

Ikz︸ ︷︷ ︸
H z

+ 2πJ �S ·
N∑

k=1

�Ik︸ ︷︷ ︸
H het

, (1)
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FIG. 1. (a) Strong and weak coupling regimes of the S-IN system as a function of magnetic field B. (b–i) Stick spectra of the J-coupled S-I3

system at different field regimes. (b) Stick spectrum at very high field, B > B
up
1 , (c) in the weak coupling regime at high field, Bup

2 < B < B
up
1 ,

(d–g) in the strong coupling regime B low
2 < B < B

up
2 , (h) in the weak coupling regime at low field, B low

1 < B < B low
2 , and (i) close to zero field,

B < B low
1 . See text for details.

where ωI = 2πνI = 2πγIB and ωS = 2πνS = 2πγSB are
the angular Larmor frequencies of the spins I and S corre-
sponding to the Larmor frequencies νI and νS . γI and γS are
the gyromagnetic ratios of I and S. HZ represents the Zeeman
interaction of both spin species I and S with the magnetic
field B, and Hhet is the Hamilton operator of the heteronuclear
J coupling.

We derive here a mathematical model for several strong
and weak coupling regimes that are separated by several
upper boundaries B

up
i and lower boundaries B low

i , i ∈ N, as
indicated in Fig. 1(a). The index i is associated with the order of
perturbation theory used to evaluate the transition frequencies
of Eq. (1). Perturbation theory can be applied for H het � Hz

at high field and vice versa at low field. The calculation of
the transition frequencies of the S-IN system for arbitrary N is
shown in Appendix A.

B. Boundaries between the weak and the strong coupling
regime for the S-I3 group

For clarity we discuss in the following as a representative
example the evolution of the J-coupled S-I3 spectrum over the
entire B-field regime and explain the underlying physics of
these spectra in the following sections. We assume that B is
not perfectly homogeneous, so the line width �ν is broadened
at very high field due to dephasing in an inhomogeneous field.
Assuming J = 100 Hz and a magnetic field inhomogeneity of
25 ppb, the 1H line is broadened to 100 Hz if B = 100 T. Thus,

for B > B
up
1 = 100 T, a splitting due to the J coupling is not

observable since �ν > J and only two lines at frequencies νI

and νS can be observed, as indicated in Fig. 1(b). So B
up
1 is

a boundary dominated by the field inhomogeneity and by the
chosen pulse sequence.

In the field range B
up
2 < B < B

up
1 we enter the weak

coupling regime in high field, �ν < J is valid, and first-order
perturbation theory leads to the well-known multiplet splitting.
For example, the J-coupled spectrum of the S-I3 group is an
I-spin doublet and an S-spin quartet. For B low

2 < B < B
up
2

(low-field regime) the strong coupling regime is entered
[Figs. 1(d)–1(g)] and second- and higher-order perturbation
theory leads to several line splittings of the NMR spectrum,
resulting into more and more complicate multiline spectra.
Inside the strong coupling regime eventually higher-order
boundaries B

up
i , i � 3 exist, as indicated in Figs. 1(a) and 1(e).

For B low
C

< B < Bup
C

the spectrum has its most complex form
[Fig. 1(f)] and a maximum number of lines can be observed.
For B < Bup

C
the group of I transitions starts to overlap with

the group of the S transitions.
On the other side when starting from B = 0 [Fig. 1(i)],

the spectrum is simple and is characterized by only a few
lines (here three). This simple spectrum reflects the internal
molecular fields that are responsible for the J coupling but
contains no information about the spin species. The spectrum
of Fig. 1(i) can be seen as the dual correspondent to the
spectrum of Fig. 1(b). The simple structure of Fig. 1(i) holds
as long as B < B low

1 . B low
1 is roughly the boundary where
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the Zeeman splitting starts to be larger than the line width
�ν. For B low

1 < B < B low
2 the weak coupling regime at low

field is entered. Here, first-order perturbation theory leads
to a splitting of each line in Fig. 1(i) into a characteristic
number of lines, in our case into 11 lines [Fig. 1(h)]. This
spectrum with three groups at frequency zero, J, and 2 J
fully characterizes the molecular structure and can be viewed
as the dual correspondent of the weak coupled spectrum in
Fig. 1(c). As will be shown later both B low

1 and B low
2 are

boundaries that depend on the line width, the J-coupling
constant, and the gyromagnetic ratios. The line width in
ultralow field is dominated by the T2 relaxation time and not
by field inhomogeneity. For B > B low

2 , the strong coupling
regime is entered from the low-field side and second- and
higher-order perturbation theory leads to an increasing line
splitting until the maximum number of lines (here 16) is
reached [Fig. 1(g)]. For B > B low

C
[Fig. 1(f)], the group of lines

at zero frequency starts to overlap with the group of lines at
frequency J.

