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Spin effects in double photoionization of lithium
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We apply the nonperturbative convergent close-coupling (CCC) and time-dependent close coupling (TDCC)
formalisms to calculate fully differential energy and angular resolved cross sections of double photoionization
(DPI) of lithium. The equal energy sharing case is considered in which dynamics of the DPI process can be
adequately described by two symmetrized singlet and triplet amplitudes. The angular width of these amplitudes
serves as a measure of the strength of the angular correlation between the two ejected electrons. This width is
interpreted in terms of the spin of the photoelectron pair.
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I. INTRODUCTION

The lithium atom is the simplest many-electron target
beyond helium which can be studied by means of single-
photon two-electron ionization. Such a double photoionization
(DPI) process is driven entirely by many-electron correlations
and thus offers a sensitive probe of correlated electronic
structure.

Up to now, DPI studies of Li have been limited to the total
integrated cross section (TICS), which was determined over
a wide range of photon energies. Experimentally, the ratio of
double-to-single photoionization cross sections was measured
and then normalized to the known single photoionization
cross section [1,2]. Theoretically, various nonperturbative
computational schemes were applied such as time-dependent
close coupling (TDCC), R matrix with pseudostates (RMPS),
and convergent close-coupling (CCC) methods. The TDCC
calculation above the double K-shell ionization threshold [3]
compared favorably with experimental data [4]. Below this
threshold, both the TDCC and RMPS theories [5] as well
as the CCC theory [6] produced very similar DPI cross
sections. However, the peak cross-section value was about
15% higher than the corresponding experimental maximum.
This difference can be attributed to normalization of the
experimental data to a somewhat lower single photoionization
cross section obtained in an older calculation [7].

Apart from numerical values, some qualitative features
of DPI of Li can be inferred from experiment and theory.
For instance, by scaling the double-to-single photoionization
cross-section ratio in Li with that of He, Wehlitz et al. [8]
were able to demonstrate the dominance of the intermediate
triplet state 1s2s 3S of Li+ as the precursor of DPI of Li [8].
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A similar conclusion was reached in an explicitly spin resolved
CCC calculation [6].

More insight into the DPI process can be gained from
analyzing the fully differential cross section which is resolved
with respect to the photoelectrons escape angles �1,�2

and energies E1, E2. This quantity is known as the triply
differential cross sections (TDCS), where one of the photo-
electron energies can be deduced from the energy conservation
E1 + E2 = ω − I++

P . Here ω is the photon energy and I++
P =

81.0 eV is the first double ionization potential of Li [9]. In
the present paper, we perform CCC and TDCC calculations of
TDCS of 91-eV photons incident on the ground state of Li and
report our data for the case E1 = E2 = 5 eV.

In addition to numerical results, we offer a general
parametrization of the TDCS which requires a set of fully
symmetric and antisymmetric amplitudes in the singlet and
triplet channels (four amplitudes in total). The case of
equal energy sharing E1 = E2 is particularly instructive as
only a pair of symmetric amplitudes in the singlet and
triplet channel is needed to describe the dynamics of the
DPI process. As the kinematic factors in these channels
are different, one can selectively turn them on and off by
choosing a certain combination of the photoelectron escape
angles. Here we consider the coplanar geometry in which
both photoelectron momenta k1, k2 and direction of the
polarization vector e belong to the same plane. In this case,
the two configurations k1 ⊥ e and k1 ‖ e correspond to the
overwhelming dominance of the singlet and triplet chan-
nels, respectively, with both channels contributing partially
in between.

The dynamics of the DPI process embedded in the
singlet and triplet amplitudes favors antiparallel escape in
order to minimize the Coulomb repulsion between the two
photoelectrons. Correspondingly, both amplitudes peak at the
back-to-back emission and the mutual photoelectron angle
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θ12 = 180◦. The width of the amplitudes around this maximum
indicates the strength of the angular correlation between the
two ejected electrons. This strength turns out to be larger in the
singlet channel as compared to the triplet channel. We interpret
this phenomenon in terms of the spatial exchange symmetry
of the two-electron continuum wave function.

