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Three-dimensional optical lattice clock with bosonic 88Sr atoms
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We present detailed analyses of our recent experiment on the three-dimensional (3D) optical lattice clock with
bosonic 88Sr atoms in which the collisional frequency shift was suppressed by applying a single-occupancy lattice.
Frequency shifts in magnetically induced spectroscopy on the 1S0-3P 0 clock transition (λ = 698 nm) of 88Sr
were experimentally investigated by referencing a one-dimensional (1D) lattice clock based on spin-polarized
87Sr atoms. We discuss that the clock stability is limited by the current laser stability as well as the experimental
sequence of the clock operation, which may be improved to σy(τ ) = 2 × 10−16/

√
τ by optimizing the cycle time

of the clock operation.
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I. INTRODUCTION

Quantum absorbers singly trapped in a region much smaller
than the relevant transition wavelengths are free from Doppler
and collisional shifts; therefore, they are considered to be
promising resources for optical clocks [1,2] that allow better
stability and accuracy than those of the state-of-the-art Cs
fountain clocks [3,4]. To date, the fractional uncertainty of
5.2 × 10−17 was demonstrated by measuring the frequency
ratio of two single-ion optical clocks using Al+ and Hg+
ions operated close to their quantum-projection-noise-limited
stabilities [5]. An optical lattice clock was proposed [6,7] to
attain better stability by employing millions of atoms trapped
in well-engineered optical lattices. The relevant light shifts can
be removed down to the 10−18 uncertainty, including atomic
multipolar effects [8], by operating the clock on the 1S0-3P 0

scalar states that minimize the vector as well as tensor light
shift [7]. Since the first demonstration [9,10] of the scheme,
optical lattice clocks were demonstrated with one-dimensional
(1D) optical lattices employing fermionic [11–17] or bosonic
[18–21] isotopes, highlighting their narrow Doppler-free spec-
trum. Until now absolute frequency measurements of optical
lattice clocks were carried out at the Cs clocks’ uncertainty
limit in the JILA [15], LNE-SYRTE [14], National Institute
of Standards and Technology (NIST) [16] groups and a team
of the University of Tokyo and National Metrology Institute of
Japan (NMIJ) groups [22].

Used with multiple atoms trapped in each site of a 1D
lattice, the collisional frequency shift can be a serious concern
as the precision of the clock improves. To tackle the issue,
Pauli blocking of collisions [23,24] were explored using spin-
polarized fermions [13,14,25]. Nonzero collision shift was
observed by the JILA group [25] with fermionic atoms when
the spin polarization was degraded due to atomic-motion-
sensitive clock excitation. By carefully aligning the clock laser
with the 1D lattice so as to be insensitive to atomic transverse
motion, a very high degree (>98%) of spin polarization in the
clock excitation was demonstrated in the Tokyo group [26].
It was predicted theoretically that the collisional shift can
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be reduced down to 10−17–10−18 uncertainty for an experi-
mentally feasible spin polarization [27]. For bosons multiply
trapped in each site of a 1D lattice the collisional frequency
shift is unavoidable; the collisional losses and frequency shifts
on the clock transition were systematically investigated in the
Physikalisch-Technische Bundesanstalt (PTB) group [21].

These studies with fermionic as well as bosonic 1D clocks
indicate that a single-occupancy three-dimensional (3D) op-
tical lattice, as assumed in the original proposal [6,7], may
provide a robust means for realizing optical lattice clocks free
from the collision shift. In contrast to 1D lattices, in 3D lattices,
however, the light polarization of the lattice cannot be spatially
uniform, which makes the coupling of the clock states with the
local lattice polarizations problematic, especially for fermionic
isotopes with nonzero angular momentum [7]. In the bosonic
isotope, as a result of the purely scalar nature of the 1S0-3P 0

clock states, their coupling to the lattice-field polarization is
solely introduced by an external mixing field [28,29] that
is necessary for a magnetically induced spectroscopy and is
experimentally controllable [30].

Recently we demonstrated the frequency comparison be-
tween a 3D lattice clock with bosonic 88Sr and a 1D lattice
clock with fermionic 87Sr [31], both of which represent the
noninteracting atomic samples. In this article, we present
a detailed description of the 3D optical lattice clock with
bosonic 88Sr, which have not been reported in depth so far.
In particular, we describe the evaluation of uncertainties for
the lattice polarization effects and for the collision shift, both of
which are the specific features in the 3D bosonic lattice clock.
Furthermore, the stability of the clock is discussed in detail:
The Dick-effect-limited stability calculated for our laser noise
spectrum well explains the measured stability, which may be
improved to 2 × 10−16 for 1 s by reducing the clock cycle time
down to 0.1 s. To present unified aspects of the bosonic 3D
clock we use previously published results [31] when necessary.

This article is organized as follows. Section II describes the
3D optical lattice used in the experiment. The spectroscopy on
the magnetically induced clock transition is given in Sec. III.
Section IV describes the frequency evaluation referencing the
fermionic 1D clock and discusses the Dick effect that limits
stability of the measurements. An evaluation of uncertainties
is given in Sec. V. Finally, we address future work in Sec. VI,
including the feasibility of applying fermionic isotopes to
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3D lattices. The Appendix discusses the lattice polarization
rotation effects for atoms oscillating in the lattice site, which
may be a concern in applying fermionic 87Sr atoms to the 3D
lattice.

II. A 3D OPTICAL LATTICE

To suppress atomic collisions and to confine atoms in
the Lamb-Dicke regime, it is straightforward to apply 3D
optical lattices with less than a single atom in each lattice
site [6], which is of particular importance in employing bosonic
isotopes as interrogated atoms because of their bunching nature
that may introduce collision shifts. In view of recent advances
in creating Bose-Einstein condensates (BEC) in alkaline-earth-
metal (-like) species, such as Yb [32], 40Ca [33], and 84Sr
[34,35], the Mott-insulator state [36] with a single atom in
each lattice site that is made of BEC will allow attaining dense
lattices to further improve clock stability. Moreover, in the 3D
configuration, blue-detuned optical lattices [37] that reduce
the higher-order light shift are applicable.

Technically, however, it is more challenging to realize a
stable 3D optical lattice than 1D ones, as the 3D lattice requires
four or more laser beams and, in addition, their relative phases
critically affect the position and the local polarization of the
lattice sites [38]. Instead of actively stabilizing the relative time
phase of the lattice beams, we employed an intrinsically phase-
stable configuration, the so-called “folded optical lattice” [39]
where an n-dimensional optical lattice is formed by a single
standing wave, which is viewed as the natural extension of a
1D lattice with a retro-reflected beam.