In the following the corresponding mathematical expres-
sions for these boundaries B

up
i and B low

i are derived, the spectra
below and above B

up
i and B low

i are analyzed, and the maximum
number of lines is accounted for. The transition frequencies of
the S-IN group in high and in low field can be extracted from
the eigenvalues obtained by diagonalization of the Hamilton
operator Eq. (1), then expanding the eigenvalues in a Taylor
series up to the second order and by applying the selection rules
in high or in low field. This procedure is shown in Appendices
A and B. Without losing generality, we restrict in the following
to the S-I3 group. In high field we have |νI − νS | � J and from
the Taylor series in the parameter J/(νI − νS) and the selection
rules in high field (see Appendix A) we obtain six transitions
of the S spin near νS :

ν1 = νS − 3
2J − 3

4J 2
/

(νI − νS) (2)

ν2,4 = νS ∓ 1
2J − 7

4J 2
/

(νI − νS) (3)

ν3,5 = νS ∓ 1
2J − 1

4J 2
/

(νI − νS) (4)

ν6 = νS + 3
2J − 3

4J 2
/

(νI − νS), (5)

and six transitions of the I spin near νI :

ν7,10 = νI ∓ 1
2J − 1

4J 2
/

(νI − νS) (6)

ν8,11 = νI ∓ 1
2J + 1

4J 2
/

(νI − νS) (7)

ν9,12 = νI ∓ 1
2J + 3

4J 2
/

(νI − νS). (8)

These transitions are illustrated in Fig. 1(d). The spectrum
of the S-I3 group in high field [Fig. 1(c)] reflects the
well-known J-coupled doublet at frequencies νI ± 1

2J and
the quartet at frequencies νS ± 3

2J and νS ± 1
2J . This first-

order line splitting is observable if �ν < J . Therefore,
coming from high field, B

up
1 is the magnetic field strength

at which the J-coupling structure appears for the first
time.

The doublet and quartet structure is maintained down to
B = B

up
2 . Below B

up
2 the I-spin spectrum starts to split into a

pair of three lines [Fig. 1(d)]. According to Eqs. (6)–(8) the line
splitting between these three lines is J 2/[2(νI − νS)]. Thus we
can define the upper boundary B

up
2 by the requirement that the

splitting starts to be observable if �ν < J 2/[2(νI − νS)]. So

the upper boundary B
up
2 is given by

B
up
2 = J 2/[2�ν(γI − γS)]. (9)

An inspection of the S-IN transition frequencies for N �= 3
shows that for the I spin B

up
2 is valid independent of N (see

Appendix A). This is not so for the S spin [27] where according
to Eqs. (3) and (4) the splitting is given by 3J 2/[2(νI − νS)].
In a similar way we can define B

up
3 by inspection of third-

order perturbation theory (not shown here). As a result, for
�ν < 3J 3/4 (νI − νS)2, a further splitting occurs as shown in
Fig. 1(e). Thus the high-field boundary to third order is

B
up
3 =

√
3J 3/[4�ν(γI − γS)2]. (10)

From Eqs. (5) and (6) the field B
up
C where the group of I

transitions start to overlap with the group of S transitions can
be derived as B

up
C = (1 + 1/

√
2)J/(γI − γS).

In order to derive the lower boundaries B low
i , we need to

calculate the transition frequencies by applying perturbation
theory close to zero field, where J � (νI − νS) is valid. The
procedure for arbitrary N is shown in Appendix B. Expanding
the exact transition frequencies into a Taylor series up to the
second order in the parameter (νI − νS)/J , we obtain for the
S-I3 group 16 transition frequencies. These transitions are
arranged into three groups [Fig. 1(g)]. The first group consists
of eight transitions close to zero frequency, which we define
as the zero-frequency transitions (0 transitions):

ν1,2 = 1

2
(νI + νS) ∓ (νI − νS)2

4J
(11)

ν3,6 = 1

4
(3νI + νS) ∓ 3 (νI − νS)2

32J
(12)

ν4,5 = 1

4
(3νI + νS) ∓ (νI − νS)2

32J
(13)

ν7,8 = 1

4
(5νI − νS) ∓ (νI − νS)2

32J
. (14)

The second group consists of two transitions centered near the
frequencyJ , which we call the J transitions:

ν9,10 = J ∓ 1

2
(νI + νS) ± (νI − νS)2

4J
. (15)

The third group consists of six transitions near frequency 2J :

ν11,16 = 2J ∓ 1

4
(5νI − νS) + 7 (νI − νS)2

32J
(16)

ν12,15 = 2J ∓ 1

4
(3νI + νS) + 7 (νI − νS)2

32J
(17)

ν13,14 = 2J ∓ 1

4
(νI + 3νS) + 3 (νI − νS)2

32J
. (18)

At B = 0 the spectrum predicted by Eqs. (11)–(18) reduces to
three lines at frequencies 0, J, and 2 J [Fig. 1(i)]. For B low

1 <

B < B low
2 we have νI − νS � J so the second-order terms

proportional to (νI − νS)2 in Eqs. (11)–(18) can be neglected
and 11 first-order transitions remain. These 11 transitions
[Fig. 1(h)] are identified as three zero-frequency transitions at
ν1 = 1

2 (νI + νS) , ν2 = 1
4 (3νI + νS) , and ν3 = 1

4 (5νI − νS) ,
two J transitions, and six 2 J transitions. Their frequencies
result from linear combinations of γI and γS . The coefficients
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of these linear combinations define new total gyromagnetic
ratios, which reflects the relative spin orientation of all coupled
spins. The general form of these linear combinations for
arbitrary N is shown in Appendix B. Note if γI → γS all the J
and 2 J transitions Eqs. (15)–(18) vanish because homonuclear
J couplings between magnetically equivalent spins cannot
be observed [6]. Furthermore, all three 0 transitions, ν1–ν3,
collapse to the trivial case of one observable line at frequency
ν0 = γIB.

