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Potential and energy of the monoenergetic electrons in an alternative ellipsoid bubble model
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The electron acceleration in the bubble regime is considered during the intense laser-plasma interaction.
The presented ellipsoid cavity model is more consistent than the previous spherical model, and it explains the
monoenergetic electron trajectory more accurately. At the relativistic region, the maximum energy of electrons in
the ellipsoid model is about 24% more than the spherical model, and this is confirmed by PIC and the measured
experimental results reported here. The electron energy spectrum is also calculated, and it is found that the
energy distribution ratio of electrons �E/E for the ellipsoid model in the here reported condition is about 11%
which is less than the one third that of the spherical model. It is in good agreement with the experimentally
measured value in the same condition. In this regime, the parameters of the quasi-monoenergetic electrons output
beam can be described more appropriately. In this work, 10 TW from 16.6 TW, 500 mJ, and 30-fs laser pulse
was focused on the best matched point above a 2-mm-diameter pulsed He gas jet to obtain a stable ellipsoid
bubble. Laser intensity of 1.42 × 1019 W cm−2 corresponding to a normalized vector potential of a0 = 2.6
focused in a 100-µm2 spot at the focal point and 1 mm above the edge of the gas jet with an electron density
of 1 × 1019 cm−3 accelerates electrons to the relativistic velocities. The obtained monoenergetic electron energy
spectrum is properly explained by the ellipsoid model introduced here.
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I. INTRODUCTION

The continuous rapid advance in the development of
relativistic laser systems currently boosts the use of such
devices in producing energetic particle beams. Certain types
of laser-plasma production of quasi-monoenergetic electrons
were predicted and can be explained by the so-called “bubble
acceleration” picture [1,2]. In this picture, plasma electrons
are expelled off the axis by the front of the incident relativistic
laser pulse and form a bubble-like structure with longitudinal
and transverse dimensions close to the plasma wavelength
λp. This bubble is void of electrons at the beginning of the
interaction and moves through the background plasma ions
with a speed close to the speed of light, c. However, in the frame
of the moving bubble, the net positive potential of the bubble
core attracts electrons that fall back onto the laser axis behind
the cavity. These electrons are captured and accumulated inside
the bubble and are thus accelerated to high energies. The
energy in the plasma wave could be reabsorbed by the trailing
part of the laser pulse when the laser pulse length (cτL) is long
compared to the electron plasma wavelength. However, if the
pulse length is approximately equal or shorter than the plasma
wavelength (cτL � λp), the ponderomotive force excites a
wake field with a phase velocity equal to the laser group
velocity. Although the generation of monoenergetic electron
bunches with distributions of less than 1% and energies
above GeV by two laser beam are reported [3], there are
main differences between the experimental achievements and
theoretical explanation of bubble regime even with a single
laser beam. In addition to that, the condition of generating
very clean electron beams without any initial Maxwellian
branch is under investigation [4–11]. Since the original work
of Pukhov and Meyer-ter-Vehn [1], a lot of papers appeared in
the literature [4–11]. Thanks to the spherical model of Pukhov
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and Meyer-ter-Vehn which was an important step forward in
the explanation of bubble regime at that time. But the predicted
maximum energy of monoenergetic electron bunches was
more than two times that of what PIC simulation predicted
or experimentally measured [1]. The obvious disagreements
of their results with the PIC simulations were acknowledged
by themselves [2]. They have explained this controversy as a
result of the spherical assumption of the bubble. Some other
valuable works were introduced in the general treatment of
the “bubble acceleration” and does not give clarification of
the electron’s energy and its parameters inside the bubble
system [11]. Based on the fundamental approach of Pukhov
and Meyer-ter-Vehn [1,2], some attempts are made to present a
suitable ellipsoidal model and related equations for the energy
of the electrons [7,10]. Although some successes were made
to improve the prediction of the maximum electron energy, the
variation of the electron energy during bubble propagation in
the plasma could never be explained properly. In this work,
we improved the previous models and resolved the ambiguity
in the shape of the potential by correcting equations in the
previous elliptical model [10] which were based on the initial
spherical model [1,2]. Here we derive a new model and resolve
the ambiguity in the shape of the potential. With reproducible
equations of the bubble regime, we show that the potential is an
ellipsoid. These reliable results correctly explain the effect of
the elongation on the variation of the monoenergetic electron
energy spectrum. The agreement of the presented model with
the experimentally measured parameters and the generation of
a very clean electron bunches are also discussed.