We constructed an orthogonally crossed “folded” 3D
optical lattice in an optical enhancement cavity, as shown
in Fig. 1. Taking advantage of the cavity enhancement of
the coupled laser power, we designed the lattice to have
relatively large volume with modest potential depth to load as
many atoms into the lattice as possible. The intracavity laser
power Pcav is given by Pcav = Pin(1 − R)/[1 − √

R(1 − L)]2,
where Pin is the laser power coupling into the cavity, R is
the reflectivity of the input coupling mirror, and L is the
round trip loss in the cavity. The maximum enhancement of
1/L can be obtained by setting R = 1 − L. In our cavity, all
the cavity mirrors except the input coupling mirror were set
inside the vacuum chamber to minimize the cavity loss. The
round trip loss of the cavity was estimated to be L = 0.063
including the transmission of the vacuum window (T = 0.99)
and the reflectivity Rm = 0.995 of each cavity mirror. We thus
used an input coupling mirror with R = 1 − L = 0.935(5) and
obtained the enhancement of Pcav/Pin = 14. The lattice cavity
length was 630 mm and the cavity linewidth was 5 MHz.

By tuning the lattice laser to the “magic wavelength,” the
differential light shift in the 1S0-3P 0 clock transition can be
removed to the second order in the electric dipole interaction.
A precise definition of the “magic wavelength” including the
multipolar interactions of atoms with lattice field is discussed
elsewhere [8]. The “magic wavelength” lattice laser at λL =
813.42 nm was generated by a master oscillator and power
amplifier (MOPA) system using an external cavity diode laser
(ECDL) as a master oscillator, electronically stabilized to a
reference cavity with a linewidth of 140 kHz. Typically, the
lattice laser power of Pin = 140 mW was coupled into the
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FIG. 1. (Color online) A 3D optical lattice is realized in the
optical enhancement cavity whose mirrors are placed inside a vacuum
chamber except an input coupling mirror attached on a PZT. The
small (blue) spheres represent singly trapped atoms in lattice sites.
The linear polarization of the electric field are indicated by (red)
arrows.

lattice cavity with an efficiency of 80%, resulting in Pcav =
2 W. A piezoelectric transducer (PZT) attached on the input
coupler controlled the lattice cavity length to be resonant with
the lattice laser.

The cavity consisted of concave mirrors with different
curvatures that were assembled on a stainless steel block set
inside the vacuum chamber. The lattice beams were aligned
so that all six beams overlap in the 3D trapping region
before evacuation. A linearly polarized (‖ ey) lattice laser
was coupled as shown in Fig. 1. The 3D lattice trap was
composed of three linearly polarized electric fields oscillating
in phase; two of them (E2, E3 ‖ ex) had the same polarization
vector and the other (E1 ‖ ey) was perpendicular to the first
two, where ej is the unit vector in the j direction. The total
electric field EL, therefore, had linear polarization in the xy

plane with the polarization vector spatially varied in the plane.
The radii of the lattice beams corresponding to E1, E2, and
E3 were (w1, w2, w3) = (260 µm, 260 µm, 130 µm) at the
intersection. The atoms were efficiently loaded into the lattice,
as the trap volume was comparable to that of the atomic cloud
magneto-optically trapped on the 1S0-3P 1 intercombination
transition [40].

Near the center of the 3D lattice, the Stark potential is given
by

U (x, y, z) = − 1
2αE1|EL|2

= U0(ey cos kx + ex cos ky + 2ex cos kz)2, (1)

where k = λL/2π is the wave number of the lattice laser,
U0 = − αE1

2ε0c

8Pcav
πw2 is the potential depth of a 1D optical lattice

with its 1/e2 beam radius of w = w1 = w2 = 2w3, αE1 is the
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FIG. 2. (Color online) Lattice potential along the (a) x axis, (b) y

axis, and (c) z axis in the unit of normalized potential depth |U0|, see
text.

electric dipole polarizability of atoms at the magic wavelength
λL, ε0 is vacuum permittivity, and c is the speed of light.
Figures 2(a)–2(c) show the lattice potentials along the x, y,
and z axes, respectively. The potential along the z axis, on
which we introduce the clock laser, is given by

U (0, 0, z) = 2U0(cos 2kz + 2 cos kz + 2). (2)

This double periodic structure is due to the interference of the
electric fields E2 and E3, which are in phase at the positions
of z = nλL and are out of phase at z = (n + 1

2 )λL with n an
integer. By Taylor expanding U (0, 0, z) for |z| � λL, the trap

frequency is given by ωz = k

√
12|U0|

m
.

The actual trap depth was estimated from the motional-
sideband frequency, which was measured to be ωz/2π =
60(10) kHz by the clock laser propagating along the z direction.
This suggested the maximum light shift to be 10|U0| =
130(40)Er, corresponding to the lattice peak intensity of
I0 = 33(10)kW/cm2, where Er = (h/λL)2/2m is the recoil
energy of an atom by the lattice photon. This peak intensity,
however, was nearly half of the peak intensity expected for
Pcav = 2 W in Eq. (1), possibly due to the imperfect overlap
of the three standing waves forming the lattice.

Assuming the peak intensity to be I0 = 33(10)kW/cm2,
the lattice potential depth along the x direction created by
E1 [see Fig. 2(a)] was 13 Er, which supports only two
vibrational bands of nx = 0,1. Moreover, as a result of this
relatively weak confinement, the energy bandwidth (Bloch
bandwidth) of the nx = 0 band is calculated to be as large as
νB(0) = 140 Hz unless external acceleration is applied. In the
experimental setup shown in Fig. 1, the Bloch bandwidth was
significantly reduced by the gravitational potential difference
[41] between adjacent sites hνg = mg(λL/2) cos ϕ ≈ h × 800
Hz, where ϕ = 24◦ denoted the angle between gravity and
the x axis and h the Planck constant. For atoms occupying
the nx = 1 state, as the Bloch bandwidth (in the absence
of acceleration) of νB(1) = 2.6 kHz well-exceeded νg , the
gravitational acceleration is not enough to suppress tunneling.
We therefore depleted these atoms by temporarily reducing the
lattice depth by 50% as described in Sec. III A. Note that the
lattice potentials formed in both the y and z directions by
the electric fields of E2 and E3 were as deep as 130Er,
therefore, the site-to-site atom tunneling rate was negligible
regardless of the gravitational potential difference.