The first lower boundaryB low
1 starting from zero is the field

B from where the first splitting is observable. From Eqs. (11)
to (18) we see that the largest splitting is given by Eq. (15). It
is observable if �ν < (γI + γS) B. Therefore B low

1 is given by

B low
1 = �ν/(γI + γS). (19)

We can show that Eq. (19) is valid for N = 1, 3 but for N =
2, 4 Eq. (19) is modified by B low

1 = 3�ν/[2(γI − γS)] (see
Appendix B). The next lower boundary B low

2 can be found
from Eqs. (11)–(18) by identifying the largest line splitting,
which is proportional to (νI − νS)2. The J and 2 J lines do not
split further but the three zero transitions at B low

1 < B < B low
2

split successively into eight lines once B > B low
2 . The largest

splitting given by Eq. (11) is (νI − νS)2/2J so B low
2 can be

derived from the condition �ν < (νI − νS)2/2J , giving

B low
2 =

√
2�νJ

(γI − γS)2 . (20)

We found that no further lower boundaryB low
3 exists that would

increase the number of lines, so for B > B low
2 the maximum

number of 16 lines is reached. From Eqs. (14) and (15) the
field B low

C where the 0 transitions start to overlap with the J
transitions can be estimated as B low

C ≈ 4J/(7γI + γS).
In summary the strong coupling regime B low

2 < B < B
up
2

for the S-I3 group in terms of the field B is given by√
2�νJ

(γI − γS)2 < B <
J 2

2�ν (γI − γS)
. (21)

We can express Eq. (21) in an elegant way by introducing the
dimensionless parameter (νI − νS)/J . From the two condi-
tions for the strong coupling boundary, �ν < J 2/2 (νI − νS)
for B

up
2 and �ν < (νI − νS)2/2J for B low

2 , we see that the
strong coupling regime in the parameter (νI − νS)/J is

2�ν

νI − νS

<
νI − νS

J
<

J

2�ν
. (22)

One can show that the right side of Eq. (22) is valid independent
of N, while the left side of Eq. (22) holds for odd N but has to be
multiplied by a factor 1/2 for even N (see Appendices A and
B). The dual correspondence of the two weak coupling regimes
at high (Bup

2 < B < B
up
1 ) and low field (B low

1 < B < B low
2 )

has the following meaning: For B
up
2 < B < B

up
1 the dominant

Zeeman interaction defines the nuclear spin species and the J
coupling is a small perturbation whose characteristic splitting
defines the internal molecular fields and the number of coupled
spins. For B low

1 < B < B low
2 the dominant interaction is the J

coupling, which is a measure of the internal field, and the small
perturbation is the Zeeman interaction whose characteristic

splitting defines the nuclear spin species and the number of
coupled spins.

III. EXPERIMENTAL VERIFICATION OF THE
UPPER BOUNDARIES

Typical numerical values for B
up
i and B low

i can be calculated
from the theory if we assume J-coupled NMR spectroscopy of
a 13CH3 group with γH = 42.57 MHz/T, γC = 10.78 MHz/T
and by choosing 1JH,C = 140 Hz and �ν = 0.33 Hz. From
Eqs. (9), (10), (19), and (20) we get B

up
2 = 10−3 T, B

up
3 =

8.3 × 10−5 T, B low
1 = 6.2 × 10−9 T, and B low

2 = 3 × 10−7 T. In
order to test the upper boundaries B

up
2 and B

up
3 experimentally

we built a low-field NMR spectrometer [see Fig. 2(a)] that
measures high-resolution NMR spectra at nuclear Larmor
frequencies ranging 5–250 kHz. We improved the low-field
NMR setup as described in Ref. [22] to gain higher signal-to-
noise ratio and higher spectral resolution. The signal-to-noise
ratio is improved by prepolarizing the sample in a 2-T Halbach
magnet and by employing a radio frequency shield, which
surrounds the receiver coil and the preamplifier [16,39]. The
spectral resolution is improved to reach the ppm range by using
a two-coil electromagnet (60-cm diameter), which produces a
magnetic field B in the range 2 × 10−4 T < B < 5 × 10−3 T
with a homogeneity of about 1 ppm/cm3. For measurements
in Earth’s field (5 × 10−5 T) we used a high-resolution Earth’s
field NMR spectrometer [Fig. 2(a), left] [19,22]; 0.2 cm3 of
99% 13C-enriched methanol (HO-13CH3) is used as an example
for the S-I3 group. The labile OH proton is not involved into the
J-coupled network and therefore gives rise to a free proton line
at the Larmor frequency ν0 = γHB. 13C NMR signals down to
41 kHz Larmor frequency (3.92 × 10−3 T) can be measured
in a single scan. This is demonstrated in the inset of Fig. 2(b),
which shows the free induction decay (FID) of 13C nuclei from
methanol. The corresponding 13C spectrum in Fig. 2(b) shows
a quartet structure with a line separation of 1JH,C = 140.5 Hz.
The corresponding 1H FID measured at 167 kHz is shown in
the inset of Fig. 2(c). The 1H spectrum shows a doublet split
by 1JH,C and the free proton line of the OH group, which is
located in the center between the two doublet lines. The form of
both spectra is exactly what is expected from high-field NMR
except in high field (say at 500 MHz) the position of the OH
line would be shifted by about 750 Hz from the central position
of the 13CH3 doublet due to the chemical shift difference of
|δOH − δCH3| = 1.5 ppm.

