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Correlations of Rydberg excitations in an ultracold gas after an echo sequence
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We show that Rydberg states in an ultracold gas can be excited with strongly preferred nearest-neighbor
distance if densities are well below saturation. The scheme makes use of an echo sequence in which the first
half of a laser pulse excites Rydberg states while the second half returns atoms to the ground state, as in the
experiment of Raitzsch et al. [Phys. Rev. Lett. 100, 013002 (2008)]. Near the end of the echo sequence, almost
any remaining Rydberg atom is separated from its next-neighbor Rydberg atom by a distance slightly larger than
the instantaneous blockade radius halfway through the pulse. These correlations lead to large deviations of the
atom-counting statistics from a Poissonian distribution. Our results are based on the exact quantum evolution of
samples with small numbers of atoms. Finally, we demonstrate the utility of the ω expansion for the approximate
description of correlation dynamics through an echo sequence.
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I. INTRODUCTION

When atoms within an ultracold gas are excited to Rydberg
levels, they experience long-range interactions that can block
further excitations, leading to a strongly correlated many-body
state. This effect might be useful for quantum information [1]
as well as for fundamental studies of many-body physics and
was observed in several experiments [2–11]. The coherence of
the excitation process in a bulk gas has been experimentally
demonstrated using an echo technique [8,9]. After exciting
atoms to Rydberg states, it was possible to deexcite them
following a π phase shift of the excitation laser. The basic
scheme is illustrated in Fig. 1. After the echo sequence, a
certain fraction of the atoms remains in the excited state,
owing to effects of the interaction. This has been modeled
theoretically using the super-atom approach [12].

Neither experiment nor theory has considered the dynam-
ics of Rydberg-Rydberg correlations during such an echo
sequence. Here, we show that strong correlations of atoms
separated by a characteristic distance r0 are induced in its
course. This distance r0 is slightly larger than the instantaneous
blockade radius at the moment when the laser phase is flipped.
At the instantaneous blockade radius rb(t), the Rydberg state
density-density correlation function drops sharply to zero.
Initially, rb(t) = 0, later growing toward its saturation value
rb0 ∼ (C6/�)1/6, as the longer duration of the pulse allows an
increasingly finer energy resolution.

After most Rydberg atoms that were excited in the first
half of the pulse return to the ground state, the majority of the
remainder are between r0 and 1.5r0 from their nearest excited
neighbor. The strength of this correlation signal is proportional
to ρ−2, where ρ is the atomic density.

Our results imply that the echo technique can be used to
manipulate the nearest-neighbor distribution in the Rydberg
fraction of the gas. Such manipulations could be used, for
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example, to initiate dynamics due to dipole-dipole forces [13]
from a well-specified nonequilibrium state.

Similar correlations between Rydberg atoms are created
if a two-step excitation scheme with a strongly decaying
intermediate state is used [14,15]. In that case they are due
to the Autler-Townes splitting of the intermediate level.

The peculiar nature of the nearest-neighbor distribution
function of Rydberg atoms after an echo pulse may be seen
experimentally in the kinetic energy spectrum of ions after field
ionization of the remaining Rydberg fraction. Alternatively
one could measure deviations of the atom-counting statistics
from a Poissonian distribution [16]. Both these suggestions are
discussed further in Sec. IV.

Our results are based on solutions of the many-particle
Schrödinger equation, which we also use to benchmark the
recently proposed ω expansion [17,18]. Both methods are
briefly described in Sec. II. The ensuing correlation dynamics
are presented in Sec. III. Possible ways to detect the pairing
effect are discussed in Sec. IV. In Sec. V, we take a closer
look at the effects of density variations on our results, and in
Sec. VI we directly compare many-body quantum simulations
with the ω expansion. Finally, we conclude in Sec. VII.

II. METHODS

A. Exact quantum dynamics

We consider a system of N0 atoms at fixed locations xi and
described by the following Hamiltonian in atomic units:

Ĥ = 1

2

N0∑
i=1

�w(t)
(
σ i

eg + σ i
ge

) + �

N0∑
i=1

σ i
ee +

N0∑
i,j ;j>i

κij σ
i
eeσ

j
ee.

