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The emission of electromagnetic radiation by relativistic bare heavy ions penetrating ordinary matter is
investigated. Our main aim is to determine the bremsstrahlung which we define as the radiation emitted when the
projectile does not break up. It pertains to collisions without nuclear contact (“ultraperipheral collisions”).
Requirement of coherent action of the nucleons in order to keep the penetrating projectile intact limits
bremsstrahlung to relatively soft photons. The spectrum shows a resonance structure with peak position near
2γ times the position of the giant dipole resonance, that is, near 25γ MeV for a lead ion (γ ≡ E/Mc2 is the
Lorentz factor of the projectile of energy E and mass M). The maximum exceeds the bremsstrahlung from a
hypothetical structureless, pointlike particle of the same charge and mass as the incoming nucleus, but rapid
depletion follows on the high-energy side of the peak. As a result of its relative softness, bremsstrahlung never
dominates the energy-loss process for heavy ions. As to the emission of electromagnetic radiation in collisions
with nuclear break-up, it appears modest when pertaining to incoherent action of the projectile nucleons in
noncontact collisions. In collisions with nuclear contact, though, substantial radiation is emitted. It overshoots
the bremsstrahlung. However, despite the violence of contact events, the associated photon emission only exceeds
the radiation from a hypothetical structureless pointlike nucleus [emitted energy per unit photon-energy interval
essentially constant up to (γ − 1)Mc2] at relatively low photon energies (for lead roughly below 0.2γ GeV, a
limit which is about an order of magnitude above the position of the bremsstrahlung peak). Results are presented
for bare lead ions penetrating a solid lead target at energies of 158 GeV/n (γ = 170) and beyond.
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I. INTRODUCTION

Emission of bremsstrahlung is the primary cause of slowing
down for relativistic electrons penetrating a substance at high
energies, that is, at energies beyond, roughly, 800 MeV/(Zt +
1.2), where Zt is the atomic number of the target. Theoretical
studies of energy-loss processes for relativistic bare heavy
ions have pointed toward a similar dominance of radiative
losses at energies far beyond the rest energy of the heavy
projectile [1,2]. However, these studies turn out to overestimate
the radiative losses substantially by neglecting the composite
nature of the projectile [3,4]. The same holds true for the
bremsstrahlung intensities calculated in Ref. [5]. A rough
estimate presented in Ref. [4] shows that as a result of strong
moderation due to internal structure, bremsstrahlung never
dominates the energy-loss process for a bare nucleus: For bare
relativistic heavy ions, atomic excitation and ionization are the
most important energy-loss processes up to a relatively high
energy beyond which electron-positron pair creation becomes
the major energy-loss channel.

The emission of bremsstrahlung reflects fundamental as-
pects of the nature of the emitter as well as of its electromag-
netic interaction with the surroundings. Hence, in this article,
we shall go beyond the simple estimate given in Ref. [4] and
attempt to assess fairly accurately the bremsstrahlung spectrum
for a bare heavy ion penetrating matter. The intention is to
predict the true spectrum within ±10%.

When an energetic atomic nucleus penetrates matter, it
may or may not break up in the interaction with a given
target constituent. Electromagnetic radiation is generally
emitted in both cases. In this article, we shall only put the
label bremsstrahlung on the radiation in case the projectile
remains intact throughout the interaction. This reflects the
very meaning of the word: radiation causing moderation of

the motion of the projectile (braking). Our use is opposed to
the less restrictive use prevailing in a major part of the literature
where the label bremsstrahlung is applied also to cases where
the projectile decomposes completely.

With our terminology, bremsstrahlung pertains to collisions
without contact between projectile and target nuclei, so-called
ultraperipheral collisions. In collisions with nuclear interac-
tion, the collision partners break up and violent acceleration of
the charged nuclear constituents leads to substantial radiation.
To complete the picture of electromagnetic radiation by
a relativistic atomic nucleus penetrating matter, we shall
estimate the emission in such events as well as hint at additional
photon sources for noncontact collisions.