The high-field boundaries B
up
2 and B

up
3 can be proved

experimentally by measuring J-coupled NMR spectra at
different fields. Figures 3(a)–3(d) show four 1H methanol
(13CH3-OH) spectra measured at B = 3.93 × 10−3 T, 9.88 ×
10−4 T, 2.5 × 10−4 T, and 4.84 × 10−5 T (Earth’s field).
The lower traces correspond to the measured spectrum and
the upper traces to simulations based on the density matrix
and product operator formalism [28]. From the spectra we
obtain 1JH,C = 140.5 Hz and the experimental line widths
of �ν = 0.83 Hz for Fig. 3(a), �ν = 0.32 Hz for Fig. 3(b)
and 3(c), and �ν = 0.26 (0.38) Hz for the singlet (triplet)
lines in Fig. 3(d). Neither 1H doublet line in Fig. 3(a) is split.
But at 9.88 × 10−4 T [Fig. 3(b)] each doublet line starts to
split into three lines. This is expected according to Eq. (9),
which predicts a splitting into three lines below B

up
2 = 10−3 T.
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FIG. 2. Experimental setup.
(a) Earth’s field NMR (left) and
low-field NMR (right). The liquid
sample (0.2 cm3) is prepolarized
by a 2-T Halbach magnet and then
placed into the pick-up coil of
either NMR spectrometer. The free
induction decay (FID) is measured
following a 90◦ pulse excitation. (b)
NMR spectroscopy of 13C-enriched
methanol at B = 3.92 × 10−3 T.
(Left) Single scan FID of 13C (insert)
and corresponding 13C spectrum
at 42 kHz. (Right) Single scan 1H
FID (insert) and corresponding 1H
spectrum at 167 kHz. The measured
J-coupling constant is 1JH,C =
140.5 Hz. The central line corresponds
to the OH group at frequency νH =
167.14 Hz.

This splitting is more pronounced at lower field [Fig. 3(c)]. At
4.8 × 10−5 T [Fig. 3(d)] each central line of the two triplets
in Fig. 3(c) is split further into two lines, which results in a
pair of four lines. This splitting is explained by third-order
perturbation theory [27] below B

up
3 = 8.3 × 10−5 T. The pair

of four lines can also be explained by the vector model [22,23],
which states that one proton of the 13CH3 group is observed and
the other two protons are strongly coupled to either a singlet
or a triplet state. These four states split the single resonance
of each doublet line into four lines. All experimental results
are in excellent agreement with the simulations and with the
predictions for the upper boundaries.

IV. COMPLEXITY OF THE S-IN GROUP FOR B < Bup
2

A. S-I3 spectrum versus magnetic field

As there is good agreement between all experiments and
simulations in the range 5 × 10−5 T < B < 4 × 10−3 T we
can compare our theoretical predictions with simulations in
the field range 0 < B < 10−4 T. The eight simulated spectra in
Fig. 4 of the J-coupled 13CH3 group (1JH,C = 140.5 Hz, �ν =
0.33 Hz) show the evolution from a simple spectrum at high
field [Fig. 4(a)] to a spectrum with high complexity [Fig. 4(d)]
and back to a simple spectrum at zero field [Fig. 4(h)]. For the
simulations, the detection operator I det = γSSx + γI

∑N
k=1 Ikx

is used. The 1H doublet and 13C quartet of Fig. 4(a) serves as a
reference in high field. They agree well with the experimental
result in Fig. 2(b). For B = 10−4 T [Fig. 4(b)], each doublet line
splits into three lines [as in Fig. 3(b)] and for the 13C spectrum
six lines are observed. The six 13C lines, as predicted by
Eqs. (2)–(5), can also be explained by the vector model, where
three strongly coupled protons form either a quartet (total spin
3/2) or a doublet (total spin 1/2) [22]. At 10−5 T [Fig. 4(c)]
still six 13C lines are visible while the 1H spectrum splits into
a pair of four lines. In addition, two further lines appear at

frequencies 790 and 900 Hz. Quantum mechanics reveals that
the two lines can be explained by a three-quantum process
where simultaneously two protons flip down and the carbon
nucleus flip up or vice versa, so the total z magnetization
changes by ±1. This three-quantum process can occur with
the remaining proton spin of the 13CH3 group either in the
up or down position. The total number of 16 (8 + 6 + 2)
transitions in Fig. 1(c) does not increase further when the
field is further decreased. So the maximum number of 16 lines
is a result of an “extended” vector model with single- and
triple-quantum transitions. At 2 × 10−6 T [Fig. 4(d)] the three
groups of Fig. 4(c) start to mix. This 16-line spectrum has
the highest complexity in the sense that there is no obvious
ordering and that perturbation theory does not converge
and is not applicable. For B = 6 × 10−7 T, which is above
B low

2 = 3 × 10−7 T [Fig. 4(e)], the number of lines is reduced
from 16 to 12 and these lines group into four transitions close
to zero, into two lines near frequency J and into a pair of three
lines near frequency 2 J. For B = 2 × 10−7 T [Fig. 4(f)], the
weak coupling regime B low

1 < B < B low
2 applies, and 11 lines

appear as expected by the theory. Above the lower boundary
B low

1 = 6.2 × 10−9 T [Fig. 4(g)], the first splitting appears at
J and 2 J. For B < B low

1 and at B = 0, the spectrum collapses
into three lines at frequencies zero, J, and at 2 J [Fig. 4(h)].
The simulated and calculated zero-field spectrum agrees with
a recent experimental result published by Ledbetter et al.
[13], who measured the zero-field spectrum of 13C-enriched
methanol by using an atomic magnetometer located inside a
magnetic shield. Unfortunately, the zero-field spectrum is not
suited to characterize a chemical group in an unambiguous
way. In the following this issue is discussed.