(1)

Each atom can either be in its ground state |g〉 or an
excited state |e〉, which is the Rydberg state. The atoms in
|e〉 experience long-range interactions κij = −C6/|xi − xj |6.
Laser-induced transitions between the levels occur with Rabi
frequency � ∈ R, detuning �, and the temporal profile of
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FIG. 1. Illustration of an echo excitation sequence and evolution
of the Rydberg fraction. For a sequence of duration T , we use the
fractional time τ = t/T . (a) Sketch of Rabi frequency �w(t) (see
Sec. II A) during the sequence. (b) Fraction of excited state atoms f

for a density ρ0Vb0 = 26.2 (solid line) from a numerical solution of
the Schrödinger equation. Here, Vb0 = 4πr3

b0/3 is a simple estimate
of the saturated blockade volume. We also show the noninteracting
result for the excited fraction (dashed line). The symbols (•) mark
times for which we display correlations in Fig. 2.

the pulse w(t). The operators σ i
ab act as σ i

ab = |a〉〈b| on the
subspace of atom i and as unity on others. We use atomic units
unless otherwise indicated.

We expand the many-body wave function as |	(t)〉 =∑
n cn|n〉, where n is a vector with N0 elements nj ∈ {0, 1},

which describe whether atom j is in the ground (0) or excited
(1) state. The Schrödinger equation (SE) then takes the form

iċn =
⎛
⎝�

N0∑
i

ni +
N0∑

i,j ;i>j

κijninj

⎞
⎠ cn

+ 1

2

N0∑
i

[�w(t)cn,↓i + �∗w∗(t)cn,↑i], (2)

where cn,↓i (cn,↑i) is the coefficient of the state that is reached
from |n〉 by lowering (raising) the ith atom if this is possible,
and 0 otherwise.

For the numerical solution we convert Eq. (2) to a rotating
frame for the variables

c̃n = exp

⎛
⎝−it

N0∑
i,j ;i>j

κijninj

⎞
⎠ cn. (3)

To render simulations of ensembles with hundreds of atoms
possible, we remove all states whose interaction energy is
larger than some cutoff Ecut from the Hilbert space (see,
e.g., [19,20]). We further limit the number of simultaneously
excited atoms to

∑
nj � Nmax. All numerical results are

checked for convergence with respect to variations in Nmax

and Ecut.

B. The ω expansion

In the experiment of Ref. [8], the sign of the Rabi coupling
was flipped well before the excitation of Rydberg atoms
reached the saturation limit imposed by the blockade effect.
In such a situation one could attempt to solve the quantum
dynamics of the gas by a series expansion in ω = �t [17],
where ω = 0.25 for the experimental conditions.

From Eq. (1), we can derive equations of motion for
the operators σ i

ab. We expand these operators in a series
σ i

ab = ∑
n ωnσ

i(n)
ab . It is possible to obtain recursive equations

expressing σ
i(n)
ab by σ

i(m)
a′b′ for m < n. In our case the lowest order

approximations of the σ i
ab already offer interesting insight into

correlation dynamics.
In the following we are interested in an echo-type pulse.

Assuming a pulse length T , we rescale our variables as follows:

τ = t/T , ω = �T, kij = κij T , f (τ ) = w(t/T ).

(4)

The echo pulse shown in Fig. 1 is then given by f (τ ) =

(1/2 − τ ) − 
(τ − 1/2), where 
(t) is the Heaviside func-
tion. We further define F (τ ) = ∫ τ

0 dτ ′f (τ ′) = τ
(1/2 − τ ) +
(1 − τ )
(τ − 1/2).

According to the ω expansion the leading order (LO) and
next-to-leading order (NLO) expressions for the excited state
fraction Pe(τ ) are given by

P (LO)
e (τ ) = ω2

〈
σ i(2)

ee

〉 = 1

4
ω2|F (τ )|2, (5)

P (NLO)
e (τ ) = ω2

〈
σ i(2)

ee

〉 + ω4
〈
σ i(4)

ee

〉
= P (LO)

e − ω4(I41 + I42), (6)

I41 = |F (τ )|4
16

− Re

[
F (τ )

8

∫ τ

0
dτ1f (τ1)∗F (τ1)2

]
, (7)

I42 = 1

4

∑
i 	=j

Re

{∫ τ

0
dτ1f (τ1)[F (τ ) − 2F (τ1)]

×
∫ τ1

0
dτ2f

∗(τ2)F ∗(τ2)[ei(τ1−τ2)kij − 1]

}
. (8)