II. REFERENCE CROSS SECTION

As a reference for the results following in later sections, let
us quote a simple formula for the bremsstrahlung intensity
for a pointlike and structureless particle impinging on a
fixed scattering center at relativistic energy. The formula is
obtained in a classical calculation with photon energy and
momentum included in the energy and momentum balance [6].
For a projectile of mass M = AMu (A is mass number and
Mu = 931.5 MeV/c2 the atomic mass unit), charge Ze, energy
E � Mc2, and a center of charge Zte, the so-called radiation
cross section amounts to

dχ

dh̄ω
= 16

3

Z2
t Z

4

A2
αr2

uL, (1)

where α ≡ e2/h̄c is the fine-structure constant and ru ≡
e2/Muc

2 the classical nucleon radius. Note that the differential
radiation cross section (notation adapted from Ref. [6])
has dimensions of (energy × area/energy = area), the cross
section for photon emission per unit energy interval is obtained
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by dividing with the photon energy h̄ω. In Eq. (1), the factor L

is essentially the logarithm of the ratio between the effective
maximum and minimum momentum transfers to the scattering
center. For a bare pointlike Coulomb center, it is given as

L � ln

[
E(E − h̄ω)

Mc2 h̄ω

]
. (2)

For a pointlike Coulomb center screened at the Thomas-Fermi
distance corresponding to atomic number Zt , the logarithmic
factor modifies to

L � ln

(
233M

Z
1/3
t m

)
− 1

2

[
ln(1 + r2) − 1

1 + r−2

]
,

(3)

r = 96h̄ω

γ γ ′Z1/3
t mc2

,

where γ ≡ E/Mc2 and γ ′ ≡ (E − h̄ω)/Mc2 are the Lorentz
factors of the projectile before and after emission and m is the
electron mass. The quantity r is the ratio between the effective
minimum momentum transfers calculated without and with
screening included. When r � 1, the logarithmic factor L is
given by the first term in (3). For Zt = Z = 82, A = 208, and
r = 0, the radiation cross section (1) amounts to 0.110 barn.
The limit where r is small for essentially all frequencies is
known as the limit of complete screening. For γ = γ ′ = 170
and Z = 82, the ratio r assumes the value r = h̄ω/0.67 GeV.

The radiation cross section (1) with L given by (3) will
be used as a common reference value. We refer the reader to
Heitler’s book [7] for the bremsstrahlung spectrum resulting
from a full quantal calculation. For soft photons h̄ω � E

changes are limited to modest changes in the argument of
the logarithm (3). For finite values of h̄ω/E, an additional
factor of [1 − h̄ω/E + 3(h̄ω/E)2/4] appears in the radiation
cross section (1). Note that except for the modest variation of
the latter factor and the logarithm, the spectrum is flat all way
up to the primary energy.

In the limit of complete screening, the argument of the
logarithm (3) is, up to a factor of �2, simply the ratio of the
screening distance to the Compton wavelength λC ≡ h̄/Mc

of the projectile. This reveals that bremsstrahlung for the
pointlike projectile is composed of contributions from impact
parameters which effectively range between these limits. If the
screening is not complete, the upper limit is modified (that is,
it is less than the Thomas-Fermi length of the target atom), but
the lower limit remains the same. However, due to the large
mass, the Compton wavelength of a heavy nucleus is only a
small fraction of the nuclear radius. With the latter given as

R = 1.18 fm × A1/3, (4)

the ratio is λC/R � 0.2/A4/3 which obviously is very small
for high values of A. The requirement of no nuclear contact
implies replacement of the Compton wavelength by the
sum of the radii of the colliding nuclei as the effective
minimum impact parameter. This leads to a lower value of
the bremsstrahlung logarithm L. The composite nature of the
projectile leads to additional very significant changes in the
spectrum, as we shall see.