This temporary reduction of the lattice potential depth
mentioned earlier also allowed removing atoms trapped in
the 1D and 2D lattice region, which were formed outside
the central 3D lattice. Because of the gravitational potential
barrier, the radial confinement of each 1D lattice provided by
E1, E2, and E3 becomes too weak to support atoms against
gravity, which are mg sin ϕ, mg cos ϕ, and mg, respectively.
Even after the process, atoms in the two-dimensional (2D)
lattice formed by E1 and E2 may remain trapped. The clock
signal from these atoms may well be neglected, as the clock
spectrum observed for these atoms will be 104 times weaker
than that of atoms in the 3D lattice because of the Doppler
broadening as large as 100 kHz [42] due to the lack of the
Lamb-Dicke confinement.

III. SPECTROSCOPY ON THE CLOCK TRANSITION

A. Preparation of a 3D lattice with single atom occupation

Ultracold 88Sr atoms were prepared by two-stage magneto-
optical cooling and trapping on the 1S0-1P1 transition at 461 nm
and afterward on the 1S0-3P 1 intercombination transition at
689 nm [40]. About 108 atoms at a few mK were trapped in
the first cooling stage in 200 ms. They were cooled down to a
few µK and magneto-optically trapped in the second cooling
stage of 150 ms. To efficiently transfer atoms into the lattice,
a bias magnetic field was applied to fine-tune the position of
the magneto-optically trapped atoms. After transferring atoms
into the 3D lattice, the photoassociation was induced by the
cooling laser [43,44] near resonant to the 1S0-3P 1 transition
to remove lattice sites that had more than one atom. The effect
was inferred by the fluorescence decay of the trapped atoms:
An initial nonexponential atom decay indicated the two-body
atom loss, which approached an exponential decay after 20 ms
of irradiation.

After turning off the photoassociation laser, the lattice laser
intensity I0 was decreased to about I0/2 in 20 ms to prepare a
pure 3D lattice by removing atoms trapped in both the 1D and
2D regions and in the nx � 1 state as described previously.
After 10 ms, we increased the intensity back to the initial
intensity of I0 in 20 ms. In this way, we prepared a singly-
occupied 3D lattice with typically 105 bosonic 88Sr atoms.
The shot-to-shot atom number fluctuation was less than 20%.
The storage time of atoms in the lattice was about 500 ms,
limited mainly by rest-gas collisions at a pressure of 1 × 10−8

Torr. The atomic temperature in the lattice was estimated from
the velocity distribution of atoms released from the lattice by
using a time-of-flight method. The temperature in the vertical
direction in the lattice was 2 µK, whereas that of the horizontal
direction was 4 µK. This anisotropy may be attributed to the
different trap frequencies ωx and ωz in the x and z directions,
as the atoms nearly occupied the vibrational ground state,
especially in the x direction.

B. Magnetically induced clock transition

An external magnetic field was applied to introduce a
transition dipole moment on the 1S0-3P0 clock transition of
88Sr by mixing the 3P0 state with the 3P1 state that has a
transition moment to the 1S0 state. The Rabi frequency for the
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clock transition is given by [28]


R = α
√

Ic(Bm · Ec/|Ec|), (3)

where Bm is the mixing magnetic field in T, Ic is the clock laser
intensity in mW/cm2, Ec is the electric field vector of a linearly
polarized clock laser, and α = 198 Hz/(T

√
mW/cm

2
) [28] is

the coupling coefficient for Sr. The second-order Zeeman shift
is given by

�B = β|Bm|2, (4)

with β = −23.3 MHz/T2 and the clock light shift �L = κIc

with κ = −18 mHz/(mW/cm2).
In the experiment, the mixing magnetic field Bm was set in

the same xy plane as the lattice field EL to minimize the mutual
coupling given by Eq. (8) as discussed later, which gives rise
to lattice polarization effects [30]. The electric field Ec of the
clock laser was set parallel to the mixing magnetic field Bm

to maximize the Rabi frequency 
R = α
√

Ic|Bm|. Typically, a
magnetic field of |Bm| = 2.34 mT and a clock laser intensity of
Ic = 400 mW/cm2 were applied to achieve a Rabi frequency
of 9 Hz on the clock transition. These parameters, in turn,
resulted in the second-order Zeeman shift of �B = −129 Hz
and the clock light shift of �L = −7.5 Hz. The 1/e2 beam
radius of the clock laser was 300 µm, which was about three
times larger than the size of the atomic clouds in the 3D lattice.
The relevant intensity inhomogeneity over atoms in the 3D
lattice was estimated to be less than 20%.

C. Clock laser

A schematic of the clock laser operating at 698 nm is
shown in Fig. 3 [13]. An external cavity diode laser (ECDL)
was prestabilized to a medium-finesse cavity made of an
Invar spacer. The laser was further stabilized to a high-finesse
(F ≈ 4.3 × 105) reference cavity consisting of silica mirrors
optically contacted on an ultra-low-expansion (ULE) glass
spacer. The ULE cavity was vertically mounted [45] inside
a vacuum chamber, which was set on a vibration isolation
table (150BM-1, Minus-K) placed in a soundproof box. This
master laser with a linewidth less than 10 Hz was coupled

to a 30-m-long polarization-maintaining (PM) single-mode
optical fiber in which a fiber noise-cancellation system [46]
was installed.

Two antireflection-coated diode laser (HL6738MG, Hi-
tachi) were injection locked to the delivered light to amplify
the power up to 8 mW, which were then used to interrogate the
bosonic 3D and fermionic 1D lattice clocks [13]. Diffraction
gratings with 2400 lines/mm were inserted after the ampli-
fier diode laser (DL) to remove the amplified spontaneous
emission (ASE) component. The clock lasers were sent to the
lattice chambers by optical fibers. The laser intensities were
monitored by photodiodes (PD) and acousto-optic modulators
(AOM) 1 and 2 were used to stabilize the intensity within 0.5%,
keeping the Rabi frequency constant. AOM-3 and 4 were used
to generate the π -pulse for the clock excitation.

