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Chirping the probe pulse in a coherent transients experiment
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Coherent transients occur when a chirped pump pulse excites a two-level transition. They have been observed
with an ultrashort probe pulse. Several studies have been dedicated to using various pump shapes. In this study,
the roles of the pump and the probe pulses are reversed. With a Fourier-transform-limited pump pulse followed
by a chirped-probe pulse, similar effects can be observed. Finally, the case of two pulses with opposite chirps is
considered.
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I. INTRODUCTION

For more than 20 years, the pump-probe technique has
been one of the most powerful experimental techniques
used to elucidate time-resolved dynamics using ultrashort
lasers [1]. In a typical pump-probe experiment, the pump laser
initiates the dynamics by exciting a combination of states. To
measure the temporal evolution, a probe pulse is used to lead
the system to a final state, producing a signal which reveals
the dynamics induced as a function of the pump-probe delay.
Quite early on, some work has been done theoretically [2]
as well as experimentally to emphasize the role of the probe.
In particular it has been shown that a careful adjustment of
the wavelength in wave-packet dynamics studies can give
access to different pathway [3–5]. Also, changing the probe
polarization allows one to observe different dynamics [6,7]. In
parallel, the advent of pulse shaping [8] has led to fascinating
results in coherent control [9–11]. Many of these results
have been obtained by manipulating the shape of the pump
pulse [12–20]. Some results have been obtained by shaping
the spectral phase of the probe in order to select the final
state in Li2 [21] or to exhibit vibrational dynamics in the
liquid phase [22]. Moreover, shaping the probe in phase or in
polarization has been widely implemented in coherent anti-
Stokes Raman spectroscopy (CARS) experiments [23–25] to
drastically reduce the nonresonant background as well as to
significantly enhance the resonant CARS signal. This process
also leads to a huge improvement in both the sensitivity
and the spectral resolution. Interesting implementations have
been performed, including both coherent control and inter-
ferometry techniques to simplify the CARS setup by single-
pulse phase-control nonlinear Raman spectroscopy [25]. In
the same way, chirped probes have been used to improve the
spectral resolution [26] using their time-spectral homothetic
transformation properties [27] and also to show theoretically
the gain of information about molecular properties [28]. At the
same time, we have studied in great detail the interaction of a
chirped pump with a two-level system [29]. The evolution of
the population amplitude has been studied using an ultrashort
probe. Contrary to the CARS scheme, here a two-photon
transition with an intermediate state close to the one-photon
transition is considered. We propose to study the effect of
a chirped probe in such a scheme. A detailed comparative
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analysis is performed between the normal chirped-pump pulse
and Fourier-Transform-Limited (FTL) probe pulse case and
the reversed case with a FTL pump and a chirped-probe pulse.
Thus, we emphasize that the probe plays a crucial role in the
dynamics, not only by fixing the analysis resolution but also
by determining the temporal evolution behavior itself. Finally
we demonstrate that, for particular values of the probe and
pump spectral phases, one can obtain a short dynamic even
with pump and probe that are long. Moreover, it can be a way
to measure the spectral phase of the electric field.

II. PRINCIPLE

In this paper, a pump-probe scheme is considered within
a three-level system. Each pulse is resonant with only one
transition. The two transitions are excited successively by two
pulses. These pulses can generally be shaped. However, only
the cases where one of the pulses is FTL and the other one is
highly chirped are considered in this section. To understand
these dynamics, we first recall the interaction of a chirped
pulse with a two-level system (Sec. II A). The evolution of
the excited-state probability amplitude is described during this
interaction. Then the case of a chirped-pump pulse followed by
an ultrashort pulse is examined (already addressed in previous
studies [27,29–32]; see Sec. II B), which probes the dynamics
in the excited state. Finally the case of a chirped probe preceded
by an ultrashort pump pulse, which triggers the dynamics
(Sec. II C), is studied. Although the physical situations are
different, these two cases lead to similar behaviors as a function
of the delay.