In his review on energy loss of relativistic heavily ionizing
particles, Ahlen [1] simply cites the result (1) for a rough
comparison with other loss channels (applying only the

first term in the logarithm (3) pertaining to the limit of
complete screening). As a result, his estimates are far too
high (and actually inconsistent since the complete screening
limit is far from being reached in the cases considered in his
table XI).

Weaver and Westphal [2] apply Heitler’s quantal result
for electrons (impinging on a bare Coulomb center) with
replacement of the electron charge and mass by those of the
projectile nucleus. As a consequence, the authors conclude
that bremsstrahlung can become important in energy loss for
very highly charged ions at energies which are accessible to
present-generation heavy-ion accelerators. As we shall see,
this does not hold true.

Bertulani and Baur [5] perform a calculation based on
classical electrodynamics of the bremsstrahlung emitted in
the collision between two bare heavy nuclei. They include
the restriction that the impact parameter be in excess of the
sum of the nuclear radii, but otherwise the collision partners
are treated as pointlike structureless objects. As a result, their
radiation cross section comes out as a virtual photon intensity
times the classical Thomson cross section for a pointlike
particle with mass and charge identical to those of either
nucleus. As will be clear from the following discussion, this
underestimates the emission of relatively soft photons but
overestimates hard-photon emission. If the radiative energy
loss were evaluated, it would come out much higher than our
results.

III. NONCONTACT COLLISIONS

To determine the bremsstrahlung emitted in ultraperipheral
collisions, we shall apply the Weizsäcker-Williams (WW)
method of virtual quanta [6]. In general there are two
contributions to the emission, one from the scattering of
the virtual photons of the projectile on the target, and one
from the scattering of the virtual photons of the target on the
projectile. The latter process is considered in the rest frame of
the incoming particle with the scattered photons subsequently
transformed to the laboratory. As is apparent from Heitler’s
discussion of bremsstrahlung in electron-electron collisions
[7], scattering on the projectile brings the major contribution.
When we aim for stopping, we require the projectile to
stay intact; processes where the projectile breaks up will
be considered as separate events. This translates into a
requirement of coherent action of the constituents; if the recoil
in scattering were to be taken up by a single proton, this proton
would in general leave the nucleus.

A. Elastic photon scattering

There are five characteristic energies in the scattering of
WW photons on the projectile, three in the MeV range and
two of much higher values. Among the latter two, one pertains
to the transition from classical to quantal scattering, and the
other to the cut-off of the WW spectrum. As we shall see
shortly, only the scattering of much softer photons brings
substantial contributions to the bremsstrahlung cross section
which therefore may be determined classically on the basis
of the low-energy expansion of the WW spectrum. Among
the remaining three characteristic energies are h̄ω1 which

022901-2



BREMSSTRAHLUNG FROM RELATIVISTIC HEAVY IONS . . . PHYSICAL REVIEW A 81, 022901 (2010)

distinguishes scattering on a single rigid object of charge
Ze and mass M (ω < ω1) from coherent scattering on Z

quasi-free protons each of mass Mp (ω > ω1), and h̄ω2 beyond
which incoherent scattering on individual quasi-free protons is
possible. A typical value for h̄ω1 is ∼8 MeV (binding energies
per nucleon are of this order). The energy h̄ω2 is defined by
the wavelength being comparable to the nuclear size R of the

projectile, that is, h̄ω2 � h̄c/R which amounts to 25–30 MeV
for the heaviest nuclei.