II. FORMALISM

A. CCC method

Application of the CCC method to DPI of Li is described in
detail in our earlier publication [6]. In brief, the ionization
amplitude is written as the matrix element of the dipole
operator between the multiconfiguration initial state 〈0, 1, 2|i〉
and the final multichannel state. The latter is expanded over
the set of channel states, each of which is a product of the
Li+ ion target state 〈0, 1|α〉 and a distorted wave 〈2|k〉. The
target electrons are labeled 0, 1 and the continuum electron
is tagged 2. The label α ≡ NLS comprises the integer N,

which numbers the set of target states, with the given orbital
momentum L and spin S. The expansion coefficients of the
final multichannel state are the corresponding elements of
the half-on-shell T matrix, which is found by solving a
set of integral Lippmann-Schwinger equations. The negative
energy target states Eα < 0 are attributed to single photoion-
ization whereas the positive energy states Eα > 0 contribute
to DPI.

The angular and radial variables are separable in the CCC
formalism. The T -matrix integrated dipole matrix element,
which is stripped of its angular dependence, is written as

Dαl(k) = dαl(k) +
∑
βl′

∑∫
k′

〈αlk ‖T ‖ βl′k′〉 dβl′ (k′)
E − k′2/2 − Eβ + iδ

. (1)

Here k, l denote the linear and angular momenta of the con-
tinuous electron state and E = k2/2 + Eα is the total energy
of the scattering system, which consists of the photoelectron
and the Li+ ion. The bare dipole matrix elements dαl(k)
are expressed via radial integrals containing the ground- and
final-state orbitals and the dipole operator either in the length∑3

j=1 rj or velocity ω−1 ∑3
j=1 ∇j gauges.

The reduced dipole matrix element Eq. (1) is used to
construct the DPI matrix element, which corresponds to
ejection of the photoelectron pair with the linear momenta
k1, k2 and the angular momenta l1, l2:

DS l1l2 (k1, k2) = (−i)l1+l2 ei[σl1 (Z=2) + σl2 (Z=1)]

×Dαl2 (k2) 〈l1k1, 1s ‖ α〉. (2)

Here 〈l1k1, 1s ‖ α〉 is the radial projection of the positive
energy target state α of the matching energy Eα = k2

1/2 to
the final ionized state. The latter state is composed of the
photoelectron l1k1 and the bound electron frozen to the 1s state.
Such a freezing of the target electron corresponds to restriction
of the final double ionized channel to the Li2+ ion in its
ground state. The two photoelectrons are treated on a different
footing. The slow or “inner” photoelectron l1k1 is moving in
the field of the double charged ion whereas the faster “outer”
photoelectron l2k2 experiences the nuclear charge screened by

the inner photoelectron. This explains the expressions for the
Coulomb phases σl in Eq. (2).

This notion of inner and outer electrons makes sense
only when E1 < E2. The equal energy sharing case E1 = E2

requires special treatment. The spin S in Eq. (2) is related to
the positive energy target state 〈0, 1|α〉, with α ≡ NLS but
not the photoelectron pair 1, 2. Indeed, the spin part of the
final-state wave function has the form [10]

χSSM (0, 1, 2) =
∑
M µ

CSM

SM, 1
2 µ

χSM (0, 1)χ 1
2 µ(2), (3)

where the total spin of the collision system is S = 1/2.
Following the development of equal energy sharing e-He
ionization [10], the spins can be recoupled to an alternative
state

χSSM (1, 2, 0) =
∑

S ′=0,1

χS ′SM (0, 1, 2) γSS ′ , (4)

which corresponds to the total spin S of the photoelectron pair.
The recoupling coefficients γSS ′ are expressed via 6j symbols.
The spin transformation (4) leads to an alternative set of DPI
matrix elements,