The Rydberg-Rydberg correlation function is defined by

g(2)(i, j ) ≡ 〈σ i
ee(τ )σ j

ee(τ )〉
〈σ i

ee(τ )〉〈σ j
ee(τ )〉

, (9)

with leading order approximation in the ω expansion

g
(2)
LO(i, j ) = 4

|F (τ )|4
∣∣∣∣
∫ τ

0
dτ1e

iτ1kij f (τ1)F (τ1)

∣∣∣∣
2

. (10)

Calculating higher order corrections to these quantities, al-
though possible in principle, is more tedious than justified. The
expressions above can be explicitly evaluated for a homoge-
neous system with van-der-Waals interaction κij = −C6/|xi −
xj |6. The sum in I42 is replaced by

∑
i 	=j → ∫

d3xρ(x), which
corresponds to an ensemble average. Throughout the article we
write ρ for the full density profile and ρ0 for the peak density.
If we evaluate Eq. (6) at t = T for a homogenous system, we
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can obtain the echo signal; that is, the final Rydberg fraction

fe = Pe(T ) = 2ω4π3/2√|C6|
2835

(8
√

2 − 9)ρ0. (11)

Other analytical expressions that can be obtained are not
illuminating and are therefore omitted here. However, we
compare their predictions with direct numerical simulations
in Sec. VI. A more detailed description of the ω expansion can
be found in Ref. [17].

To estimate which order of the expansion in ω is required
for a given scenario, we can consider the excited fraction of a
fully blockaded sample of Nb atoms assuming a square pulse:

Pe(t) = 1

Nb

sin2(
√

Nb�t/2) =
∑

n

P (n)
e (�t)n, (12)

which is correctly reproduced by the expansion in the limit of
infinite interactions [17]. Roughly knowing the expected Nb

for a system and the maximal �t , we can estimate how many
terms of the series expansion Eq. (12) are required. This will
be used in Sec. VI.

III. CORRELATION DYNAMICS

For N0 atoms homogenously distributed in a cube of
volume L3, we can see that the physics of our problem
is governed by two parameters; namely ω = �T and U =
C6T/L6. Throughout this article we usually employ ω =
0.25 and U = −0.0014. This corresponds, for example, to
a 87Rb gas in which states with principal quantum number
nRyd = 41 are excited via a transition with Rabi frequency
� = 2π × 0.1 MHz during a time of 400 ns. The dimension
of the box would be L = 11 µm. For these parameters we
then vary the number of atoms as listed in Table I, leading
to densities of the order of 5 × 1010 cm−3. Compared to the
experiment of Ref. [8], these parameters lead to a substantially
weaker blockade with maximally about Nb = 40 atoms per
blockade sphere. This facilitates both the physics of interest
here and the numerical simulation. We will use the saturated
two-atom blockade radius rb0 = (C6/�)1/6 as length scale and
express densities using the simple estimate for the blockade
volume Vb = 4πr3

b0/3.
In an echo sequence, we first excite Rydberg states with

Rabi frequency � for some duration τ/2, followed by a π

TABLE I. Parameters for the scenarios modeled in this article. In
cases (i)–(iii) the atoms are homogeneously distributed in a cubic box
of dimension L with periodic boundary conditions [22]. Case (iv) is
a Gaussian cloud, as shown, with σ = 1.6rb0. This ensures the same
peak density as the homogenous density of case (ii). The relevant
dimensionless measure of the density is ρ0Vb0. For the parameters
described in the text this would correspond to the values in the last
row.

Case (i) (ii) (iii) (iv)

N0 20 84 125 50
L/rb0 2.5 2.38 2.38 2.38
ρg(r) ρ0 ρ0 ρ0 ρ0e

−2r2/σ 2

ρ0Vb0 5.4 26.2 39 26.2
ρ0/1010[cm−3] 1.3 6.3 9.4 6.3

phase shift of the laser and hence Rabi coupling −� for further
time τ/2. These parameters are defined in Sec. II B. For the full
quantum dynamics as in Sec. II A, we randomly distribute N0

atoms, solve the SE and obtain one correlation function defined
by Eq. (9) for each pair of atoms. These are binned according
to the separation r of those atoms. To minimize finite size
effects, we only consider atoms (pairs) inside a central cube of
dimension L/2 within our simulation volume to calculate Ne

[g(2)].
In order to obtain a spatial correlation function, we first

calculate g(2)(i, j ) according to Eq. (9) for each of these atom
pairs. We then determine

g(2)(r)
∑
i,j

¯
g

(2)
i,j /N(r), (13)

where
∑̄

i,j denotes a double sum over all atoms that fulfill
|xi − xj | ∈ [r, r + �r) for a bin size �r , and N (r) is the
number of atom pairs that fall into each respective bin.