II. FIELDS INSIDE RELATIVISTIC ELLIPSOID CAVITY

Imagine a cavity that moves in the plasma. In this regime,
the ions are immobile in the cavity while the cavity runs
with the relativistic velocity v0 ≈ 1 along the x axis. The
ion dynamics are neglected because the cavity dimensions are
assumed to be smaller than the ion response length, c/ωpi ,
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where ωpi = (4πe2n0/M) is the ion plasma frequency and
M is the ion mass. By writing the Maxwell equations in
terms of potentials and using the following convenient gauge,
Ax = −ϕ, and using a quasistatic approximation by assuming
that all quantities depend on ξ = x − v0t instead of x and t

and using the wake field potential, � = AX − ϕ; instead of
the scalar one, we get

�� = −
(

22
0

1+v0

)
∂

∂ξ
(∇ · A⊥) + 2

(1 + v0)2

(
1 + v0 + v2

0

)
,
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∂2
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where inside the cavity we have assumed the electron density
n, is zero. We use dimensionless units, normalizing the time
to ωp

−1, the lengths to c/ωp, the velocity to c, and the
electromagnetic fields to mcωp/|e|.

Equations (1) and (3) are similar to the Eqs. (9) and (10),
respectively, in Pukhov et al. [2]. Based on our calculations,
there are some mistakes in the related equations of Pukhov
et al. [2]. Equation (2) is an essential equation in driving the
correct results for spheroid potential and cannot be neglected.
The other fundamental error is in the coefficients of Eqs. (1)
and (3) which we have corrected it. Compare Eqs. (1) and (3)
with v0 = 1, with Eqs. (9) and (10) of Ref. [2]. In the following,
a reliable calculation is presented which is in good agreements
with PIC simulation and the experimental data. From Eqs. (1)
and (2), we have

∇⊥ · A⊥ = −1 + v0

2

∂

∂ξ
� + 1

1 + v0
ξ. (4)

Substituting above equation in Eq. (3), we get

�A⊥ − v2
0

∂2

∂ξ 2
A⊥ = 0. (5)

And from Eq. (2), we have

�⊥� + (
1 − v2

0

) ∂2

∂ξ 2
� = 2

1 + v0
, (6)

where �⊥� = ∂2

∂y2 � + ∂2

∂z2 �.
By assuming the dependency of φ on ξ, y, z is φ = φ1(ξ ) +

φ2(y, z), and by substituting it in Eq. (6), we can get �⊥�2 +
(1 − v2

0) ∂2

∂ξ 2 �1 = 2
1+v0

. The first term depend on y and z, while
the second term depends on ξ . Therefore, we can solve this
equation with the separations of variables and set those equal
to a parameter c independent of ξ, y, z, where it can depend
on vo, plasma parameter ωp, and laser parameters ao and wo

as c = c(v0, ωp, a0, w0). Remembering that c is independent
of ξ, y, z since (v0, ωp, a0, w0) are independent of the above-
mentioned variables. Then we have

�⊥�2 = c. (7)

By substituting Eq. (7) in Eq. (6), we get

(
1 − v2

0

) ∂2

∂ξ 2
�1 = 2

1 + v0
− c. (8)

As seen from Eq. (8), if we let v0 = 1, then c = 1 and
the dependency of potential on the component ξ disappears
completely; in this case, the solution of Eqs. (7) and (8) is

�(ξ, y, z) = y2

4
+ z2

4
+ φ1(ξ ), (9)

where φ1(ξ ) can be any kind of function, In another word, from
Eq. (9), one cannot reach a spherical potential for �(ξ, y, z),
unless assuming that there is a spherical potential as they did
in Ref. [2]. Therefore, by preferring and assuming a priority
to have a spherical potential, we can reach to the spherical
potential of Pukhov et al. from Eq. (9) as follows:

φ1(ξ ) = ξ 2

4
, �(ξ, y, z) = y2

4
+ z2

4
+ ξ 2

4
.