A. Interaction of a two-level system with a chirped pulse

In the temporal domain, the chirped pulse of duration TC

and angular frequency ωC is written as

EC(t) = E0

√
T0

TC

e−t2/T 2
C e−i(ωCt−αt2), (1)

where TC and α are related to the chirp rate φ′′ by

TC = T0

√
1 +

(
2φ′′

T 2
0

)2

, α = 2φ′′

T 4
0 + (2φ′′)2

(2)

and T0 is the duration of the corresponding FT-limited pulse.
The lower and upper states are denoted |g〉 and |e〉

(for ground and excited states), respectively. First-order
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FIG. 1. Evolution of the upper-state population under the excita-
tion of a chirped pulse: (a) probability exhibiting coherent transient
normalized to unity for long time and (b) corresponding probability
amplitude in the complex plane. The symbols correspond to different
values of time τ : −1000 fs (triangle), 0 fs (circle), 480 fs (diamond),
1090 fs (square), 1840 fs (star), and 4000 fs (cross).

perturbation theory gives the excited-state probability am-
plitude during the resonant interaction (ωC � ωeg) with the
chirped pulse:

ae(t) = −µeg

2h̄

∫ t

−∞
Ec(t) eiωegt

′
dt ′

= −µeg

2h̄

∫ t

−∞
E0

√
T0

Tp

e−t ′2/T 2
C ei(ωeg−ωC )t ′ e−iαt ′2dt ′. (3)

The result of this interaction has been studied in detail [29]
and is sketched in Fig. 1. The probability amplitude during
this interaction follows a Cornu spiral (equivalent to the
diffraction by a knife edge) in the complex plane [Fig. 1(b)].
The excitation probability [Fig. 1(a)] presents a large increase
when the instantaneous frequency goes through resonance.
It is followed by oscillations which can be interpreted as
beats between the atomic dipole excited at resonance and
the instantaneous frequency which is shifting away from
resonance. These oscillations are due to the quadratic phase
which appears in the integral given by Eq. (4).

B. Chirped-pump pulse and FTL-probe pulse

In the scheme studied in previous works, the dynamics
is observed in real time with a second ultrashort pulse
as a probe. Therefore, the simplest pump-probe scheme is
considered within a three-level system. These levels are the
ground, excited, and final states and are denoted |g〉, |e〉,
and |f 〉, respectively, as shown in Fig. 2. The two sequential
transitions |g〉 → |e〉 and |e〉 → |f 〉 are respectively excited
by a pump pulse Epu(t) of carrier angular frequency ωpu

close to resonance (δpu = ωeg − ωpu, |δpu| � ωeg), centered on
t = 0, and by a probe pulse Epr(t) of carrier angular frequency
ωpr close to resonance (δpr = ωf e − ωpr, |δpr| � ωf e) and
centered on t = τ . The fluorescence arising from the |f 〉 state
can be recorded as a function of the pump-probe delay τ . The
observed signal is proportional to the population |af (τ )|2 in
the final state |f 〉. The general expression of the probability
amplitude af (τ ) to find the system in the final state is given

τ τ

g

f

e

(a) (b)

Pump

Probe Probe

Pump

FIG. 2. (Color online) Principle of the excitation scheme. (a) In
the case of a chirped pump and a short probe, the probe “freezes” the
interaction at time τ . (b) In the case of a short pump and a chirped
probe, the pump triggers the interaction between the chirped pulse
and the upper two levels at time −τ (with respect to the chirped
pulse).

by the second-order perturbation theory:

af (τ ) = −µf eµeg

4h̄2

∫ +∞

−∞
dt ′Epr(t

′ − τ )eiωf e(t ′−τ )

×
∫ t ′

−∞
dtEpu(t)eiωegt . (4)

In the first case, the pump pulse is chirped Epu(t) = EC(t).
The probe pulse is ultrashort and FTL. This scheme is depicted
in Fig. 2(a). The interaction takes place from the beginning of
the chirped pulse until time τ , when the ultrashort probe is
applied. For a probe much shorter than the dynamics induced
in the system, we can consider it a Dirac Epr(t − τ ) ∝ δ(t − τ )
and simplify Eq. (4). We obtain an expression similar to the
resonant interaction of a chirped pulse with a two-level system
[Eq. (4)], except that τ is now the pump-probe delay instead
of the real time of the chirped pulse. One gets

af (τ ) � −µf eµeg

4h̄2

∫ τ

−∞
dtEpu(t)eiωegt . (5)

The final-state population |af (τ )|2 as a function of the
pump-probe delay τ is therefore similar to the real-time
temporal evolution of the level |e〉 in the two-level case,
as displayed in Fig. 1 and already widely studied [29] and
manipulated [18,27,30].