Thus averaging over the entire sample and further over a
large number of realizations of the spatial atomic distribution
[21], we obtain a spatial correlation function g(2)(r). Our
results from numerical solutions [22] of Eq. (2) are shown
in Figs. 1 and 2.

Soon after initiating a transfer of atoms to the Rydberg
state, the probability to find a pair of excited atoms closer
than the sharply defined instantaneous blockade radius rb(t)
is essentially zero. This is due to strong van-der-Waals
interactions of those pairs, shifting doubly excited states out
of resonance. The radius rb(t) grows in time, since the longer
pulse duration allows an increasingly finer energy resolution.
The Rydberg atom number in the echo sequence does not reach
the saturation limit, so rb(t) does not reach its equilibrium
extension rb0 but continues to grow throughout the excitation
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FIG. 2. (Color online) Spatial atomic correlations during an echo
sequence with ρ0Vb0 = 5.4. (a) Pair correlation function g(2)(r) during
the excitation phase at τ = 0.05 (solid black line), τ = 0.37 (blue
dashed line) and τ = 0.49 (green dotted line). Below the cutoff length
rcut, g(2) is set to zero [22]. (b) The same during the deexcitation phase
at τ = 0.6 (solid black line), τ = 0.7 (blue dashed line) and τ = 0.75
(green dotted line). (c) Final shape of the pair correlation function
after the pulse (τ = 1). (d) Spatial maximum of pair correlations. The
location of the time samples in panels (a)–(c) relative to the pulse can
be seen clearly in Fig. 1.
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period [Fig. 2(a)]. Following the flip of the phase of the
Rabi coupling at τ = 0.5, g(2) develops a dominant peak just
outside the blockade radius [Fig. 2(b)]. The height of this peak
increases as more and more atoms are transferred back to the
ground state [Fig. 2(d)]. Just before the end of the pulse, for
densities as low as in Fig. 2, a dip appears in the correlation
peak like that shown in Fig. 2(c). This feature starts to occur
when the probability for a single excitation in the system drops
below that for double excitation.

The underlying physics requires only binary interactions.
Consider a pair of atoms separated by some distance r . Let us
write the quantum state of this pair as

|	〉 = cgg|g1g2〉 + ceg|e1g2〉 + cge|g1e2〉 + cee|e1e2〉.
(14)

Only in the state |e1e2〉 where both atoms are excited to
a Rydberg level do they experience any interaction. The
correlation function in state (14) is

g(2)(1, 2) ≡
〈
σ 1

ee(τ )σ 2
ee(τ )

〉
〈
σ 1

ee(τ )
〉〈
σ 2

ee(τ )
〉

= |cee|2
(|ceg|2 + |cee|2)(|cge|2 + |cee|2)

. (15)

Now consider g(2) after the pulse for three different atomic
separations: (i) If the atoms are very close [i.e., r <∼ rb(t)]
double excitation can be considered fully suppressed. Hence
|cee| = 0 and g(2) = 0. (ii) If the atoms are very far apart the
interaction can have no effect. We know then g(2) = 1. From
Eq. (15) this can be understood since without interactions and
for small excited fractions |cee| ≈ |ceg|2 = |cge|2 and |ceg|2 �
|cee|2. (iii) In the intermediate range we can neither neglect
double excitations nor interaction. Consider the very end of
the pulse. The amplitudes ceg and cge have returned to their
initial value of zero after the echo pulse. In contrast |cee| is
nonzero due to the dephasing. We then see that the atomic
correlation function scales as g(2) = 1/|cee|2, which is larger
than one.

As shown in Fig. 2, the distances r with pairing correlations
during the second half of the pulse are those where correlations
change, as r increases, from blockaded [g(2) = 0] to uncorre-
lated [g(2) = 1] during the first half of the pulse. We will call
the spherical shell around each atom where neighbors have
these distances the partial blockade shell.

We find that the position of the maximum of the correlation
function during the second half of the pulse depends only
weakly on time.