To obtain the photon scattering cross section, we shall
as a first attempt assume ω1 and ω2 to divide sharply
between the different physical situations just described. In this
approximation, the scattering cross section in the projectile
rest frame R (primed variables) is

dσ

d�′ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
(Ze)2

Mc2

)2
1
2 (1 + cos2 ψ ′); ω′ < ω1

Z2
(

e2

Mpc2

)2
1
2 (1 + cos2 ψ ′); ω1 < ω′ < ω2

Z2
(

e2

Mpc2

)2
1
2 (1 + cos2 ψ ′)	(1 − 2 ω′

ω2
sin ψ ′

2 ); ω2 < ω′

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5)

or, more conveniently,

dσ

d�′ = Z2r2
p

1

2
(1 + cos2 ψ ′) ×

⎧⎪⎪⎨
⎪⎪⎩

(
ZMp

M

)2
; ω′ < ω1

1 ; ω1 < ω′ < ω2

	(1 − 2 ω′
ω2

sin ψ ′
2 ) ; ω2 < ω′

⎫⎪⎪⎬
⎪⎪⎭ , (6)

where rp ≡ e2/Mpc2 is the classical radius of the proton.
See Ref. [6] for the individual components. Since the virtual
photons of the target are aimed against the projectile velocity
v, the scattering angle ψ ′ is measured relative to −v, whereby
the photon-emission angle relative to v is θ ′ = π − ψ ′. The
last factor for the high-energy range (the Heaviside or step
function 	; 	 = 1 for positive arguments while 	 = 0 for
negative) restricts scattering to angles sufficiently small that
the change in wave number times the size of the nucleus
is small compared to 1, that is, to angles ψ ′ smaller than
approximately ω2/ω

′. This is the requirement for coherence;
see Ref. [6]. The restriction by the Heaviside function implies
that, after integration over scattering angles, the cross section
falls off beyond ω2. Since h̄ω2 is much smaller than the
mass of all scatterers involved, the lightest being a proton,
quantum effects may be neglected and the classical expression
for scattering (6) suffices. The estimates of the energy loss
through emission of bremsstrahlung presented in Ref. [4] were
based on the approximation (6).

Application of a sharp divide at ω′ = ω1 implies a dis-
continuity of the scattering cross section at this frequency.
For heavy nuclei, the charge and mass-dependent factor for
the low-frequency range in Eq. (6) is about one fourth to one
sixth of the factor pertaining to scattering at higher frequencies
(Z/M � Z/AMp � 1/2Mp); that is, coherent scattering on
Z quasi-free protons is about four to six times as effective as
scattering on a pointlike nucleus of charge Ze. This difference
is related to the fact that in the case of the pointlike nucleus,
the incoming wave has to accelerate the entire nuclear mass,

whereas for scattering on Z quasi-free protons, the neutrons
are left inactivated.

Besides being discontinuous at ω′ = ω1, the cross section
(6) lacks one important feature: a resonance. To model photon
scattering by the protons of the projectile nucleus as photon
scattering by a collection of Z effectively free charged particles
is correct only asymptotically at high photon energies ω′ �
ω1. In the transition between the asymptotes, that is, from
scattering on a rigid pointlike nucleus with all constituents
tightly bound, to scattering on the collection of Z free protons,
a resonance will show up. The characteristic energy of this
resonance is the final characteristic energy for elastic photon
scattering. It will roughly be the energy of the peak of the giant
dipole resonance (GDR) in photoabsorption. This places it in
the interval between ω1 and ω2.

For 208Pb projectiles, we have obtained a useful and quite
accurate cross section based on the experimental data for
elastic photon scattering given by Schelhaas et al. [8]. These
data cover the energy range 10–100 MeV, and results for
four scattering angles are presented. Near h̄ω2 = 28.2 MeV
recordings are comparable to Eq. (6) at all angles; for ω1 <

ω′ < ω2, the data overshoot the simple asymptotic expression
by up to nearly a factor of 10, and for ω′ > ω2, the data
show a fall-off as does the simple expression. The resonance
may be represented quite well by that pertaining to classical
scattering by an oscillator (see, e.g., Heitler [7] for the latter).
The depletion at high energies may be represented by a simple
exponential behavior which actually may be extended to ener-
gies somewhat below h̄ω2. Our model cross section for 208Pb is

dσ

d�′ = Z2r2
p

1

2
(1 + cos2 ψ ′) ×

⎧⎪⎪⎨
⎪⎪⎩

(
ZMp

M

)2
; h̄ω′ < h̄ω1

0.793 (h̄ω′)4

((h̄ω′)2−(Em)2)2+(�h̄ω′)2 ; h̄ω1 < h̄ω′ < h̄ω̃2

1.93 exp(−ε(h̄ω′ − h̄ω̃2) sin2 ψ ′
2 ); h̄ω̃2 < h̄ω′

⎫⎪⎪⎬
⎪⎪⎭ , (7)
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where Z = 82, that is, Z2r2
p = 0.1584 mbarn, and M =