C. FTL-pump pulse and chirped-probe pulse

We consider here the case of an ultrashort FTL-pump pulse
followed by a chirped-probe pulse. The ultrashort pump pulse
can also be approximated by a Dirac so that

af (τ ) � −µf eµeg

4h̄2

∫ +∞

−∞
dt ′Epr(t

′ − τ )eiωf e(t ′−τ )

×
∫ t ′

−∞
dtδ(t)eiωegt (6)
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with

∫ t ′

−∞
dtδ(t)eiωegt =

{
1 for t ′ > 0,

0 for t ′ < 0.

Then

af (τ ) � −µf eµeg

4h̄2

∫ +∞

0
dt ′Epr(t

′ − τ )eiωf e(t ′−τ )

� −µf eµeg

4h̄2

∫ +∞

−τ

dt ′Epr(t
′)eiωf e(t ′), (7)

which means that in this case the dynamics induced by the
chirped pulse between the two upper levels is triggered by the
pump [cf. Fig. 2(b)]. Although Eq. (7) is similar to the previous
case [Eq. (5)], the interpretation of the observed oscillations is
less straightforward. Indeed, the observed signal is not directly
related to the dynamics of the upper level (here |f 〉) excited
by the chirped pulse. Modifying the value of τ changes only
the starting time of the dynamics. The measured signal is the
final result, at the end of these dynamics.

To better explain the difference between the delay τ and the
real time t in this situation, Fig. 3 presents a two-dimensional
plot of the |f 〉 state population as a function of time t and delay
τ . A horizontal cut corresponds to the real-time dynamics in the
upper state. Several of such cuts (along the horizontal dashed
lines in Fig. 3) correspond to the temporal evolution for a given
pump-probe delay. They are displayed in the left-hand side of
Fig. 4. A vertical cut at a time longer than the chirped-pulse
duration corresponds to the final population as a function of
the delay τ (see Fig. 3, right-hand side). The same oscillations
are predicted as for the usual coherent transients. Indeed,
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FIG. 3. (Color online) Two-dimensional mapping of the final-
state population (normalized to the population at long time and delay).
The vertical axis is the delay between the pump and the probe (τ in
the equations), and the horizontal axis is the time evolution (t in
the equations). A vertical cut at 6 ps is plotted on the right-hand
side, corresponding to the evolution of the asymptotic value of the
final population. This value is the one measured via the experiment.
Several horizontal dashed lines are plotted, which correspond to the
different cases presented in Fig. 4.
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FIG. 4. Left: Temporal evolution of the final population during
the probe pulse [normalized to the population at long time and delay;
see case (f)]. Right: Corresponding probability amplitude plotted in
the complex plane. Pump-probe delays are (a) −1000, (b) 0, (c) 480,
(d) 1090, (e) 1840, and (f) 4000 fs.

Eqs. (5) and (7) are completely similar if the pump and probe
spectral phases are inverted.

Another way to understand these predictions is to plot, in
the complex plane, the temporal evolution of the probability
amplitudes in the |f 〉 state (right-hand panels of Fig. 4) for
various delays. For the largest delay, τ = 4000 fs [Fig. 4(f)],
the pump pulse arrives long before the chirped pulse so
that the whole dynamics can take place. One can see
the Cornu spirals again, starting from the origin and fin-
ishing at the asymptotic value which corresponds to the
measured quantity. On the left-hand panel, the population
exhibits the same coherent transients as in the usual situation
(see Fig. 1). At the opposite, for large negative values of τ , the
probe arrives before the pump and the signal (left) is negligible.
Moving now from large positive values to shorter delays
(τ = 1840, 1090, and 480 fs for Figs. 4(e), 4(d), and 4(c),
respectively), a progressively larger fraction of the leading part
of the chirped pulse is inactive. Thus, part of the beginning of
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the spiral is suppressed. In the complex plane, the curve starts
always from the origin. Therefore, the truncated spiral must
be shifted. The new starting points are shown by symbols
in Fig. 1(b). The remaining curve is therefore shifted. The
final point is alternatively further, closer, and further from the
origin, corresponding to maxima and minima of the asymptotic
values and therefore of the upper-state population (left). One
should notice that although there are strong similarities with
Coherent Transients (CT), these curves are not. In particular,
small oscillations are observed before the rising edge [see, for
instance, Fig. 4(d)]. This is a consequence of the truncated
spiral. At τ = 0, the pump pulse is at the maximum of the
chirped pulse. Exactly half of the spiral is left. The final
probability amplitude is half of that reached for largest values
of τ and the population is one-fourth. Finally, for negative
delays, very weak oscillations are observed.