D. Laser stabilization to the clock transition

Figure 4(a) shows the timing operation chart for the 3D
lattice clock. The atomic transitions corresponding to the
respective laser wavelengths are depicted in Fig. 5. Laser
cooled 88Sr atoms were loaded into the lattice by t = 350 ms.
After turning off the cooling lasers, the mixing magnetic
field was increased up to |Bm| = 2.34 mT. We then excited
the atoms by the clock laser with a pulse duration of τc =
60 ms. A laser near resonant to the 1S0-1P1 transition was
applied during 610 ms < t < 620 ms to measure the clock
excitation. The fluorescence intensity IS was measured by
a photomultiplier tube (PMT) to evaluate the number of
atoms NS remaining unexcited in the 1S0 ground state. The
fluorescence typically decayed in about 1 ms, which indicated
the atoms in the ground state were heated out of the lattice
by this measurement. Afterward an optical pumping laser
resonant to the 5s5p3P 0–5s6s3S1 transition at 679 nm was
applied at t = 630 ms to transfer the atoms in the 3P 0 excited
state to the 1S0 ground state via the 3P 1 state. After the
population transfer, we similarly measured the laser-induced
fluorescence intensity IP on the 1S0-1P1 transition to deduce
the number of atoms NP in the 3P 0 state. Given a population
transfer efficiency of ξ from the 3P 0 state to the 1S0 ground
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FIG. 3. (Color online) Experimental setup: The clock lasers and the beat-note measurement between bosonic 3D and fermionic 1D lattice
clocks. Polarizing beam splitter (PBS); radio frequency oscillator (OSC); double balanced mixer (DBM); and diode laser (DL).
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FIG. 4. (Color online) Timing chart for (a) the 3D optical lattice
clock with 88Sr and (b) the comparison of 87Sr and 88Sr clocks.

state, the excited atom fraction κ was calculated as

κ = NP

NS + NP

= IP

ξIS + IP

. (5)

We experimentally determined the population transfer effi-
ciency to be ξ = 0.3, which was in reasonable agreement
with the calculated efficiency of 3/8 given by the branching
ratio of the 3S1 state decaying into either the 3P 1 or the 3P2

states.
Figure 6(a) shows a typical spectrum of the clock transition

excited by a 60-ms-long π pulse of the clock laser with Rabi
frequency 
R/2π = 9 Hz. We observed a nearly Fourier-
limited 13-Hz-wide spectrum with maximum excitation of
κ ≈ 0.8. Figure 6(b) shows the corresponding Rabi oscillation.
The reduced contrast is caused by the inhomogeneity of the

ξξ

3P0

1P1

3S1

3P1

mF = +9/2

F = 9/2

3P2

f88

1S0

mF = -9/2

mF = +9/2

mF = -9/2
F = 9/2

88Sr(I = 0) - 87Sr(I = 9/2)

F = 9/2

f+

f-

FIG. 5. (Color online) Energy level diagram of bosonic 88Sr and
fermionic 87Sr isotopes with the clock frequencies of f88 and f87 =
(f+ + f−)/2, respectively. The fermionic isotope has nuclear spin
of I = 9/2, resulting in the hyperfine structure and related Zeeman
substates.
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FIG. 6. (Color online) (a) A typical spectrum of the clock
transition of 88Sr in the 3D optical lattice. (b) The Rabi oscillation on
the clock transition. In both measurements the maximum excitation
fraction was nearly 0.8.

Rabi frequency among atoms, attributed to the spatial intensity
variation of the clock laser and the thermal vibrational state
occupation in the lattice potentials.

The clock laser was frequency stabilized to the center of
the excitation spectrum with a full width at half maximum
(FWHM) linewidth of γ ≈ 13 Hz as shown in Fig. 6(a).
At t = tn, the stabilized clock laser frequency was given
by fc(tn) = fULE(tn) + ferr(tn), where fULE(tn) was the clock
laser frequency stabilized to the ULE cavity and ferr(tn) the
correction frequency fed by computer control. By alternately
setting the frequency of AOM-1 or 2 in Fig. 3 as fAOM(tn) =
ferr(tn) ± γ /2, the corresponding excitation probability κ±(tn)
was measured to derive the error signal e(tn) = κ+(tn) − κ−(tn)
used for the stabilization. Using the error signal, the AOM
frequency at t = tn+1 was given by

ferr(tn+1) = ferr(tn) + gI

γ

2
e(tn), (6)

where gI is the feedback gain of the integral control loop
[13,47]. In this first-order integral feedback, the feedback gain
is optimized at gI = 1/κ0 for the peak excitation probability
of κ0. In addition, we feed forward a linear frequency chirp to
compensate for the ≈ 1 Hz/s drift of the ULE cavity.

IV. FREQUENCY COMPARISON BETWEEN TWO
OPTICAL LATTICE CLOCKS

A. 1D lattice clock with spin-polarized fermionic
87Sr as a reference

We used the optical lattice clock with spin-polarized 87Sr
atoms as a reference to evaluate the uncertainties and correc-
tions of the bosonic 3D optical lattice clock. Figure 3 shows a
schematic diagram of the experiment. The experimental details
for the spin-polarized 87Sr clock are described elsewhere
[13,26,31]. Roughly 104 fermionic 87Sr atoms at a temperature
of 2 µK were loaded into a 10-µK-deep 1D lattice. The atoms
were spin polarized by a circularly polarized optical-pumping
laser operating on the 1S0(F = 9/2)–3P1(F = 9/2) transition
at 689 nm in a presence of a weak bias magnetic field

023402-5



TOMOYA AKATSUKA, MASAO TAKAMOTO, AND HIDETOSHI KATORI PHYSICAL REVIEW A 81, 023402 (2010)

100 101 102 103
10-16

10-15

10-14
A

lla
n 

de
vi

at
io

n

Averaging time (s)

FIG. 7. (Color online) Allan deviation for the beat note δ =
f88 − f87 of the two lattice clocks operated with different isotopes.
The dashed line shows the asymptotic stability of σy(τ ) = 2.3 ×
10−14/

√
τ .

|B0| ≈ 5 µT that defined the quantization axis. The clock
frequency f87 for 87Sr was detuned with respect to f88 of
88Sr by the isotope shift of about 62 MHz. The bias magnetic
field was increased to |B0| = 0.182 mT to resolve adjacent
Zeeman components in the 1S0(F = 9/2)–3P0(F = 9/2)
clock transition. A 60-ms-long π -pulse was applied to observe
a 13-Hz-wide clock spectrum on the 1S0(F = 9/2,mF =
±9/2)–3P0(F = 9/2,mF = ±9/2) transitions with transition
frequencies f±, respectively (see Fig. 5). The average fre-
quency of two transitions f87 = (f+ + f−)/2 was equivalent
to the clock transition frequency of 87Sr free from the first
order Zeeman shift and the vector light shift [13].