IV. SIGNATURES OF PAIRING

In this section we quantify to what extent the correlation
dynamics presented in the previous section allow control over
the nearest-neighbor distribution in a Rydberg gas. We further
discuss observables that are easier to access experimentally
than the density-density correlations themselves.

We consider the fraction R of excited atoms separated from
their nearest neighbor by a distance in the interval [r0,r0 + d],
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FIG. 3. Visibility of the pairing effect for a density with ρVb0 =
26.2. (a) Mandel Q parameter. (b) Fraction R of remnant atoms
within the preferred distance peak, using Eq. (16). (c) Total number
of paired, excited atoms, extrapolated [24] as if there was a total
number of Ng = 1 × 107 atoms initially.

chosen to contain the peaks in Fig. 2(a). This is given by

R =
∑

n 	=0 |cn|2f (n)∑
n 	=0 |cn|2 , (16)

where f (n) is the fraction of excited atoms in the many-body
basis state |n〉 with at least one excited neighbor in the chosen
interval.

For a situation as in Fig. 2, we choose r0 = rb0/2 and
d = rb0/4. We show in Fig. 3(b) that almost all atoms are
paired up before the end of the pulse. In the initial phase,
R remains nearly zero owing to the predominance of single
excited atoms without neighbors. In Fig. 3(c), we show the
total number of paired, excited atoms, obtained by multiplying
the paired fraction R(t) by the Rydberg number Ne(t). We
then rescale the number obtained, such that it corresponds
to a situation with a total initial number of 107 atoms,
for illustrative purposes. It may seem counter intuitive that
the number of paired atoms rises even during the second
half of the pulse when atoms are predominantly deexcited.
Note, however, that whether or not the Rabi coupling causes
excitations or deexcitations depends on the relative populations
and phases. The continuous increase of RNe(t) is again due to
interaction-induced decoherence.

Finally, we describe two possibilities to experimentally
detect the correlation dynamics:

(i) via the effect of correlations on the number uncertainty
in the Rydberg fraction [16] and

(ii) via field ionization of the paired Rydberg atoms.

For case (i), strong deviations from an uncorrelated state
have been shown to affect the number statistics of the excited
state fraction [7,16]. This is well captured in the Mandel Q

parameter [23]

Q =
〈
N̂2

e

〉 − 〈N̂e〉2

〈N̂e〉
− 1 =

∫
d3rρe(r)[g(2)(r) − 1], (17)

which can be experimentally determined from the Rydberg
atom counting statistics. We show the Q factor in Fig. 3(a).
In comparison with the evolution of R, we see that the Q

factor becomes large when most Rydberg atoms are paired
up. Q ∼ 1 already represents a sizable deviation of the atom
statistics from a Poissonian distribution.
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FIG. 4. (Color online) Effects of inhomogeneities and changes of density on the pairing peak. We show densities ρ0Vb0 = 5.4, 26.2, 39
as black, blue dotted, and green or gray lines, respectively, and an inhomogeneous case ρ(x) = ρ0 exp (−2r2/σ 2) with ρ0Vb0 = 26.2 and
σ/rb0 = 1.6 (red dashed line). (a) Rydberg fraction fe; for increasing homogeneous density the final remnant fe(τ = 1) gets larger. (b) Paired
excited fraction according to Eq. (16). (c) Mandel Q parameter, see Eq. (17). (d) Spatial maximum of pair correlations. (e) g(2)(r) at τ = 0.75,
for increasing homogeneous density the peak height decreases. (f) Spatial atomic correlations near the end of an echo pulse in a low-density
(ρ0Vb0 = 5.4) gas. Shown are snapshots at τ = 0.96, τ = 0.98, and τ = 1.0 in order of increasing peak-height.

For case (ii), the Q factor captures only integrated
properties of the correlation function. To obtain information
about the spatial shape of atomic correlations after an echo
pulse, the paired Rydberg atoms could be field-ionized.
The potential energy of the ions due to Coulomb repulsion
ECoul ≈ e2/(4πr0ε0) would subsequently be converted into
kinetic energy. Since only a small number of atoms occupies
Rydberg states, one could hope that the Rydberg fraction is
sufficiently dilute for Coulomb scattering to leave the initial
kinetic energy distribution essentially unchanged. The peak
in the nearest-neighbor distribution function ∼r2g(2)(r) then
translates into an easily visible maximum of the measured
kinetic energy spectrum of the ions. For ρVb0 = 26.2, the
energy at the maximum is 0.5 meV.