But we always have v0 < 1, only in the limit one can arbitrarily
reach to v0 = 1; then from Eq. (8), we have

φ1(ξ ) = 1

1 − v2
0

(
2
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ξ 2

2

= 1
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. (10)

By principal of continuity and in the limit of v0 → 1, we get

φ1(ξ ) = (c + 2c′)ξ 2

8
. (11)

Here for simplicity, we set c = c(v0, ωp, a0, w0) and c′ =
∂

∂v0
c(v0, ωp, a0, w0); the solution of Eq. (7) is φ2(ξ, y, z) =

c( y2

4 + z2

4 ), and from Eq. (11), we have
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+ c
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4
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Then by substituting Eq. (11) in the Eq. (4), we get

∇⊥ · A⊥ = 2 − c − 2c′

4
ξ. (12)

Since we have symmetry in y and z directions, so
we can choose ∂

∂y
Ay = ∂

∂z
Az = 2−c−2c′

8 ξA; the solution
satisfying Eq. (5) with the above condition is A⊥ =
( 2−c−2c′

8 yξ, 2−c−2c′
8 zξ ). Therefore, we have
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[
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8
+ c

y2
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+ c
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4
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(13)

A = (Ax,A⊥) =
(
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2
,

2 − c − 2c′

8
yξ,

2 − c − 2c′

8
zξ

)
.

(14)

The integration constant φ0 is chosen such that on the
surface of the ellipsoid � = 1. The φ dependency on ξ, y, z

is almost quadratic, but their coefficients are not necessarily
equal. If we prefer to have a spherical solution, we should
choose c such that (c + 2c′)/8 = c/4.

In Fig. 1, the electron trajectory is plotted from a fully
nonlinear particle in cell (XOOPIC) simulation according
to here presented experimental conditions [w0 = 5.5 µm,
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FIG. 1. The electron trajectory in the bubble regime produced
in a uniform plasma cavity, simulated by XOOPIC, in condition of
the here mentioned experiment. The elongation in the z direction is
evident, and the dimensions of bubble are not equal, which confirms
the shape of bubbles are ellipsoid instead of sphere (dimensions are
not scaled).

a0 = 2.6, λp = 11 µm], where we get Re = 4 µm. From this
figure, it is evident that the dimensions of bubble are not equal
and we have elongation in the z direction.

Figure 2 indicates a typical electron trajectory for the
spherical and ellipsoidal potentials in the ξ, y plane for the
same initial conditions. In this figure, the trajectory elongation
in the direction of ξ for the ellipsoid potential is shown.

III. ENERGY OF ELECTRONS

The energy of electrons in an ellipsoid cavity can be derived
by using the Hamiltonian formulation [2].

H =
√

1 + p2 + a2 − v0p + (1 + v0)�/2 ≈ γ − p + �,

where p is the momentum, a is the normalized vector potential
of the laser field, and γ is the electron energy, and we have
used the wake potential �.

Reformulating Eq. (13) as follows:

�(ξ, y, z) = 1 + φ0

(
ξ 2

a2
e
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e

+ z2

b2
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− 1
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,
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4
.

We have γ ≈ 2γ 2
0 [1 + φ0(1 − ξ 2

a2
e
)] ≈ 2γ 2

0 φ0(1 − ξ 2

a2
e
).

The maximum energy of the accelerated electrons in a
spheroid peaks at the cavity center of

γmax ≈ 2γ 2
0 φ0 = γ 2

0
(c + 2c′)a2

e

4
= γ 2

0
cb2

e

2
. (16)

In order to compare the spheroid model with the spherical
model, let c′ = 0 and consider a spherical bubble with
radius R, let

aeb
2
e = R3, (17)

where ae and be are the axis of spheroid; in this case, spheroid
and sphere have equal volume and charge density (let ae =
be = R), we have

γmaxsphere ≈ γ 2
0 R2/2. (18)

Comparing Eqs. (16), (17), and (18), we see that γmax �
γmaxsphere.