B. Physics of S-IN spectra close to zero field and selection rules

Until now we have no physical model for the observed
transitions close to zero field (0 < B < 10−7 T) and no
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FIG. 3. Comparison between simulated (upper traces) and exper-
imental (lower traces) 1H spectra of 99% 13C-enriched methanol
measured at four different frequencies. The central OH line is
not shown. The differences in the measured line widths (see
text) come from external field fluctuations, fluctuations of the
current supply, temperature variations of the sample, and from
the field inhomogeneity (∼10−6/cm3) of the electromagnet. The
deviations between experiment and simulation in Fig. 3(d) with
respect to the signal amplitudes of the two central lines can be
explained by a line narrowing (broadening) due to formation of a
singlet (triplet) state [22], which is not taken into account for the
simulations.

explanation for the maximum number of lines of the S-IN
group. Consider the energy level diagrams of the S-IN group
for N = 1–4 (Fig. 5). At B = 0, the energy levels of the S-IN
group are given only by the internal molecular fields. The
zero-field energies are calculated from diagonalization of H het

in Eq. (1) to be +J/4 and −3 J/4 for the S-I group, +J/2,
0, and −J for the S-I2 group, +3J/4, J/4, −3 J/4, and −5
J/4 for the S-I3 group and +J, J/2, 0, −J, and −3J/2 for the
S-I4 group (see Appendix B). Every energy level is associated
with a total spin F = FS + FI . The S spin can assume the two
possible values FS = ±1/2 with respect to the total I spin with
total quantum number FI = (N/2) − k. The number k runs
from k = 0, 1, . .N/2 for even N and k = 0, 1, . .(N − 1)/2
for odd N. For example, the 3 J/4, J/4, −3 J/4, and −5 J/4
energy level for S-I3 is associated with a total spin of F = 2, 1,
0, and 1, respectively. When a weak magnetic field is applied
each total spin state F splits into 2F +1 Zeeman levels. As
long as |νI –νS | � J, all transitions inside one F multiplet are
equal.

Let us discuss the allowed transitions. Consider the
detection operator I det = γSSx + γI

∑N
k=1 Ikx . The selection

rules follow by inspection of the transition probabilities
|〈�i|I det|�j〉|2, where �i and �j are two different eigenfunc-
tions of the Hamiltonian Eq. (1). The possible transitions in

Fig. 5 are indicated by solid, dashed, and dotted arrows, which
are associated with the 0 transitions, with the J and 3J/2
transitions and with the 2 J and 5 J/2 transitions, respectively.
For the zero transitions the following three selection rules are
valid: 1) �F = 0; 2) �FS = 0; and 3) �mF = ±1, where
FS = ±1/2 and mF is the total magnetic quantum number
along the z direction of the B field. The meaning of this
selection rules is that the total spin vector F does not change its
length but F changes its orientation such that the z projection
of the total angular momentum of the photon (±h̄) and the spin
system is conserved. The dashed and dotted arrows result from
a second set of selection rules: 1) �F = ±1; 2) �FS = ±1;
and 3) �mF = ±1. For example, for the S-I3 system the
transitions from F = 2 (E = 3 J/4) to F = 1 (E = J/4) and
from F = 0 (E = −3 J/4) to F = 1 (E = −5 J/4) are forbidden
because the second selection rule �FS = ±1 is violated. The
origin of �FS = ±1 is based on the fact that homonuclear
J couplings between magnetically equivalent spins cannot
be measured [6]. In other words, the radio frequency field
cannot change the relative orientations of the I spins but
can change the relative orientation between the S and all
the other I spins. Note that the flip or flop process of the
S spin (�FS = ±1) is associated with a sign change in the
energies of the two multiplets involved. If B low

1 < B < B low
2

(weak coupling regime) then all zero transitions associated
to one multiplet F become degenerate. So the S-IN system
for N = 1 has one (ν1), for N = 2,3 three (ν1 − ν3), and
for N = 4 five different zero transitions (ν1 − ν5). The total
number of lines for N = 1–4 for B low

1 < B < B low
2 are three,

six, 11, and 17, respectively. For B > B low
2 second- and

higher-order terms lift the degeneration of the zero transitions
inside each F multiplet and the maximum number of lines
can be observed. For example, the S-I3 system has eight
possible zero transitions (solid arrows), two J transitions
(dashed arrows), and six 2 J transitions (dotted arrows). For N
= 1–4, the maximum number of lines is four, nine, 16, and 25,
respectively. In general, the maximum number of lines for the
S-IN group is (N + 1)2. The proof of this statement is given in
Appendix C.

The spectra close to zero give rise to the question whether
or not we need a magnetic field in order to identify a chemical
group in a unique way. Does the zero-field spectrum provide
sufficient information to identify the chemical environment of
the spins? Consider the left side of Figs. 6(a)–6(e), which
shows five simulated zero-field spectra for five different
chemical groups 13CH, 15NH2, 13CH2, 13CH3, and 13CH4.
Obviously the positions of the lines in the zero-field spectra
depend on the strength of 1JH,C and on the number of coupled
spins. This is why in Fig. 6 all (except the zero) line positions
in the zero-field 13CHN spectra are different. Unfortunately
the zero-field spectrum cannot be taken as a fingerprint of the
molecular structure because it is neither possible to determine
the nuclear spin species nor the number of nuclear spins
involved. For example, the two zero-field spectra of 13CH
and 15NH2 in Figs. 6(a) and 6(b) cannot be distinguished.
Both spectra have one line at zero and at 140 Hz because
1JH,C ∼ 140 Hz �=1 JH,N ∼ 85–95 Hz but the position of the
lines are at 1JH,C and 3 1JH,N/2. The situation is different if
a small field in the weak coupling regime B low