D̃S l1l2 (k1, k2)

=
∑

S ′=0,1

[(−1)S
′
DS ′ l1l2 (k1, k2) + DS ′ l2l1 (k1, k2)γSS ′ ], (5)

which possesses an explicit exchange symmetry

D̃S l1l2 (k1, k2) = (−1)S D̃S l2l1 (k1, k2) (6)

as the index S now refers to the spin of the photoelectron pair.
The matrix elements (2) for E1 < E2 or the alternative

set (5) for E1 = E2,

FS l1l2 (k1, k2) =
{

DS l1l2 (k1, k2), k1 	= k2,

D̃S l1l2 (k1, k2), k1 = k2,
(7)

are then fed to the following expression for the TDCS, which
takes the form of the partial wave expansion:

d3σ

d�1d�2 dE2
= C

∑
S=0,1

∣∣∣∣∣
∑
l1l2

e · Y l1l2
1 (n1, n2) FS l1l2 (k1, k2)

∣∣∣∣∣
2

,

(8)

where C = 8π2ω/(3c) is the photoionization constant and c 

137 is the speed of light in atomic units. The unit vectors ni =
ki/ki, i = 1, 2, are directed along the photoelectron momenta.
The bipolar harmonics are tensors of rank 1 expressed by the
following tensorial product [11]:

Y l1l2
1 (n1, n2) = Yl1 (n1) ⊗ Yl2 (n2). (9)

The computational implementation has required consid-
erable extension of the present CCC code. The calculations
involve the calculation of the T - and d-matrix elements in
Eq. (2). The former arise upon solution of electron scattering
on the He-like Li+. The CCC formalism for doing so has
been given in [12]. Convergence needs to be established as
a function of the Laguerre basis parameters λl and Nl for
l � lmax. As was done previously, to reduce the number of
free parameters we set λl = λ and Nl = N0 − l, leaving only
three parameters to choose: λ, N0, and lmax. Presently, we took
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λ = 2, N0 = 40, and lmax = 7. With these choices we have a
good coverage of the Li+ discrete (and open, below 10 eV)
continuum. The resulting equations to be solved required
solutions of a set of linear equations with matrices in excess of
80,000 by 80,000. For efficient numerical implementation we
have created a hybrid OPENMP-MPI implementation of the code
that uses SCALAPACK for solving the linear equations. Using
24 cores the calculations take around 30 minutes.

B. TDCC method

A description of the TDCC approach to DPI of Li was
recently presented [5]. In the two-electron formulation, two
calculations are made, one for the two photoelectrons coupling
to a singlet state and one for both photoelectrons coupling to
a triplet state. After propagation of the Schrödinger equation,
one can obtain the final momentum-space amplitudes using

P LS
l1l2

(k1, k2, T ) =
∫ ∞

0
dr1

∫ ∞

0
dr2

×Pk1l1 (r1)Pk2l2 (r2)P LS
l1l2

(r1, r2, T ), (10)

where the box-normalized radial distorted waves Pkl are
solutions of the one-electron radial Schrödinger equation
[5]. The final time solutions P LS

l1l2
(r1, r2, T ) are obtained by

propagating the Schrödinger equation for the correlated two-
electron radial wave function with the total orbital momentum
L and spin S to sufficiently long times t = T .

TDCS may then be calculated from these amplitudes using
the expression [13]

d3σ

dE2d�1d�2

= 2
1

k1k2

ω

I

∂

∂t

∫ ∞

0
dk1

∫ ∞

0
dk2 δ

[
β − tan−1

(
k2

k1

)]

×
∑

S=0,1

wS

∣∣∣∣∣
∑
l1,l2

(−i)l1+l2ei(σl1 +σl2 )

×P LS
l1l2

(k1, k2, t) e · Y l1l2
L (n1, n2)

∣∣∣∣∣
2

, (11)

where β is the hyperspherical angle between k1 and k2, I is the
radiation field intensity and integration over all solid angles,
and ejected energy gives the total integral cross section. This
expression includes the appropriate spin statistical factors [5]
wS , where w0 = 1/4 and w1 = 3/4. The factor of 2 results
from the initial occupation number of the 1s orbital.