In other words, the maximum energy of the spheroid model
is less than the spherical model and it is close to the PIC
simulations [2] (see Fig. 8). From Ref. [12], we have γ =
γ0(1 + γ0)�ϕ ± γ0v0

√
(1 + γ0�ϕ)2 − 1, where ϕ is the scalar

potential, �ϕ = ϕmax − ϕmin, and ± give γmax and γmin.
For an ultra-high intense laser pulse, we have γ0�ϕ � 1,

by defining �γ as the difference between γmax and γmin; from
the above equation, we have

�γ = γmax − γmin = 2v0γ0

√
(1 + γ0�ϕ)2 − 1 ≈ 2γ 2

0 �ϕ;

for the spherical model, we have �ϕsphere ≈ R2/4, and for
the spheroid model, we have �ϕ ≈ φ0. From Eqs. (15) and
(17), we always have �ϕ � �ϕsphere or �γ � �γsphere. So in
the spheroid cavity model, the electron energy has a narrow
spread spectrum in comparison to the spherical model which
is in better agreement with the experimental data as shown in
Fig. 8.

At the beginning of our interaction of the laser pulse with
plasma, the bubble shape is determined by the ponderomotive
force of the laser pulse. The electrons form a narrow sheath
surf tangentially to the bubble boundary, and at the middle of
the bubble where we have a return current, the transverse force

FIG. 2. The typical electron trajectory. (a) Spherical model. (b) Ellipsoid potential in the (ξ, y) plane. The electrons with the specified
energy can enter the bubble in both regimes.
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is zero. In this condition, we have [2]

cRe

4
(1 + vx) ≈ cRe

4
≈ ∇⊥

√
1 + a2, (19)

where Re is the transverse bubble radius and the laser pulse is
written for a circularly polarized with amplitude (a) focused to
a spot size of w0 with a Gaussian profile as a = a0 exp[−(y2 +
z2)/2w2

0]; for simplicity, we have set v0 = 1 and vx = 0. The
transverse bubble radius can be determined from [13] as

Re ≈ w0

√
ln

(
λpa0√
cπw0

)
(20)

or

c = λ2
p

π2w2
0

a2
0 exp

(−2R2
e /w

2
0

)
. (21)

Therefore, c is proportional to the normalized laser intensity
a0 and inversely to the laser spot size w0 . These equations
apparently show that by increasing the laser intensity or
decreasing the spot size, the parameter c increases. For our
experiment by focusing 60% of 16.6-TW laser power (10 TW)
into a spot with the area of 100 µm2 (w0 = 5.5 µm), we have
a0 = 2.6 and λp = 11 µm and we get Re = 4 µm.

From the area under curves of Fig. 8 we can calculate
the amount of accelerated electrons which is representing
NeEe. Form experimental curve this amount for the share of
monoenergetic electrons is 7.5 × 1010 electrons MeV sr. By
considering the same amount for ellipsoidal and for spherical
models and by using the related maximum amounts for their
related curves are plotted in Fig. 8. The achieved distributions
for the electrons are discussed in the next section.

IV. EXPERIMENTAL RESULT

In Fig. 3, the schematic overview of the experimental setup
used here is given. The experiment was carried out by a
500-mJ, 30-fs Ti:sapphire chirped pulse amplification laser
system to generate a laser acceleration wake field to generate
monoenergetic electron bunches. The spot size from the pulse
compressor was 1.38 cm2 with a center wavelength of 800 nm,
where it is focused onto a supersonic He gas jet by an off-axis
mirror. The position of other elements such as a CCD camera
and electron microscope also indicated. Some descriptions of
experimental arrangement were given in our earlier work [10].

FIG. 3. Experimental setup for producing monoenergetic electron
bunches. The path of the laser beam and the position of the basic
instruments such as a helium gas jet, a CCD optical camera, an
off-axis mirror, and an electron spectrometer are shown.

FIG. 4. Picture from inside of the laser interaction area of the
intense laser with the He gas jet. The off-axes mirror which was used
to focus laser beams with the waist of 1.38 cm2 at a 100-µm2 spot at
the tip of the nozzle is shown.