V. VARYING THE SPATIAL ATOMIC DISTRIBUTION

The scenarios shown in the previous section are relatively
weakly blockaded and assume a homogeneous distribution
of atoms. In this section we study how an inhomogeneous
distribution and changes in the overall density affect our
results. The basic picture is shown in Figs. 4 and 5. In Fig. 4,
we compare a variety of different densities. Prominent features
of these data are compared more directly in Fig. 5.

Is is known that the echo signal (i.e., the fraction of Rydberg
excitations remaining after the pulse) increases as the density
is increased [8]. Using the ω expansion, we can supply the
analytical expression Eq. (11) for this increase. For the low
densities where it is valid, it performs well, as can be seen in
Fig. 5(a). Other effects of increasing density are a decrease of
the maximum correlations and an increase of the Mandel Q

factor for intermediate times (τ ∼ 3/4). Despite the decrease
in the correlation peak height, we find that the paired fraction
R, defined by Eq. (16), almost reaches unity after the pulse,
regardless of the density. This is shown in Fig. 4(e). We also
show the development of the dip in the correlation peak in

Fig. 4(f). We only see this feature for the lowest densities
considered.

The reduction of correlation strength with increasing
density can be understood from the nature of the distribution
of excitations near the end of the pulse, using only classical
arguments. Let us assume a homogenous distribution of pairs
of excited atoms within a volume V , with a fixed distance
r0 between the partners of each pair. The distance r0 then
corresponds to the location of our pairing peak, ignoring its
finite width. The orientation of pairs in space shall be isotropic.
Overall, we thus have a distribution of positions for each pair:

f (R, r) = 1

4πV
δ(|r| − r0). (18)

Here, R denotes the center-of-mass position of a pair and
r its relative coordinate. Assuming a total number of M

pairs we have a pair density np = M/V and an excited atom
density ne = 2M/V . The positions of the pairs themselves are
correlated due to the dipole blockade, we thus assume that the

10
f

3
e

Vb0 Vb0

FIG. 5. (Color online) Dependence of echo signal and final
correlation peak on atomic density. (a) Final Rydberg fraction at
t = T . These data are very well described by Eq. (11). (b) (�) Peak
height of g(2) at t = T . The red dashed curved shows the functional
form g(2)(ρ) = (ρ0/ρ)2g(2)(ρ0) with reference density ρ0 = 26.2.
This is motivated by a simple model explained in the text.
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centers of the pairs must be separated by more than a certain
radius rb. The classical correlation function corresponding to
our g(2) is

ḡ(2)(r) =
∫

d�
E(r1 = x0; r2 = x0 + y,|y| = r)

E(r1 = x0)E(r2 = x0 + y,|y| = r)
. (19)

In the numerator, we have the expectation value for the number
of joint occupations of the locations r1 and r2 by excited atoms.
In the denominator, E(r1 = x0) denotes the expectation value
for the number of excited atoms at location x0, which is 2M/V .
The integration d� is over the solid angle of orientations of
y with respect to x0. We are now interested exclusively in the
value of the correlation function at the pairing peak, located
at r = r0. For simplicity, we assume contributions to the
numerator of Eq. (19) stem only from cases where the atoms at
both locations were constituents of the same pair. This should
be justified when the pairs are sufficiently dilute that their mean
distance is much larger than r0. We can then write E(r1 =
x0; r2 = x0 + y,|y| = r) = Mf [(r1 + r2)/2, r1 − r2].

With these simplifying assumptions, we find Eq. (19) equals
V/4M ∼ 1/np for the simple pair distribution described
above. Using np ∼ ne, ne = feρ, and fe ∼ ρ from the
ω expansion, we find overall that the correlation strength
scales like ρ−2. This behavior is roughly confirmed by the
simulation results as shown in Fig. 5(b). It is consistent with
a paired fraction R that shows almost no density dependence
near the end of the pulse. For each excitation we calculate
N = ∫ r0+d

r0
r2g(2)(r)ne(r)dr to obtain the number of excited

neighbors in an interval [r0, r0 + d]. Since ne scales like ρ2

while g(2) scales like ρ−2, we can understand how the final
paired fraction can remain almost the same even though the
density is varied.

We verified that the relation g(2)(r0, τ ) ∼ ρ−2 remains
qualitatively unchanged if we model similar echo pulses in
a fictitious system with a 1/r4 long-range interaction. This
lends further support to the simple explanation in terms of the
density of available pairs.