Figure 4(b) shows six successive interrogations that were
used to servo control the clock laser frequencies f+, f−, and
f88 with a cycle time 6 s. The Allan deviation of the beat
frequency δ = f88 − f87 was calculated as shown in Fig. 7
using the data measured over 10,000 s to evaluate the stability
of optical lattice clocks. For an average time τ > 100 s,
the Allan deviation decreased with σy(τ ) = 2.3 × 10−14/

√
τ

and reached 5 × 10−16 at an average time τ = 2000 s. The
measured stability was 102 times worse than that of the
quantum projection noise (QPN) limited stability σy(τ ) =
1 × 10−16/

√
τ expected for the 13-Hz-wide clock spectra with

105 atoms, which may be explained by the Dick effect [48] as
follows.

B. THE DICK EFFECT

In the frequency stabilization method described previously,
the interrogation of atomic transitions and frequency steering
processes are discontinuous and periodic. Such a stabilization
scheme degrades the stability of microwave clocks [48,49]
and the optical clocks [50] by the so-called Dick effect. As
described in Sec. III D, the error signal e(tn) was determined
by the clock laser interacting with atoms during the two pulsed
Rabi interrogating periods each lasting Ti = 60 ms, which is a
small fraction of a whole cycle time of Tcyc = 6 s. Afterward
the clock frequency fc ≈ 429 THz was controlled.

This situation is equivalent to measuring a laser frequency
by a counter with its gate time Ti at every Tcyc(>Ti). Frequency
fluctuations higher than the Nyquist frequency fN = 1/(2Tcyc)
disturb the measurement by aliasing, as the frequency noise
at around the cycle frequency 1/Tcyc and its harmonics higher
than the Nyquist frequency fN are down-converted into low
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FIG. 8. (Color online) (a) (gc
n/g0)2 + (gs

n/g0)2 as a function of
frequency. (b) The power spectrum density (PSD) f 2

c Sf
y (f ) of the

clock laser used in the experiment (red line). The (blue) solid and
dashed lines indicate the thermal noise and residual white noise
corresponding to f 2

c Sf
y (f ) = 0.032/f + 0.02.

frequencies f � 1/Tcyc. This aliasing noise, mixed in with
the error signal in a feedback loop, causes a long-term white
frequency noise in the stabilized laser [49]. The Allan variance
σ 2

y (τ ) in the presence of the aliasing noise is given by

σ 2
y (τ ) = 1

τ

∞∑
n=1

[(
gc

n

g0

)2

+
(

gs
n

g0

)2
]

Sf
y

(
n

Tcyc

)
, (7)

where S
f
y (n/Tcyc) is the power spectral density of the clock

laser sampled at frequencies f = n/Tcyc, g0 is the mean value
of the sensitivity function g(t) [49] in a cycle, and gs

n and
gc

n are the Fourier coefficients of g(t) for the sin(n/Tcyc) and
cos(n/Tcyc) components.

Figure 8(a) shows (gc
n/g0)2 + (gs

n/g0)2 as a function of
f = n/Tcyc calculated for our experimental sequence time of
Ti = 60 ms and Tcyc = 6 s. As (gc

n/g0)2 + (gs
n/g0)2 rapidly

decreases as f −4 for frequencies higher than fi = 1/Ti, we
truncated the summation in Eq. (7) at 1 kHz. Figure 8(b)
shows the power spectrum density f 2

c S
f
y (f ) of the clock laser,

which was measured by referencing an independently prepared
ULE cavity with similar stability as the other. As a reference,
the thermal noise of the reference cavity [51] and the typical
white-noise level in the measurement as reported in Ref. [52]
are indicated by the solid and dashed lines, respectively, in
Fig. 8(b). Applying S

f
y (f ) measured for our clock laser in

Eq. (7), we obtained σy(τ ) = 3.4 × 10−14/
√

τ as the Dick
limit, which was comparable to the experimentally measured
stability of σy(τ ) = 2.3 × 10−14/

√
τ .

The Dick-effect-limited stabilities at τ = 1 s for various
experimental conditions were calculated using the power
spectrum density measured for our clock laser. Figure 9(a)
shows the stability as a function of the interrogating time Ti for
the fixed cycle time of Tcyc = 2 s, which can be experimentally
realized by simultaneously operating the 3D and 1D clocks.
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FIG. 9. (Color online) The Dick limited stabilities at τ = 1 s are
shown by (red) circles, which are fitted by (red) solid lines. They were
calculated as functions of (a) the interrogating time Ti with Tcyc = 2 s
and (b) the cycle time Tcyc with Ti = 60 ms, assuming the laser noise
spectrum used in the experiment. The (black) dotted lines assumed
a clock laser operated at the thermal noise limit in addition to the
photon shot noise. The (blue) solid lines further assumed a white
noise floor of technical origin (see text). The (brown) dashed lines
indicate the QPN limit for 105 atoms.

Alternatively, for a fixed interrogation time of Ti = 60 ms, the
cycle time Tcyc dependence of the stability was calculated in
Fig. 9(b). The stability is roughly proportional to T 0.78

cyc /T 0.32
i ,

suggesting that the reduction of the cycle time Tcyc is crucial
in achieving the higher stability.

In the present experiment, the cycle time of Tcyc = 6
s is given by the experimental sequence time while the
interrogation time Ti = 60 ms is limited by the clock laser
linewidth, both of which can be further improved in the future.
By optimizing the laser-cooling process and by operating the
two lattice clocks simultaneously, Tcyc can be reduced to less
than 1 s, improving the Dick limited stability up to σy(τ ) =
8 × 10−15/

√
τ . A minimally destructive measurement [53] of

atoms in the lattice trap, which allows using the same atomic
sample without reloading atoms for each measurement as in
the case of ion clocks [5], may allow further reduction of the
cycle time down to Tcyc ≈ 2Ti.