1 < B < B low
2 is

applied. The Zeeman splitting can be used to distinguish the
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FIG. 4. Simulated spectra of the 13CH3

group from high field to zero field. The dotted
lines indicate the Larmor frequencies νC and νH.
JH,C = 140.5 Hz, and all line widths are �ν =
0.33 Hz. Simulated 1H doublet and 13C quartet at
(a) 3.93 × 10−3 T in the weak coupling regime;
(b) in the strong coupling regime at 10−4 T, where
for B > B

up
3 six 13C lines and a pair of three 1H

lines appear; (c) 10−5 T (B < B
up
3 ), where the

1H spectrum splits into a pair of four lines and
two additional combination lines appear; (d) 2 ×
10−6 T, where the most complex spectrum with
16 lines can be observed; (e) 6 × 10−7 T, where
the spectrum starts to reduce to 12 lines; (f) 2 ×
10−7 T (weak coupling regime), where 11 lines
are packed in three groups; (g) just above B low

1 ,
where the splitting into 11 lines is still visible,
and (h) B = 0, where the spectrum reduces to
only three lines.

different groups. From the line splitting of the five spectra on
the right side of Figs. 6(a)–6(e) we can deduce the number N
of I spins and the gyromagnetic ratios of I and S. The number
N of coupled I spins is encoded by the number of 2 N Zeeman
lines centered around the frequencies J, 3 J/2, 2 J, and 5
J/2. The gyromagnetic ratios γI and γS can be calculated
explicitly from the zero transitions. For example, from the
three zero transitions ν1 = 1

2 (νH + νC) , ν2 = 1
4 (3νH + νC) ,

and ν3 = 1
4 (5νH − νC) of the 13CH3 group we get γH =

(ν2 + ν3)/2B and γC = (3ν1 − 2ν2)/B.

V. CONCLUSION AND OUTLOOK

We presented theoretical and experimental NMR studies
of the weak and strong coupling regimes together with their
associated upper and lower boundaries for the magnetic
field. The NMR spectrum of the S-IN group for the lower
weak coupling regime B low

1 < B < B low
2 contains sufficient

information to determine the structure of the S-IN group
unambiguously. The small field of ∼10−7 T required for
the assignment of molecular groups does not need to be
homogeneous. In fact a homogeneity of only �B/B ∼ 10−3

FIG. 5. Energy level diagram of four differ-
ent S-IN groups (N = 1–4) in ultralow magnetic
field (B < B low

2 ). F is the total spin of each
energy level. The groups of up and down arrows
correspond to the spin configuration of each
energy level. The circle around the arrow denotes
the S spin. Allowed transitions are indicated by
the solid arrows (0 frequency transitions), dashed
arrows (J and 3 J/2 transitions) and dotted arrows
(2 J and 5 J/2 transitions).
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FIG. 6. Simulated J-coupled NMR spectra
(�ν =0.33 Hz) near zero field for different
molecular groups. (a) 13CH, (b) 15NH2, (c)
13CH2, (d) 13CH3, and (e) 13CH4. Spectra are
shown at zero field (left) and in the weak
coupling regime at 2 × 10−7 T (right). The
two spectra on the left in (a) and (b) do not
differ, so the 13CH and 15NH2 group cannot
be distinguished at zero field. At 2 × 10−7 T
different line splittings arise in the spectra. The
number of lines as well as their separations
determine the group in a unique way (see text
for details).

would produce a 1H line broadening of less than 0.004
Hz, which is absolutely acceptable in high-resolution NMR
spectroscopy.

One open question is how to determine structures of large
molecules, such as proteins. We found by simulations that
the spectrum close to zero field of two and more J-coupled
molecular groups is very complicate. We do not know yet how
to elucidate the molecular structure given these complicate
spectra. More theoretical and experimental studies close to
zero field need to be done. Another problem is the low signal-
to-noise ratio due to the large number of line splittings at low
field, especially for large molecules with rare spins in natural
abundance. This problem might be solved by a combination
of hyperpolarization technologies [29–37] with new sensitive
detection methods such as atomic magnetometers [24] or
nanosensors on diamond basis [38].

Up to now we have neglected the loss of the chemical
shift information at low fields. The chemical shift is a very
important additional parameter for multidimensional NMR
spectroscopy. Fortunately, it has been found recently, that at
low field, small chemical shift differences can be measured
even below the resolution limit imposed by the line width [39].
Therefore an intriguing vision for the future is a mobile,
low-field, high-resolution NMR spectrometer, the field of
which can be scanned and the basic elements of which are
a prepolarization unit such as a Halbach magnet or some other
hyperpolarizing unit, a low-cost Helmholtz coil, a detector
such as a miniaturized atomic magnetometer [13], and a
magnetic shield.