Another way to explain these behaviors is to notice that
the population is simply the square of the distance between
the starting and final points of the evolution of the probability
amplitude. Therefore, only the relative evolution is meaningful
and it is not necessary to center the starting point of the
truncated spiral at the origin. Each curve in Fig. 4 (left)
is therefore obtained by plotting the square of the distance
between an arbitrary origin on the spiral (corresponding to
the value of the delay τ ) and a point moving on the spiral.
This explains more clearly why oscillations are obtained before
the rising edge, when both starting and final points are within
the same part of the spiral in Fig. 4(d) (left).

When considering the asymptotic value (in other words,
the observed pump-probe signal), it is also simpler to consider
that the final point of the spiral is fixed. Thus, changing the
delay τ (from +∞ to −∞) is simply equivalent to removing
progressively larger parts of the spiral. One fully understands
why the situation (for the pump-probe signal) is exactly
symmetric to the first case when the pump is chirped.

III. EXPERIMENTAL RESULTS

To illustrate this point, an experiment has been performed in
an atomic Rb vapor (Fig. 5). The Rb [5s-5p(P1/2)] transition
(at 795 nm) is almost resonantly excited with an ultrashort
pump pulse. (The laser spectrum is centered around 808 nm
with a full width at half maximum of 24 nm.)

The transient excited-state population is probed “in real
time” on the [5p-(8s, 6d)] transitions with a pulse produced
by a homemade noncolinear optical parametric amplifier
(603 nm, 25 fs). This probe pulse is negatively chirped
(φ′′

pr = −1.4 × 105 fs2) by a pair of gratings, recombined with
the pump pulse, and sent into a sealed rubidium cell with
fused-silica Brewster-window ends [18,29,30]. The pump can
be shaped using a high-resolution pulse shaper [33] formed by
a double liquid-crystal spatial light modulator (640 pixels)
placed in a Fourier plane of a highly dispersive 4f line.
Care should be taken to block the red part of the spectrum
in order to avoid any two-photon transition (at 778 nm) and
spin-orbit oscillations (at 780 nm) [34]. The pump-probe signal
is detected by monitoring the fluorescence at 420 nm due
to the radiative cascade (ns, n′d) → 6p → 5s. As expected,
strong oscillations appear clearly as the black dots of the curve
in Fig. 6 when the probe is chirped. These oscillations are

τ

Ti:Sa
oscillator

CPA

NOPA

Shaper

Rb

PM

τ

800nm 1kHz
1mJ 50fs

607nm 1kHz
5µJ 20fs

800nm 1kHz
10µJ 50fs

G    2

G    2

G    1

G    1

FIG. 5. (Color online) Experimental setup: G2, gratings with
600 grooves/mm. G1, gratings with 2000 grooves/mm. NOPA,
noncolinear optical parametric amplifier.

similar to the coherent transients observed previously with the
chirped pump [29]. The contrast is excellent and experimental
data (black dots) fit well with the theoretical data (gray solid
line) obtained by analytical resolution of Eq. (4).

To demonstrate the interplay of the pump and the probe,
different amounts of chirp are applied on the pump pulse using
the shaper. Equation (4) can be calculated exactly and leads
to a rather complex expression in the general case of nonzero
detunings (which is the case here) [35]:

af (τ ) ∝ 1√
βpuβpr

[
1 − erf

(
−γ

√
βpu + βpr

2
√

βpuβpr

)]
,

(8)

γ = i(βpuδpr − βprδpu) − 2βpuβprτ

βpu + βpr
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FIG. 6. Experimental coherent transients on Rb (5s-5p at
795 nm), for a chirp of φ′′

pr = −1.4 × 105 fs2 on the probe (black dots)
and the corresponding simulation obtained by numerical resolution
of the Schrödinger equation (solid gray line). Curves are normalized
to unity at long time.
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FIG. 7. (Color online) Experimental coherent transients mea-
sured for a chirp of φ′′

pr = −1.4 × 105 fs2 on the probe and sequential
chirp values for the pump (φ′′

pu). Curves are normalized to unity at long
time and shifted vertically for clarity. The (a) black-dot solid curve
corresponds to transients obtained with a FT-limited pump (see Fig. 6)
plotted here for comparison: (b) φ′′

pu = 1.0 × 105 fs2 (blue), (c) φ′′
pu =

1.2 × 105 fs2 (red), (d) φ′′
pu = 1.4 × 105 fs2 (green), and (e) φ′′

pu =
1.5 × 105 fs2 (purple). The increasing chirp of the pump gives fewer
oscillations in the transients. For opposite chirps (d), the oscillations
are completely removed [such as for curve (e)], but the rising time
obtained is here the shortest. It is equivalent to the FT-limited
cross-correlation duration. The sharp peak around τ = 0 is due to the
detuning of the central laser wavelength with respect to the resonance
wavelength.