In future experiments, the power spectrum density of the
clock laser will be limited mostly by the thermal noise [51]
of f 2

c S
f
y (f ) = 0.032/f (Hz2/Hz) as shown by the (blue) solid

line in Fig. 8(b), where we assumed a 75-mm-long reference
cavity consisted of the 25.4-mm-diameter ULE spacer with
200 µm beam radius on the fused silica mirror. The corre-
sponding Dick-effect-limited stabilities are shown by dotted
lines in Fig. 9, where the shot-noise limit given by the 10 µW
of laser power is assumed. In practice, however, the stabilities
may be limited by a white-noise floor ≈ 0.02(Hz2/Hz) of
technical origin [52] as indicated in Fig. 8(b). The resultant
Dick-effect-limited stability is calculated to be σ Dick

y (1s) =
2.3 × 10−16 × T 0.63

cyc /T 0.45
i as indicated by the (blue) solid

lines in Fig. 9. The dashed lines show the QPN limited
stability expected for the N = 105 atoms observed with the
Fourier limited linewidth �f = 0.89/Ti in each cycle time
Tcyc, which is given by σ QPN

y (1s) = 6.5 × 10−18 × T
1/2

cyc /Ti. In

the limiting case Tcyc ≈ 2Ti (by reducing the cycle time Tcyc),
the σ Dick

y (1s) improves, however, the QPN limited stability

σ QPN
y (1s) = 1.3 × 10−17 × T

−1/2
cyc deteriorates and becomes

closer to σ Dick
y (1s). We anticipate that a clock stability σy(τ ) =

2 × 10−16/
√

τ will be feasible assuming Tcyc ≈ 2Ti = 0.1 s
for N = 105 atoms.

V. CORRECTIONS AND UNCERTAINTIES FOR
MAGNETICALLY INDUCED CLOCK

Table I summarizes the corrections and uncertainties for the
3D clock with 88Sr atoms. In a magnetically induced bosonic
clock with 88Sr atoms, the second-order Zeeman shift domi-
nates the clock shift corrections. Using a weighted average for
ten data sets [31] measured over four months, we determined
the isotope shift to be f88 − f87 = 62, 188, 138.5(1.3) Hz.

A. Second-order Zeeman shift

Three pairs of Helmholtz coils, H1, H2, and H3 with
current j1, j2, and j3 were used to apply magnetic field onto
the interrogated atoms. H1 consisted of two coils with radii of
98 mm separated by 98 mm to produce a spatially uniform
mixing field Bm(‖ Ec). The spatial inhomogeneity of Bm was
estimated to be less than 10 nT across the lattice region. The
axes of H2 and H3 were set orthogonal to each other and
perpendicular to H1. H2 and H3 control the transverse mag-
netic field B⊥. The total magnetic field in the lattice region was
given by B = Bm + B⊥, including the ambient magnetic fields
such as Earth’s magnetic field and those generated by nearby
apparatuses.

In magnetically induced spectroscopy, j2 and j3 were
adjusted so that the transverse magnetic field B⊥ is zero and
j1 was set to give |Bm| = 2.34 mT. This mixing field gave the
second-order Zeeman shift of �B = −128.6(3) Hz according
to Eq. (4). The uncertainty was partly due to the inhomogeneity
of the ambient magnetic field of about 1 µT across the lattice
region, which was caused by an ion pump and an optical
isolator placed several cm away from the lattice region.

The total magnetic field B was measured by the Zeeman
shift of the transition frequency f±1 on the 1S0–3P1(mJ = ±1)
transition at 689 nm with the linewidth of 7.5 kHz. To suppress
the Doppler shifts in the measurement 88Sr atoms were trapped
in the 3D lattice operated at λL = 813.428 nm. Because
of the differential light shift on the relevant transition [42],
typically 70-kHz-wide spectra were observed, which allowed

TABLE I. Uncertainty budgets for the 88Sr lattice clock.

Contributor Correction (Hz) Uncertainty (Hz)

2nd-order Zeeman shift 128.61 0.31
Clock light shift 7.48 0.36
Lattice light shift

scalar −0.17 1.07
polarization effects 0 0.012
fourth-order −0.07 0.15

Blackbody shift 2.4 0.2
Collisional shift −0.034 0.3
Systematic total 138.22 1.23
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FIG. 10. (Color online) The (first-order) differential Zeeman shift
δB = (f+1 − f−1)/2 as a function of the current (a) j2 and (b) j3 in
the presence of |Bm| = 0.015 mT.

determining the center frequency within 6 kHz equivalent
to the magnetic field uncertainty of 0.3 µT. Note that the
differential Zeeman shift δB = (f+1 − f−1)/2 can be free
from the differential light shift of the lattice as long as the
local polarization in the lattice sites are linear. Therefore, δB

served as a sensitive probe to determine the magnetic field as
|B| = δB/21.0033(5) mT/MHz, where gJ (3P1) = 1.50065(4)
[54] was used for the g factor in the 3P1 state.

To null the transverse magnetic field |B⊥|, we tuned
j2 and j3 to minimize δB as shown in Fig. 10(a) and
10(b) in the presence of |Bm| ≈ 15 µT generated by j1.
For |B⊥| � |Bm|, the Zeeman shift varied parabolically as
|B| ≈ |Bm| + |B⊥|2/(2|Bm|). |B⊥| < 3 µT was realized for
j2 = 1044(2) mA and j3 = 620(30) mA. Under this condition,
the Zeeman shift was measured to be δB = 49.177(14) MHz
for j1 = 27.550(8) A, which gave the bias field of |Bm| =
2.34 mT used in the state mixing. The fluctuation of j1 during
a few hours of the experiment was about 0.03% due to the
current fluctuation of the power supply, corresponding to
0.7 µT uncertainty in |Bm|, resulting in 80 mHz of uncertainty
in �B .

We used the 1D lattice clock with 87Sr with frequency
f87 as an anchor to investigate systematic corrections of f88,
as it is significantly immune to systematic clock shifts [31].
Figure 11 shows the beat note δ = f88 − f87 measured as
a function of |δB |2(∝ |Bm|2) with the clock laser intensity
of Ic = 400 mW/cm2. The beat note δ was determined by
operating both clocks for about 2000 s, yielding an Allan
deviation σy ≈ 2 × 10−15 for an averaging time of 200 s (see
Fig. 7). We conservatively took this uncertainty of a few Hz as
that for the beat-note measurements. By measuring δ for five
different parameters of |Bm| and extrapolating them to zero we
determined the second-order Zeeman shift of the 88Sr based
clock (see Table I).