In the TDCC calculations presented here a (r1, r2) radial
lattice with (960)2 points with a uniform mesh spacing of 
r =
0.10 a.u. was used. To fully converge the triple differential
cross-section calculations, 9 terms were used for the initial
1,3S states and 18 coupled channels were used for the final
1,3P states.

The TDCC calculation also uses MPI parallelization to
efficiently distribute the calculation over available processors
of a parallel machine [14]. The time taken for such calculations
depends on the mesh spacing, number of mesh points, and
number of angular momenta included in the calculation. The
calculations reported here took a few hours on a Linux cluster
using 64 processors.

C. Symmetrized DPI amplitudes

The angular momentum summation in the partial wave
expansions (8) or (11) can be reduced to the sum over a single
angular momentum variable. In the following, we will work
out this reduction with the CCC expression (8),

d3σ

d�1d�2 dE2
= C

∑
S=0,1

∣∣∣∣∣
∞∑
l=0

Y ll+1
1M (n1, n2)FS ll+1(k1, k2)

+Y l+1l
1M (n1, n2)FS l+1l(k1, k2)

∣∣∣∣∣
2

. (12)

We introduce the symmetric and antisymmetric combinations
of the matrix elements,

F±
S l1l2

(k1, k2) = 1
2

{
FS l1l2 (k1, k2) ± (−1)S FS l2l1 (k1, k2)

}
.

(13)

The bipolar harmonics (9) satisfy the following exchange
symmetry relation:

Y l1l2
1 (n1, n2) = Y l2l1

1 (n2, n1). (14)

By using Eqs. (13) and (14), the sum in Eq. (12) can be further
reduced to

d3σ

d�1d�2 dE2
= C

∑
S=0,1

∣∣∣∣∣
∞∑
l=0

F+
S ll+1(k1, k2)

[
e · Y ll+1

1 (n1, n2)

+ (−1)Se · Y ll+1
1 (n2, n1)

] + F−
S ll+1(k1, k2)

× [
e · Y ll+1

1 (n1, n2) − (−1)S

× e · Y ll+1
1 (n2, n1)

] ∣∣∣∣∣
2

. (15)

Then we employ the following expression for the bipolar
spherical harmonic [15]:

Y ll+1
1 (n1, n2) = (−1)l

4π

(
3

l + 1

)1/2

{n2P
′
l+1(x) − n1P

′
l (x)},

(16)

where x = cos θ12 = n1 · n2. This immediately takes us to the
final expression for the TDCS,

d3σ

d�1d�2 dE2
=

∑
S=0,1

∣∣(e · n1 + e · n2) Mg

S(k1, k2, θ12)

+ (e · n1 − e · n2) Mu
S(k1, k2, θ12)

∣∣2
, (17)

where the symmetric gerade (g) and antisymmetric ungerade
(u) DPI amplitudes are

Mg/u

S (k1, k2, θ12) =
√

3C

4π

∞∑
l=0

(−1)l√
l + 1

[P ′
l+1(x)

∓ (−1)SP ′
l (x)]F±

S ll+1(k1, k2). (18)

Owing to the symmetry properties of the matrix elements (6)
and definition (13), the amplitudes satisfy the following
exchange relations:

Mg

S(k1, k2, θ12) = Mg

S(k2, k1, θ12),
(19)

Mu
S(k1, k2, θ12) = −Mu

S(k2, k1, θ12).
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Equation (17) can be simplified further in the special case of
the equal energy sharing. In this case Mu

S(k1 = k2, θ12) = 0
and therefore

d3σ

d�1d�2 dE2
= ∣∣(e · n1 + e · n2) Mg

S=0(k1 = k2, θ12)
∣∣2

+ ∣∣(e · n1 − e · n2) Mg

S=1(k1 = k2, θ12)
∣∣2

.