where βk = 1
T 2

C,k

+ iαk , δk (k = pu, pr), is the detuning of the

two pulses with respect to their transition frequencies and erf
is the error function. The complex part of the argument of the
erf function is responsible for the oscillations while the real
part sets the rising time. Setting fixed the chirp of the probe
and varying the chirp of the pump, the evolution of the final
state could be drastically changed (see Fig. 7).

An interesting case is the one where chirp on the pump
and the probe are opposite and fulfill the condition φ′′

k � T 2
0,k .

One gets the simplified expression for identical bandwidths
(T0,pu = T0,pr = T0):

af (τ ) ∝ T0 TC

[
1 − erf

(
− τ√

2T0

+ η

)]
,

(9)

η = − (φ′′
puδpr + φ′′

prδpu)√
2T0

+ i
T0

2
√

2
(δpr − δpu).

Two comments can be addressed:

1. For zero detuning δk = 0, the evolution of af (τ ) is a
simple step with a rising time equal to

√
2T0. The oscillations

are vanishing. The obtained dynamics is the same as with two
FT-limited pulses.

√
2T0 is their cross-correlation duration.

2. In the general case with detuning, η [Eq. (9)] is a complex
number. Its real part delays the step while its complex part

gives a sharp peak around τ = 0, which is well known as the
cross-correlation peak [36] [see Fig. 7(d)].

Experimental data are presented in Fig. 7 with φ′′
pr =

−1.4 × 105 fs2 (TC � 10 ps) on the probe and (a) φ′′
pu =

0 fs2, (b) φ′′
pu = 1.0 × 105 fs2, (c) φ′′

pu = 1.2 × 105 fs2,
(d) φ′′

pu = 1.4 × 105 fs2, and (e) φ′′
pu = 1.5 × 105 fs2. Due

to laser constraint, there is a large detuning on the pump.
However, one can see that the oscillations of the transients are
vanishing when chirps on the pump and probe become opposite
[cases (d) and (e)]. As predicted by Eq. (9), the cancellation
of the chirps leads to the shortest rising time of the pump
probe signal, of the order of 60 fs [case (d)]. For case (e), the
evolution is a simple step with no peak and no oscillations
despite the large detuning of the laser. This behavior can
be explained, especially the absence of the sharp peak, by
a fine balance between chirp and detuning in the complex
time-dependent part of γ [Eq. (8)]. Thus, the best criterion for
chirp compensation is not the cancellation of the oscillations
but the sharpness of the slope. The sensitivity of the coherent
transients could thus be used as a fine adjustment of the pump
chirp. This value is determined here with an accuracy of 10%,
but this can certainly be improved.

This method could be used to determine the spectral phase
of an unknown pulse. This approach will be particularly
appropriate when one of the pulses is in a spectral range where
it cannot be easily characterized. Further work is under way
to see how the combination of complex spectral phases for
both pump and probe pulses can be used as a useful tool for
time-resolved spectroscopies.

IV. CONCLUSION

In this paper we have demonstrated how the phase of
the probe pulse could significantly affect the pump-probe
signal, in a way equivalent to that of the phase of the pump.
An illustrative experiment has been performed in rubidium
vapor. Indeed, the spectral phases of the two pulses contribute
equally, which was clearly demonstrated with two pulses
of opposite chirp. A pump-probe signal with a very short
rising time followed by a plateau has been obtained even
with strongly chirped pump and probe pulses. This finding
opens the door toward new pump-probe schemes where both
pump and probe spectral phases can be shaped. It should
be noted that this situation is the opposite of sum-frequency
generation. Indeed, it was observed in this latter case [37,38]
that a long pulse with narrow bandwidth is generated. The
presence of the resonant intermediate level creates the short
transient.
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