B. Clock light shift

The transition moment of the magnetically induced clock
transition of 88Sr with |Bm| = 2.34 mT was about 103 times
smaller than that of the hyperfine-induced clock transition of
87Sr. As a result, 106 times more laser intensity was required to
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FIG. 11. (Color online). Correction of the second-order Zeeman
shift. Beat frequency δ = f88 − f87 was plotted as a function of the
squared Zeeman shift δ2

B . The size of the error bars are well within
the filled circles.

excite the clock transition with a similar Rabi frequency as used
in 87Sr, causing several Hz of light shift in the clock transition.
Figure 12 shows the light shift as a function of the clock laser
intensity Ic for the mixing field of |Bm| = 2.34 mT. The light
shift due to the clock laser was corrected by measuring the
beat note δ = f88 − f87 for five different parameters of Ic and
extrapolating them to zero.

C. Lattice light shift

1. Scalar and fourth-order light shift

The 3D optical lattice with 88Sr was operated at νL =
c/λL = 368, 554.5(2) GHz, the same frequency as 87Sr.
However, the magic frequency νL depends on the isotope
shift of the energy levels. Based on the magic frequency
ν

(87)
L = 368, 554.68(18) GHz [55] determined for 87Sr, we

estimated a correction for 88Sr by taking into account the
hyperfine structures as well as the isotope shift of the 5s5p 1P 1

and 5s6s 3S1 states [56,57], which gave about 97% and 50%
of light shifts, respectively. The magic frequency for 88Sr
was calculated to be ν

(88)
L = 368, 554.58(28) GHz, which was

about 100 MHz lower than that for 87Sr. Here, the uncertainty
was estimated from the contributions of the other states than
considered previously.
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FIG. 12. (Color online) Correction of the clock light shift. Beat
frequency δ = f88 − f87 was measured as a function of the clock
laser intensity Ic to determine δ(Ic → 0).
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In evaluating the lattice light shift we took the spatial
distribution of the vibrational wave function ψ(r) of atoms into
account. The effective lattice laser intensity was calculated to
be 〈IL〉 = ∫

ψ∗(r)IL(r)ψ(r)dr = 25(7)kW/cm2, which was
about 25% less than the peak intensity. Here we assumed that
atoms were in the 〈nx〉 = 0, 〈ny〉 ≈ 1.5, and 〈nz〉 ≈ 1 vibra-
tional states in the x, y, and z directions with trap frequencies of
(ωx, ωy, ωz)/2π = (25, 43, 60) kHz, respectively, as inferred
in the following. In ramping down the lattice laser intensity
(see Sec. III. A) only the vibrational ground state (nx = 0) is
supported in the x direction, while several levels are supported
for ny and nz due to the anisotropy of the lattice potential depth
as indicated in Fig. 2. Therefore, we assumed thermal distribu-
tions for the latter two directions with the atomic temperature
of 4 µK as measured by the time-of-flight measurements. This
effective intensity 〈IL〉 led to the scalar light shift of 0.17(1.07)
Hz, where relatively large uncertainty was attributed to that of
the magic frequency ν

(88)
L as discussed earlier, which should

be experimentally determined in future work.
The fourth-order light shift was similarly estimated to be

0.07(15) Hz based on the squared average of intensity 〈I 2
L〉 =∫

ψ∗(r)I 2
L(r)ψ(r)dr by applying the coefficient (U 2/E2

r ) ×
7(6) µHz measured for 87Sr [58]. While the hyperpolarizability
effect is sensitive to the resonances that may be excited by two
magic-frequency photons [i.e., 2ν

(88)
L ] the associated transi-

tions 3P0–5s7p 1P 1 and 3P0–5s4f 3F 2 [58] are as far as −31
GHz and +2.3 THz detuned from 2ν

(88)
L . Therefore, the fourth-

order light shift measured for 87Sr may well be applied to 88Sr.

2. Lattice polarization effects

The light shift on the 3P0 state of 88Sr should, in principle,
be independent of the light polarization. However, when the
state is mixed with the 3P1 state by the magnetic field Bm,
a fictitious magnetic field Bf responsible for the elliptically
polarized lattice laser [29] will show up as a cross term Bm · Bf

[30] in the quadratic Zeeman shift for the total magnetic field
Bm + Bf .

The cross term depends on the ellipticity angle ε defined
by eL = ex ′ cos ε + iey ′ sin ε of the complex unit polarization
vector of the lattice electric field EL, giving rise to a
polarization dependent light shift reminiscent of the vector
light shift. Here, ex ′ and ey ′ are the unit vectors along both the
major and minor axes of the polarization ellipse, respectively,
thus ie∗

L × eL = −ez′ sin(2ε) is perpendicular to the plane of
the polarization ellipse of the lattice field. The polarization
dependent light shift is described by [30]

�
(lat)
B = 2βηIL(ie∗

L × eL) · Bm

= −2βηIL|Bm| sin(2ε) cos θ, (8)

where θ is an angle between ez′ and Bm, η = 0.893 mT/

(MW/cm2) is the coupling coefficient for Sr, IL the laser
intensity, and β = −23.3 MHz/T2 as given previously. Con-
sequently, the lattice polarization effect vanishes by applying
a linearly polarized lattice field [sin(2ε) = 0] or by setting the
mixing magnetic field in the plane of the polarization ellipse
of the lattice field [cos θ = 0].

In the experiment, the ellipticity of the lattice laser in
the cavity was measured to be ε = 0.05 rad, which may be
attributed to the birefringence of the vacuum window inside

the cavity (see Fig. 1). Because of this ellipticity, E1 and E2

were no longer in the xy plane but had z components. In the
lattice sites where E1 and E2 were in phase, the angle between
ez′ and ez was estimated to be no greater than θ = 0.032 rad.
The magnetic field vector Bm is within 0.01 rad of the xy

plane. The uncertainty due to the lattice polarization effect is
given in Table I.

Atoms oscillating in the lattice sites see rotating light
polarization in the atom-rest frame because of the spatially
varying polarization of the lattice electric field. This situation
is similar to the 1D molasses with σ+−σ− laser configuration
as discussed in Ref. [59]. We estimate the light shift due to the
polarization rotation to be less than 1 nHz. The derivation is
described in the Appendix.