Finally we mention that systems like the strongly coupled
S-IN group with a maximum of (N + 1)2 lines might be
candidates for NMR quantum computing, because the large
number of lines comes from rather simple molecular structures
that built a network of entangled qubits with long decoherence
times. Resuming all facts it is likely that mobile low-field NMR
spectroscopy will develop toward a powerful analytical tool
and might also play a significant role in the field of quantum
information processing.
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APPENDIX A: TRANSITION FREQUENCIES OF THE S-IN

SYSTEM AT HIGH FIELD

The transition frequencies of the S-IN system can be
extracted from the 2(N+1) eigenvalues obtained by diagonal-
ization of the Hamilton operator (1) in the Zeeman eigenbasis
and by applying the selection rules at high field. An adequate
set of quantum numbers at high field is given by the magnetic
quantum number mS = ±1/2 of the S spin, the total I spin
FI � 0, and the corresponding magnetic quantum number
mI , for which −FI � mI � FI . The possible values for
the total I spin are FI = (N/2) − k where k = 0, 1, . .N/2
for even N, and k = 0, 1, . .(N − 1)/2 for odd N. Each
energy level can be expressed as a function of FI ,mI

and mS :

E (FI ,mI ,mS) = (mI + mS) νI − J

4
+ mS

×
√

(FI + 1/2)2J 2 + 2J (mI + mS)(νS − νI ) + (νS − νI )2.

(A1)

Equation (A1) is valid for arbitrary fields B. At high field we
have |νS − νI | � J and a Taylor expansion for the square
root in Eq. (A1) up to second order in the small parameter
x = J/(νI − νS) leads to

E(FI ,mI ,mS)

= mIνI + mSνS +
[
mS (mI + mS) − 1

4

]
J

+ mS

2
[(FI + 1/2)2 − (mI + mS)2]

J 2

νS − νI

. (A2)

The transition frequencies of the I spin up to second order are
determined by Eq. (A2) and by the I-spin selection rules at
high field �mI = ±1, �mS = 0. This results in

E (FI ,mI ,mS) − E (FI ,mI − �mI ,mS)

=�mIνI + mS�mIJ + mS�mI

× 2 (mI + mS) − �mI

2

J 2

νI − νS

. (A3)

The transition frequencies of the S spin up to second order
are determined by Eq. (A2) and by the S-spin selection rules
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�mS = ±1, �mI = 0, giving

E(FI ,mI ,mS) − E(FI ,mI ,mS − �mS)

= �mSνS + �mS(2mS + mI − �mS)J + �mS

2
×{mS[2(mI + mS) − �mS] − (FI + 1/2)2

+ (mI + mS − �mS)2} J 2

νI − νS

. (A4)

According to Eqs. (A3) and (A4), the transition fre-
quencies of the S-I system up to second order are
ν1,2 = νS ∓ J/2 − J 2/[4 (νI − νS)] and ν3,4 = νI ∓ J/2 +
J 2/[4 (νI − νS)]. They define two doublets at center frequency
νS and νI both split by J . The second-order terms shift the
doublet at center frequency νS by −J 2/[4(νI − νS)] and the
doublet at center frequency νI by J 2/[4 (νI − νS)].

The S-spin transition frequencies of the S-I2 system at
high field up to second order are given by ν1,4 = νS ∓
J − (1/2)J 2/(νI − νS), ν2 = νS − J 2/(νI − νS) and ν3 = νS .
These frequencies specify four transitions grouped around νS ,
where for ν3 = νS both I spins are in the singlet state and
for the other three transitions the two I spins are in the triplet
state. The I-spin transition frequencies are ν5,7 = νI ∓ J/2 and
ν6,8 = νI ∓ J/2 + (1/2)J 2/(νI − νS). The S-spin splitting
J 2/(νI − νS) between ν2 and ν3 is twice as large as for the
I spin.

APPENDIX B: TRANSITION FREQUENCIES OF THE S-IN

SYSTEM AT LOW FIELD

The transition frequencies of the S-IN group at low field can
be obtained from Eq. (A1) and by introducing an appropriate
set of quantum numbers. At low field |νI − νS | � J so mS and
mI are not good quantum numbers. The dominant quantum
axis is defined by the J coupling between the S spin and all
other I spins. So the good quantum numbers are the total spin
F = FI + FS [with FI = (N/2) − k] and the corresponding
magnetic quantum number mF = mS + mI with its possible
values −F � mF � F . For FI �= 0 the two possible values
for the S spin with respect to the I spins are FS = ±1/2. If
FI = 0 (singlet F state) FS = +1/2 is single valued since the
direction of the I spins relative to the S spin is not defined.
From Eq. (A1) the possible energy levels can be expressed as
a function of FI , FS and mF :

E(FI , FS,mF ) = mF νI − J

4
+ FS

×
√

(FI + 1/2)2J 2 + 2mF J (νS − νI ) + (νS − νI )2. (B1)

At low field we have |νI − νS | � J and a Taylor expansion
for the square root in Eq. (B1) up to second order in the small
parameter x = (νS − νI )/J leads to

E(FI , FS,mF )

=
[
FS (FI + 1/2) − 1

4

]
J +

[
1 − FS

FI + 1/2

]
mF νI

+
[

FS

FI + 1/2

]
mF νS + FS

(FI + 1/2)2 − m2
F

2 (FI + 1/2)3

(νS − νI )2

J
.