(20)

Thus a pair of symmetric amplitudes is needed to describe the
angular distribution of photoelectrons in DPI of Li at equal
energy sharing. This is in contrast to DPI of He where the
equal energy case requires only one fully symmetric gerade
amplitude [16]. Similarly, description of DPI of Li without
explicit account for the spin would also require just one fully
symmetric amplitude for the equal energy sharing case [15].

III. RESULTS

A. Fully resolved TDCS

In Fig. 1 we present the fully resolved TDCS of Li
at the excess energy of 10 eV shared equally between the
photoelectrons E1 = E2 = 5 eV. The coplanar geometry is
chosen in which the photoelectrons escape in the polarization
plane φ1 = φ2 = 0 and the vector e of the 100% linearly
polarized light is directed along the z axis (horizontal direction
in the figure). In this case e · ni = cos θi . The escape angle of
one of the photoelectrons is fixed to θ1 = 0◦, 30◦, 60◦, and 90◦
while the angle of the second photoelectron θ2 varies over the
full 360◦ range.

The CCC calculation is performed in the velocity gauge
as the length gauge is somewhat less reliable due to a limited
accuracy of the multiconfiguration ground state. Gauge con-
vergence issues are discussed in our previous publication [6].
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FIG. 1. (Color online) TDCS of DPI of Li at E1 = E2 = 5 eV
and various fixed escape angles θ1 = 0◦, 30◦, 60◦, and 90◦ (indicated
by the arrow). The CCC calculation is shown by the red solid line
whereas the TDCS calculation is displayed with the blue dotted line.
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FIG. 2. (Color online) The moduli of the symmetrized DPI
amplitudes of Li in the singlet |Mg

S=0| (left) and triplet |Mg

S=1|
(right) channels at the equal energy sharings of E1 = E2 = 5 eV.
The CCC amplitudes are shown with red solid lines whereas the
TDCC amplitudes are drawn with blue dotted lines.

The TDCC calculation is fully gauge convergent. Even though
some differences can be seen between the two calculations,
qualitative predictions of the two theories are similar. At
smaller fixed angles θ1 = 0◦ and 30◦ relative to the polarization
axis, the two photoelectrons escape predominantly back to
back, whereas at larger angles θ1 = 60◦ and 90◦, a kinematic
node develops at the back-to-back emission and two alternative
maxima of the TDCS are formed at the relative photoelectron
angles θ12 close to 150◦ and 210◦.

This evolution of the TDCS can be conveniently analyzed
using Eq. (20). The moduli of the symmetric amplitudes
|Mg

S=0| and |Mg

S=1| are plotted on the left and right panels
of Fig. 2, respectively. Relative phases of the amplitudes
are irrelevant to our analysis as the amplitudes are summed
incoherently in Eq. (20). The CCC amplitudes are calculated
directly using Eq. (18). In the TDCC formalism, the DPI
amplitudes are not evaluated explicitly. Instead, we found them
by fitting the TDCS of Fig. 1 with Eq. (20). As is seen from
Fig. 2, the singlet amplitude in both models is much larger
than its triplet counterpart |Mg

S=0| � |Mg

S=1| except for the
“tails” of the triplet amplitude near parallel emission θ12 
 0.
We believe that these tails are unphysical numerical artifacts
originating from the Legendre polynomial derivatives P ′

l (x) in
Eq. (18), which grow rapidly with l at x 
 1. This growth has to
be offset by the rapid fall of the dipole matrix elements F±

S ll+1,
which is much harder to achieve for a smaller triplet amplitude.
Fortunately, these “tails” have no effect on the TDCS since the
triplet amplitude in Eq. (20) is accompanied by the kinematic
factor cos θ1 − cos θ2, which has a node at the parallel emission
θ1 = θ2.