D. Collisional shift

In the bosonic 3D lattice clock the residual collisional
shift may appear in two cases; (i) some of the lattice
sites trap more than one atom or (ii) tunneling of atoms
between lattice sites occurs. As described in Sec. III A, we
carefully eliminated these effects by inducing photoassociation
and by the gravitational potential difference between the
adjacent sites, respectively. To confirm the absence of the
collisional shifts we investigated the correlation between
the clock frequency δ(tn) = f88(tn) − f87(tn) and the number
of interrogated atoms N88(tn) for the nth interrogation cycle at
t = tn by referencing f87(tn) of the fermionic 1D clock. The
atom number was determined by the fluorescence intensity as
N = NS + NP ∝ IS + IP /ξ [see Eq. (5)]. The shot-to-shot
atom number fluctuation was less than 20%, while nearly
50% variation was observed over a few 100 s, possibly due
to a long-term intensity drift of the cooling lasers on the
1S0-1P1 transition. Assuming atomic temperatures and trap
confinement to be constant and therefore the trap volume V

to be constant, N88 can be proportional to the atomic densities
N88/V that are related to the collision shifts.

We evaluated the correlation coefficient r88 defined by the
covariance between N88(tn) and δ(tn) divided by their standard
deviations as

r88 =
∑

n

[
N88(tn) − N̄88

] [
δ(tn) − δ̄

]
√∑

n

[
N88(tn) − N̄88

]2
√∑

n

[
δ(tn) − δ̄

]2
, (9)

where N̄88 and δ̄ are the sample means of N88(tn) and δ(tn).
For the ten data sets that were used to derive the isotope
shift [31], the coefficients |r88| were less than 0.1, suggesting
no noticeable correlation or density shifts. Figure 13 shows the
beat note δ(tn) as a function of N88(tn). The linear regression
analyses on the ten data sets inferred the correction and
uncertainty of the collision shift to be −0.03(30) Hz.

VI. SUMMARY AND OUTLOOK

We demonstrate a 3D optical lattice clock with bosonic
88Sr and evaluate the stability and uncertainties by referencing
the 1D clock with spin-polarized fermionic 87Sr. The Allan
deviation achieved is better than 1 × 10−15 for an average
time longer than 500 s. The single occupancy 3D lattice is
found to be protected from collisional shifts that seriously
limited the uncertainty of previous measurements with 88Sr in
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FIG. 13. (Color online) The beat-note frequency δ(tn) = f88 −
f87 as a function of interrogated atom number N88(tn). The (red) solid
line shows the linear regression analysis, indicating the collision shift
to be −0.03(30) Hz.

a 1D lattice [14]. In addition we show that the uncertainties
responsible for the lattice polarization effects can be reduced
by properly designing the light polarization of the 3D optical
lattice with respect to the mixing electric field.

The magnetically induced clock transition, however, suffers
significantly from second-order Zeeman shift �B and the
light shift �L of the clock laser, both of which limited our
measurement uncertainties to 2 × 10−15 for the 88Sr clock. In
future experiments we anticipate that these uncertainties can
be reduced to 10 mHz, or 2 × 10−17 fractional uncertainty
by controlling |Bm| = 2 mT with 50 nT uncertainty and
Ic = 50 mW/cm2 with 1% uncertainty, assuming a Rabi fre-
quency of 3 Hz. The experimental determination of the magic
wavelength for 88Sr will further reduce current uncertainties.
The present experiment is not optimized for the reduction of
the hyperpolarizability effects, it is better to design the lattice
to have isotopic potential depth for x, y, and z directions. In
addition, atomic multipolar interactions with optical lattices
[8], which were not considered here, will be a concern in
pursuing the 10−18 accuracy.

The 3D lattice geometry may be applied to 87Sr as
well, albeit coupling between lattice light polarization and
the nuclear spin of I = 9/2 may introduce uncertainties in
canceling out lattice light shift. Because the electric field
polarization is position dependent, a tensor light shift of about
0.7 mHz arises for lattice intensities of 10 kW/cm2 or a lattice
depth of U = 40Er, assuming the tensor shift coefficients
≈ −m2

F (U/Er) × 10−6 Hz with mF the magnetic substate.
The vector light shift due to ellipticity of the lattice laser [7]
may give a principal contribution for the clock line broadening
and/or shift of 50 mHz applying the ellipticity and laser
intensity measured in this experiment. As discussed in the
Appendix, the influence of the polarization rotation for atoms
oscillating in the lattice sites will be less than 1 nHz.

As discussed in Sec. III, the current stability is critically
limited by the Dick effect as the actual interrogation period was
less than one-tenth of the cycle time, most of which was spent
cooling and trapping atoms. The application of minimally
destructive measurement of the clock state [53,60–62] will
allow use of the same atoms repeatedly. The reduced cycle
time will improve the stability up to σ (τ ) = 2 × 10−16/

√
τ ,

used with the thermal noise limited clock laser. This will allow
investigating the clock uncertainties in the 10−18 region in
an experimentally feasible time scale of a few hours. This
may enable us to observe more subtle atomic interactions,
such as tunneling assisted collisions, with hitherto unexplored
precision, opening up new possibilities such as quantum
simulation employing optical lattice clocks as a platform.
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APPENDIX: INFLUENCE OF THE ROTATION OF THE
LATTICE POLARIZATION

In 3D optical lattices, even if the local light polarization can
be made linear, the unit electric field vector eL(r) = EL/|EL|
is necessarily position dependent, which may cause atomic-
motion-induced light shifts. For simplicity, we consider atoms
oscillating along the z direction in the electric field given in
Eq. (1) (see Fig. 1), in which the polarization vector eL(r)
is perpendicular to the direction of atomic motion. For an
atom at r = (0, 0, z), we define the polarization angle φ(z) =
cos−1[eL(r) · ex] = cos−1 1+2 cos kz√

1+(1+2 cos kz)2
. The frequency for

polarization rotation at z(t) is given by νr(t) = 1
2π

dφ(z(t))
dt

.
Assuming harmonic oscillation of atoms of z(t) = z0 cos ωzt ,
where we take z0 = √

h̄/mωz with m the atomic mass and
ωz = 2π × 60 kHz, the maximum frequency is estimated to
be νr ≈ 3.2 kHz.

In the atom rest frame, the polarization rotation at νr can
be viewed as the counter propagating σ+ and σ− waves
at different frequencies ν± = νL ± νr with νL the frequency
of the lattice laser. Near the magic frequency ν ≈ νL, the
corresponding light shift can be given by the sum of the
differential light shift δf (ν+) + δf (ν−), which is calculated
to be ≈1 nHz for the mF = 9/2 magnetic substate of 87Sr
with a total intensity of 25 kW/cm2. In particular, this effect
is negligible when the quantization axis is parallel to the
polarization rotating plane as the σ±-polarized components
of EL are nearly zero.
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