(B2)

The first term in Eq. (B2) is the energy of the J coupling at
zero field, the second and third term describes the Zeeman
splitting proportional to B, and the fourth term is a quadratic
correction term in the B field. From the selection rules at
low field for the 0 transitions (e.g., �F = 0, �FS = 0,
and �mF = ±1) the following 0 transition frequencies are
obtained:

E(FI , FS,mF ) − E(FI , FS,mF − �mF )

=
[

1 − FS

FI + 1/2

]
νI +

[
FS

FI + 1/2

]
νS

−FS

1 − 2�mF mF

2 (FI + 1/2)3

(νS − νI )2

J
. (B3)

All transitions in Eq. (B3) for which FI + FS = 0 (singlet F
state) is valid have to be excluded since there is no transition
associated to a singlet state. From the selection rules for the
J transitions (e.g., for �F = +1, �FS = +1, �mF = ±1)
we obtain the following J-transition frequencies:

E(FI , FS,mF ) − E(FI , FS − 1,mF ′ − �mF )

= (FI + 1/2)J +
[
�mF − FS · �mF +mF − �mF

FI + 1/2

]
νI

+
[

FS�mF + mF − �mF

FI + 1/2

]
νS

+ (FI + 1/2)2 − m2
F − (FS − 1) (2�mF · mF − 1)

2 (FI + 1/2)3

× (νS − νI )2

J
. (B4)

Equation (B4) is defined only for FI > 0. The linear combi-
nations (αγI + βγS)B, where α and β are identical with the
two terms in the square brackets in Eqs. (B3) and (B4), define
the new gyromagnetic ratios. For γI → γS only one transition
in Eq. (B3) at frequency νI = γI · B remains.

From Eqs. (B3) and (B4) the explicit expressions for the
S-I system can be derived. The two 0 transitions are ν1,2 =
(1/2) (νI + νS) ∓ (νI − νS)2/4J and the two J transitions
are given by ν3,4 = J ∓ (1/2) (νI + νS) + (νI − νS)2/4J . To
first order (B low

1 < B < B low
2 ) the S-I group has one zero

transition at ν1 = (1/2) (νI + νS) and two J transitions at
frequencies ν2,3 = J ∓ (1/2) (νI + νS) [Fig. 5(a)]. The five
0 transitions for the S-I2 system to second order are given
by ν1 = νS , ν2,4 = (1/3) (2νI + νS) ∓ 4 (νI − νS)2/27J , ν3 =
(1/3) (2νI + νS), and ν5 = (1/3) (4νI − νS). The correspond-
ing four 3 J/2 transitions are given by ν6,9 = 3J/2 ∓ νI +
8 (νI − νS)2/27J and by ν7,8 = 3J/2 ∓ (νI /3 + 2νS/3) +
4 (νI − νS)2/27J . To first order the S-I2transitions are re-
duced to three 0 transitions, ν1 = νS , ν2 = (1/3) (2νI + νS),
and ν3 = (1/3) (4νI − νS) and four 3 J/2 transitions
at ν4,7 = 3J/2 ∓ νI and at ν5,6 = 3J/2 ∓ (νI /3 + 2νS/3)
[Fig. 5(b)].

APPENDIX C: PROOF OF THE MAXIMUM NUMBER
OF LINES FOR THE S-IN SYSTEM

We proof for odd N that the maximum number of lines
for the S-IN system is (N + 1)2. The proof for even N is

023420-9



S. APPELT et al. PHYSICAL REVIEW A 81, 023420 (2010)

similar. Consider the two cases N = 1, 3 in Figs. 5(a)
and 5(c). We can divide the states with total spin F =
FI ± 1/2, with FI = (N/2) − k into spin states F+

(k) = FI +
1/2 = (N + 1)/2 − k (k = 0, 1, . .(N + 1)/2) with positive
energy and into states F−

(k) = FI − 1/2 = (N − 1)/2 − k (k =
0, 1, . .(N − 1)/2) with negative energy. Each F state has 2F
possible zero-frequency transitions so the total number of 0
transitions is

(N+1)/2∑
k=0

2F+
(k) +

(N−1)/2∑
k=0

2F−
(k)

=
(N+1)/2∑

k=0

(N + 1 − 2k) +
(N−1)/2∑

k=0

(N − 1 − 2k)

= N + 1 − 2[(N + 1)/2] +
(N−1)/2∑

k=0

(2N − 4k)

= 2
(N−1)/2∑

k=0

N − 2k. (C1)

The total number of J transitions for odd N can be derived
by inspection of Fig. 5. Obviously the number of possible
transitions from each level F−

(k) is twice the total number of
levels of theF−

(k) multiplets, so eachF−
(k) multiplet is associated

to 2(2F−
(k) + 1) transitions. Therefore, the total number of

J transitions is given:

2
(N−1)/2∑

k=0

(2F−
(k) + 1) = 2

(N−1)/2∑
k=0

{2 [(N − 1) /2 − k] + 1}

= 2
(N−1)/2∑

k=0

N − 2k. (C2)

The last expressions in Eqs. (C1) and (C2) involve the sum
over the first (N + 1)/2 odd numbers, which is identical to
[(N + 1) /2]2. The total number of 0 and J transitions is given
by the sum of Eqs. (C1) and (C2), which results in

4
(N−1)/2∑

k=0

N − 2k = 4

(
N + 1

2

)2

= (N + 1)2. (C3)

This completes the proof for odd N. A similar proof holds for
even N with the difference that the sum is taken over even
numbers and that the total number of 0 transitions is higher by
one than the total number of J transitions. Finally we note that
all possible combination lines at high field (the flip (or flop)
process of two I spins combined with the flop (or flip) process
of one S spin [2]) transform at ultralow field to the sum of all
possible 0 transitions of those multiplets with negative energy
(see Fig. 5). Therefore the total number of combination lines
for the S-IN system is given by

∑(N−1)/2
k=0 2F−

(k). For N = 2, 3,
and 4 we have one, two, and four combination lines.
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