As is seen from Fig. 2, both the CCC and TDCC
calculations produce very similar singlet amplitudes but the
triplet amplitudes are somewhat different in the two methods.
This explains quite a noticeable difference of the CCC and
TDCC cross sections at small fixed ejection angles (top two
panels of Fig. 1) where the contribution of the triplet amplitude
is dominant.

The contribution of the singlet and triplet terms in Eq. (20)
is quite different. At small fixed electron angles θ1 
 0, the
mutual angle θ12 
 θ2 and the TDCS becomes

d3σ (θ1 = 0)

d�1d�2 dE2
= ∣∣(1 + cos θ2)Mg

S=0(θ2)
∣∣2

+ ∣∣(1 − cos θ2)Mg

S=1(θ2)
∣∣2

. (21)
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FIG. 3. (Color online) TDCS of DPI of Li at E1 = E2 = 5 eV
and various fixed escape angles θ1 = 0◦, 30◦, 60◦, and 90◦ (indicated
by the arrow). The CCC calculation is plotted with the sum of the
singlet and triplet channels (S+T, red solid line), the singlet channel
only (S, green dashed line), and triplet channel only (T, blue dotted
line).

We see that the kinematic factor accompanying the singlet
amplitude is vanishing at θ2 = π where |Mg

S=0(θ2)| has its
maximum whereas the kinematic and the dynamic (amplitude)
factors are in concert for the triplet term. Thus, despite being
smaller, the triplet amplitude makes the dominant contribution
to the TDCS at small fixed ejection angles.

The partial contributions of the singlet (S) and triplet (T)
terms are plotted separately in Fig. 3 along with the whole of
TDCS, which is the sum of the two terms. Here we plot only
CCC results because the TDCC results are very similar. We
see that the TDCS at θ1 = 0 is almost entirely produced by the
triplet term contribution. As the fixed ejection angle θ1 grows,
the singlet contribution becomes larger until its contribution
becomes strongly dominant at θ1 = 90◦. Indeed, at this angle

d3σ (θ1 = 90◦)

d�1d�2 dE2
=

( ∣∣Mg

S=0(θ2 − 90◦)
∣∣2

+ ∣∣Mg

S=1(θ2 − 90◦)
∣∣2

)
cos2 θ2 (22)

and a far bigger singlet amplitude takes over completely.
We see that the interplay of the amplitudes and their

associated kinematic factors makes relative contribution of
the singlet and triplet channels strongly dependent on the
kinematics of the two-electron escape. This is in contrast to
the total integrated cross section in which the singlet spin state
of the two-electron pair makes the dominant contribution.
Wehlitz et al. [8] reached this conclusion by drawing an
analogy to the metastable He 1s2s atom for which the singlet
1S state has a DPI probability three times higher than the
3S state [17]. In the TDCS of Li, this analogy to metastable
He is completely lost as the pattern of the two-electron escape

varies between the one typical for the 1s2s 1S state and another
characteristic to the 1s2s 3S state [18].

We can also see that the lobes of the TDCS become
progressively narrower as the fixed ejected angle θ1 grows.
This happens because the singlet amplitude has a much smaller
angular spread around its peak at θ12 = 180◦ in comparison
with the triplet amplitude, which is clearly seen in Fig. 2. This
spread characterizes the strength of the angular correlation
of the two photoelectrons in the singlet and triplet channels.
The smaller spread indicates stronger angular correlation,
which dictates the photoelectrons to escape in the back-to-back
direction to minimize their Coulomb repulsion. Obviously,
the strength of the angular correlation is much larger in the
singlet channel as compared to the triplet channel. One may
think of this in terms of the spatial exchange symmetry of the
two-electron continuous wave function. In the singlet channel,
this function favors a close encounter of the two photoelectrons
r1 = r2 and it is their angular correlation that keeps them apart.
In the meantime, in the triplet channel, the two-electron wave
function has a node at r1 = r2 and the angular correlation may
be more liberal as the photoelectrons are kept apart by the
force of radial correlation as well.