Now consider a case with N0 = 50 atoms inhomogeneously
distributed with atomic density ρ(x) = ρ0 exp (−2r2/σ 2)
[case (iv) in Table I]. The peak-density ρ0 is chosen as for
case (ii). Figure 4 includes the correlation function averaged
over all atomic pairs in the cloud for this case. It is determined
in the same manner as described in Sec. III. One could
expect that the inhomogeneity washes out the signal in the
correlation function. Instead its visibility is even better than
for the homogenous case with equal peak density, owing to the
presence of low-density regions in the atomic cloud. For lower
density the pairing effect is more prominent, as we already
argued. We also do not expect a strong spatial variation of the
preferred distance throughout the cloud, since the blockade
radius rb(t) depends only weakly on the atomic density (i.e., the
saturated many-body blockade radius scales like r̄b ∼ ρ

2/5
g �

[6]). Thus, the location of the correlation peak, situated
near rb(τ/2), is expected to vary only slightly throughout
the sample. Consequently, there are only small effects of
spatial averaging on the final result in the inhomogeneous case
considered here. To fully exclude that density inhomogeneities
in an experiment would suppress the signature reported
here, one ideally should consider a sample whose width
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FIG. 6. (Color online) Comparison of the ω expansion (green
dashed line) with exact solutions of the SE for ρ0Vb0 = 5.4 and
ρ0Vb0 = 26.2 (solid black line). (a) Excited-state fractions. The higher
density case has the higher fe(1). (b) Pair correlation function g(2)(r)
at τ = 0.49. The two cases are almost indistinguishable. (c) Spatial
maximum of pair correlations. The higher density case has a lower
g(2)

max(1). (d) Pair correlation function g(2)(r) at τ = 0.75. The higher
density case has a lower pairing peak and is cutoff at r = 0.5rb0.

greatly exceeds the characteristic range where the correlation
peak is formed (σ � r0). However, this is computationally
intractable.

VI. COMPARISON WITH ω EXPANSION

The simple expression of Eq. (10) for two-body correlations
in the ω expansion does not depend on density and thus cannot
capture its effect on correlation dynamics, as shown in Fig. 4.
However, for small densities it compares quite well with the
substantially more involved exact Schrödinger evolution. This
can be expected from Eq. (12) because, for Nb = 40, the series
is well-described by its first two terms until �t = 0.25.

We can see in Figs. 6(a) and 5(a) that the NLO result for
the Rydberg fraction [Eq. (6)] gives good quantitative results
for the cases considered here. For correlations, we only have
the LO expression Eq. (10). We see that this approximation
describes correlations in the low density case ρ0Vb0 = 5.4
quite well, whereas quantitative deviations appear when the
density becomes as high as in the case with ρ0Vb0 = 26.2.
Qualitative differences in the shape of the correlation function
are also present near the very end of the pulse, because Eq. (10)
cannot describe the dip seen in Fig. 4(f).

We note that (in particular for cases that show the most
dramatic correlation dynamics through an echo pulse), for
those cases with a low density, the ω expansion provides useful
results.

VII. CONCLUSIONS

We have shown that an echo-type excitation sequence
as employed in the experiments of Refs. [8,9] can be used
to create Rydberg gases with non-standard nearest-neighbor
distribution functions. After the pulse the vast majority of
excited atoms possesses a neighbor in a fairly narrow interval
around some distance r0. Variations of the interaction strength
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and pulse length can control r0. The strength of the correlation
signal is proportional to ρ−2, where ρ is the atomic density.
This can be understood in terms of the quantum state after the
echo pulse, independent of the precise form of the interaction.

The described pairing effect in the density-density cor-
relation function is most pronounced for low densities and
for gases that are not too strongly blockaded. However, the
overall fraction of Rydberg atoms that have a neighbor near the
distance r0 approaches unity regardless of density. Our results
were obtained by direct simulation of ensembles of about a

hundred atoms. Furthermore, we used these simulations to
estimate the range of validity of the first-order approximation
of the correlation dynamics obtained using the ω expansion.
We find that for weakly blockaded gases it provides useful
estimates.

ACKNOWLEDGMENTS

PD was supported by the European Community under the
contract MEIF-CT-2006-041390.

[1] M. D. Lukin, M. Fleischhauer, R. Côté, L. M. Duan, D. Jaksch,
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