Here we describe the laser parameters and diagnostics in more
detail. In Fig. 4, a picture from the inside of a vacuum chamber,
including f/5 off-axes mirror (OAM), and the position of the
gas jet exit is shown. The gold-coated parabolic mirror focuses
the 166-TW laser pulse in a spot of 100 µm2 at the edge of
10-Hz gas jet where it contains about 60% of the laser intensity
corresponding to the intensity of 1.42 × 1019 W cm−2 at the
focusing point in the gas jet. In order to have a consistent
target condition for each laser shot, a new target material is
required. Since the relativistic electrons are produced within a
distance of few hundred micrometers producing and measuring
of the specific gas density profile is an essential problem.
This is provided by interferometers by measuring the phase
shift [13–15]. By using a pulsed laser, time transit information
about the gas density which directly depends on the gas
pressure is obtained. When a fast high voltage opens the
gas valve, the gas pressure linearly increased and following
the gas expansion slowly decreases. The high-intensity short
laser pulse is synchronously fired at the moment of highest
pressure. Therefore, both have the same repetition rate which
was 10 Hz in the present work. Here a supersonic gas jet was
made by a cylindrical capillary nozzle with an inner diameter
of 2 mm connected to a gas valve at high pressures. The gas
density distribution on the nozzle tip is indicated in Fig. 5. The
vertical color code represents the two-dimensional pressure
distribution of He gas up to 2.8 × 1020 cm−3 on the nozzle
center at 1 mm above the exit. At this condition, the filing
pressure of the gas valve was above 10 bars. In Fig. 6, the
picture of the focused spot of the laser pulse is shown which
was set at the tip of the gas nozzle and 1 mm above the
gas jet exit. The spot diameters were 11 µm horizontally and
12 µm vertically at full width at half maximum in vacuum.
and contains 60% of the 16.6 TW of the focused laser power
resulting in an intensity of 1.42 × 1019 W cm−2 with the power
of about 10 TW at the focal spot corresponding to a a0 = 2.6
normalized vector potential.

The energy spectrum of the accelerated electrons was
measured using an electron spectrometer with a perma-
nent magnet. The electron spectrometer was placed in the
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FIG. 5. The lateral Gaussian density profile (z direction) of
electrons above the gas nozzle. The 2-mm-diameter, high-pressure He
gas jet produces the initial electron density of up to 2.8 × 1020 cm−3.
The vertical color code to the left indicates the electron density which
is linearly proportional to the gas pressure.

z direction and makes use of the electron deflection in a
magnetic field, and the measured energy range was from 0.1 to
100 MeV and recorded on image plates from Fuji Film covered
with 15-µm-thick Al foil to prevent exposure by scattered laser
light and stop low-energy electrons. The image plates placed
off axis to avoid affecting other produced radiations such as γ

rays and X rays on their surfaces. The housing of the electron
spectrometer was shielded with high Z materials to prevent
the detection of unwanted radiations and ensure only desired
produced electrons were detected.

By consideration of the self-modulated laser wake-field
acceleration (SMLWFA), cτ = nRe is the most stable cavity
condition [13,14]. So the stable condition can be obtained for
Re = mλp/2, where n and m are positive integer numbers.
By focusing the laser beam at different positions from the
beginning of the gas jet, we obtained various electron energy

FIG. 6. Laser beam waist (diameter) at focus is shown at 1
mm above the gas jet which was 11 µm horizontally and 12 µm
vertically resulting in vacuum contains 60% of the laser intensity
results to focused intensity of 1.42 × 1019 W cm−2 corresponding to
a normalized vector potential of a0 = 2.6.