A somewhat similar disparity in angular correlation width
was observed in the quadrupole channel of two-photon DPI
of He [19]. This channel exhibits two distinctly different
modes of correlated motion of the photoelectron pair. The
kinematics of the mode associated with the center-of-mass
motion favors large total momenta maximized at parallel
emission where the interelectron repulsion is strong. In
contrast, the mode associated with the relative motion favors
large relative momenta maximized at antiparallel emission
where the interelectron repulsion is relatively weak.

IV. CONCLUSION

In the present paper, we perform CCC and TDCC calcu-
lations of the fully resolved triply differential cross section
of DPI of Li. Both numerical methods have been tested in
obtaining the total integrated cross sections of the same process
for which they produced very similar results across a wide
range of photon energies [20,21]. In comparison to TICS,
TDCS is much more sensitive to any approximations made
in a calculation, and it is also the most difficult quantity for
which to obtain numerical convergence. Thus, it presents a
very stringent test to the theory.

Despite some noticeable differences, we regard the level of
agreement between the two present calculations as satisfactory,
considering the completely independent approaches taken
to treat the DPI process. For example, the CCC approach
is time-independent and treats the two photoelectrons on
a different footing, but it includes the full Hartree-Fock
exchange with the nonionized electron. The TDCC approach
is time-dependent; it treats both ionized electrons equally but
treats the interaction with the nonionized electron through
direct and local exchange terms. It is expected that all of these
approximations are valid for the process considered here, but
it is not so surprising that they could result in small differences
in the TDCS for specific energy sharings and geometries. We
also note that in comparisons of the equivalent electron-impact
process [22], namely the electron-impact ionization of helium,
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good agreement is also found between the TDCC and CCC
approaches, although the agreement is still not exact.

In addition to numerical calculations, we perform some
analytical studies of the TDCS. We show that, under the
equal energy sharing condition, the TDCS in lithium can
be conveniently parametrized by a pair of symmetrized DPI
amplitudes in the singlet and triplet channels. The partial
contribution of these amplitudes varies with the fixed escape
angle relative to the polarization axis of light. The angular
spread of the amplitudes relative to the back-to-back emission
indicates the strength of the angular correlation in the two-
electron continuum. This strength depends noticeably on the
spin of the photoelectron pair.

The observed spin effects are strong in comparison with
the weak spin polarization effects which are due to spin-
orbit interaction in DPI of heavier atoms [23]. One way to
experimentally distinguish the singlet and triplet two-electron
continuum states would be to prepare a spin-polarized initial
state of the Li atom, which can be achieved by high-field state
selection in a sextupole magnet [24]. Then the spin polarization
of the Li2+ ion should be analyzed after the DPI process. The
spin projection flip would unmistakably indicate the triplet spin

state of the photoelectron pair. Recently developed mini-Mott
spin analyzers [25,26] can also make it possible to determine
the photoelectron spin projections directly.

The present report is aimed to provoke further discussion
of the mechanisms and pathways of DPI of Li as well as to
stimulate more experimental studies of energy- or momentum-
resolved differential cross sections. Some of the data resolved
with respect to the sum momentum of the photoelectron pair
are already reported in the literature [27].

ACKNOWLEDGMENTS

The Los Alamos National Laboratory is operated by Los
Alamos National Security, LLC, for the National Nuclear
Security Administration of the US Department of Energy
under Contract No. DE-AC5206NA25396. A portion of this
work was performed through DOE and NSF grants to Auburn
University. The computational work was carried out at the
National Institute for Computational Sciences in Oak Ridge,
TN. Resources of the Australian National Computational
Infrastructure (NCI) Facility and its Westeran Australian node
iVEC are gratefully acknowledged.

[1] M. T. Huang, R. Wehlitz, Y. Azuma, L. Pibida, I. A. Sellin,
J. W. Cooper, M. Koide, H. Ishijima, and T. Nagata, Phys. Rev.
A 59, 3397 (1999).

[2] R. Wehlitz, M. M. Martinez, J. B. Bluett, D. Lujic, and S. B.
Whitfield, Phys. Rev. A 69, 062709 (2004).

[3] J. Colgan, M. S. Pindzola, and F. Robicheaux, Phys. Rev. Lett.
93, 053201 (2004).

[4] R. Wehlitz, J. Colgan, M. Martinez, J. Bluett, D. Lukic, and
S. Whitfield, J. Electron Spectrosc. Relat. Phenom. 144, 59
(2005).

[5] J. Colgan, D. C. Griffin, C. P. Ballance, and M. S. Pindzola,
Phys. Rev. A 80, 063414 (2009).

[6] A. S. Kheifets, D. V. Fursa, and I. Bray, Phys. Rev. A 80, 063413
(2009).

[7] G. Mehlman, J. W. Cooper, and E. B. Saloman, Phys. Rev. A
25, 2113 (1982).

[8] R. Wehlitz, J. B. Bluett, and S. B. Whitfield, Phys. Rev. A 66,
012701 (2002).

[9] Y. Ralchenko, A. Kramida, J. Reader, and NIST ASD Team,
NIST Atomic Spectra Database, 3rd ed. (National Institute
of Standards and Technology, Gaithersburg, MD, 2008),
http://physics.nist.gov/asd3.

[10] A. T. Stelbovics, I. Bray, D. V. Fursa, and K. Bartschat, Phys.
Rev. A 71, 052716 (2005).

[11] D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii,
Quantum Theory of Angular Momentum (World Scientific,
Philadelphia, 1988).

[12] D. V. Fursa and I. Bray, Phys. Rev. A 52, 1279 (1995).

[13] J. Colgan, M. S. Pindzola, and F. Robicheaux, J. Phys. B 34,
L457 (2001).

[14] M. S. Pindzola et al., J. Phys. B 40, R39 (2007).
[15] N. L. Manakov, S. I. Marmo, and A. V. Meremianin, J. Phys. B

29, 2711 (1996).
[16] A. S. Kheifets and I. Bray, Phys. Rev. A 65, 022708 (2002).
[17] A. S. Kheifets, A. Ipatov, M. Arifin, and I. Bray, Phys. Rev. A

62, 052724 (2000).
[18] J. Colgan and M. S. Pindzola, Phys. Rev. A 67, 012711

(2003).
[19] A. S. Kheifets, A. I. Ivanov, and I. Bray, Phys. Rev. A 75, 024702

(2007).
[20] A. S. Kheifets, D. V. Fursa, and I. Bray, Phys. Rev. A 80, 063413

(2009).
[21] J. Colgan, D. C. Griffin, C. P. Ballance, and M. S. Pindzola,

Phys. Rev. A 80, 063414 (2009).
[22] J. Colgan, M. Foster, M. S. Pindzola, I. Bray, A. T. Stelbovics,

and D. V. Fursa, J. Phys. B 42, 145002 (2009).
[23] N. Chandra, Phys. Rev. A 56, 1879 (1997).
[24] G. Baum, M. Moede, W. Raith, and W. Schroder, J. Phys. B 18,

531 (1985).
[25] G. Mankey, S. Morton, J. Tobin, S. Yu, and G. Waddill, Nucl.

Instrum. Methods Phys. Res. A 582, 165 (2007).
[26] R. Berezov, J. Jacoby, T. Rienecker, and J. Schunk, Nucl.

Instrum. Methods Phys. Res. A 606, 120 (2009).
[27] G. Zhu, M. Schuricke, J. Steinmann, J. Albrecht, J. Ullrich,

I. Ben Itzhak, T. J. M. Zouros, J. Colgan, M. S. Pindzola, and
A. Dorn, Phys. Rev. Lett. 103, 103008 (2009).

023418-6