FIG. 7. Scanning the laser pulse along the gas jet exit: (a) The
intersection points of λp(z)/2 and R(z) are the optimum points to
produce stable bubbles to trap monoenergetic electrons. (b) Electron
energy distribution �E/E. The maximum electron plasma density
was 1.4 × 1020 cm−3. The dashed part is plotted from the predicted
parameters of Fig. 7(a).

profiles. Most of the electron energy spectrums possess a
Maxwellian or mixed with quasi-monoenergetic distribution.
In this experiment, we did not observe any evidence of bubble
formation resulting in monoenergetic electrons up to 200 ±
5 µm from the beginning of the gas jet. Figure 7(a) shows that
one can obtain high-energy electrons with narrower energy
distribution by better and precise focusing. At 200 ± 5 µm
[at point 1 of Fig. 7(b)], we obtained quasi-monoenergetic
electrons which are shown in Fig. 8. We can conclude from
Fig. 7(a) that the point 1 of Fig. 7(b) corresponds to the bubble
radius of only 4 µm, which is smaller than our 5.5-µm spot
size radius. However, the first minimum point in Fig. 7(b)
corresponds to a bubble radius larger than 6.5 µm. Thus,
we were not able to detect this point with our 5.5-µm laser
beam spot size radius. When we moved further along the
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FIG. 8. Comparing of here derived ellipsoidal models with the
spherical model and measured experimental result in the same con-
dition. The maximum energy and related electron energy distribution
of ellipsoid model in comparison to the spherical model is in much
better agreement with the experimental measurements. The image
plate for monoenergetic electrons related to point 1 of Fig. 7(b) is
also presented.

laser beam, the profile of the electrons changed more to
the quasi-Maxwellian shapes [points 2 and 3 of Fig. 7(b)].
Under the conditions of this experiment (focusing radius of
5.5 µm), points more than 600 µm showed 100% distribution
of electron energy as we can see in Fig. 7(b). In experiments,
monoenergetic electron bunches only can be observed in a
very narrow window of plasma, target, and laser parameters
where in a specific density profile, only specific points with
a defined laser pulse duration as well as a focusing ratio can
produce monoenergetic electron beams. The accuracy of the
focusing device is another sensitive point in this work. By
better focusing around the minimum point at about 270 µm
which was not possible because of instrumental limitations
[see Fig. 7(b)], quasi-monoenergetic electrons bunches with
much lower distributions can be produced. In order to observe
bigger bubbles for trapping more electrons, one has to use
laser beams with higher powers or compress the initial laser
pulses to shorter pulse durations to obtain larger focal spots
with intensities larger than the critical relativistic intensities.
However, at the first minimum, by producing a larger bubble
due to dependence of electron energy to the bubble radius, the
energy distribution of the electrons is increased.

When approaching the minimum of the crossing points of
Fig. 7(a), the electron beam becomes more monoenergetic.

Therefore, when the laser beam is focused in the best
matched point in the edge of the gas jet, then the background
Maxwellian electrons are canceled. For producing more
monoenergetic electrons, we have focused the laser beam to the
second minimum of the Fig. 7(a). Very fine tuning is required
for obtaining a very clean mono-energetic electron bunches
without any lower energy electrons outside the bubbles with
mixed Maxwellian distribution. In Fig. 8, we compared the
measured monoenergetic electron pulse energy spectrum with
the results predicted from a here mentioned ellipsoid model
and the spherical model with the same total energy (see Fig. 8).
As we can see, the ellipsoid cavity holds the electron bunch
in the quasi-monoenergetic regime better than the previous
spherical cavity. From Fig. 8, we can see the maximum energy
of the here presented model about 24% lower than the earlier
spherical model which is in good agreement with the here
measured experimental amounts. In this figure, also the related
image plate to the electron spectrum produced at 250 µm [point
1 of Fig. 7)] is presented.

V. CONCLUSIONS

In the present work, we derived a reliable analytical ex-
pression for the potential within a cavity moving at relativistic
velocity in plasma. We have improved the previous model
when the bubble velocities are approaching the velocity of
light, and we showed that in fact in these conditions, the
potentials are in the ellipsoidal shape. We also derived the
maximum energy of the electrons and the electron energy
spectrum and found that the maximum energy in the ellipsoid
model is considerably less than that in the spherical model
and very close to the experimental values and reported PIC
simulations [2]. In the experimental part of this work, we
have focused the laser pulse in the best matched point above
the nozzle gas exit to obtain a stable ellipsoid bubble. The
relative energy distributions of the experimentally produced
electrons with �E/E = 12 (see Fig. 8) was less than one
third of previous spherical model (42%) which is in excellent
agreement with the here presented ellipsoidal model with only
�E/E = 11 in the experimental conditions presented here.
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