208Mu. The parameters for the resonance are Em = 13.7 MeV
and � = 4.15 MeV, and the value of the high-energy depletion
factor is ε = 0.11 MeV−1. With the resonance part fixed (front
factor as well as the values of Em and �), the cross section is
continuous at h̄ω1 with the choice 7.69 MeV for this energy.
Similarly, with the other dividing energy chosen as h̄ω̃2 =
22.0 MeV, the cross section is continuous here as well with
the choice of front factor displayed in the last line of Eq. (7).
Generally, the fit (7) reproduces the experimental data within
∼10%. Exceptions are the rapid increase at the low-energy
side of the resonance (where the fit generally falls below the
data during the first half of the rise) and the depletion at high
energies for the lowest angle at which data are collected (where
the fit falls off somewhat too slowly). However, the differences
do not play a major role for the radiation cross section to be
derived below since transformation to the laboratory effec-
tively implies integration over a range of energies and angles
whereby average errors rather than individual errors count.

B. Virtual photon intensity

To get the emitted energy per frequency bin in the
laboratory, the scattering cross section (6) or (7) is multiplied
by the virtual photon intensity spectrum in R, and the product
is transformed to the laboratory and integrated over angles.
Neglecting contributions of order 1/γ 2, the WW spectrum is
given as [6]

dI ′

dh̄ω′ =
2

π
αZ2

t

{
ξ ′K0(ξ ′)K1(ξ ′)+1

2
ξ ′2[K2

0 (ξ ′)−K2
1 (ξ ′)

]}
,

(8)

where ξ ′ is defined as

ξ ′ = ω′d
γ c

×

⎧⎪⎨
⎪⎩

1 bare nucleus[
1 +

(
γ c

ω′aT F

)2
]1/2

neutral atom

⎫⎪⎬
⎪⎭ . (9)

The result for a neutral target atom is derived for an expo-
nentially screened Coulomb potential with the Thomas-Fermi
length of the target aT F chosen as the screening length; see the
appendix. Of course the true screening is not exponential, but
since the screening length basically ends up in the argument
of a fairly large logarithm [see (10) below], details of the
screening are not important (as long as we do not aim for
reducing errors below a few percent). The transition between
the expressions pertaining to a fully screened and a bare
target nucleus with increasing photon energy happens for
h̄ω′ ∼ γh̄c/aT F which varies between 4.2 × 10−3γ MeV
and 2.0 × 10−2γ MeV according to the value of Zt . For
the heaviest targets and γ = 170, the value is 3.3 MeV
or about one third of h̄ω1, implying screening is of little
importance. For γ = 3000, the value is slightly above h̄ω2

for the heaviest targets implying influence of atomic screening
on the bremsstrahlung spectrum. In noncontact collisions, the
minimum impact parameter d is defined by the sum of the radii
of the colliding nuclei, d ≡ R� . Since the modified Bessel
functions K0 and K1 fall off exponentially for arguments
larger than 1, the effective maximum photon energy in the
WW spectrum is γh̄c/R� which, for comparable sizes of the

colliding nuclei, amounts to roughly γh̄ω2/2. The scattering
cross section falls off for ω′ > ω2, and hence for high values
of γ , it is depleted long before the photon spectrum is cut
off. As a result, ξ ′ is effectively small where the cross section
is of significance and the WW spectrum may be represented
by its low-energy asymptote obtained by application of the
small-argument expansions of the modified Bessel functions,

dI ′

dh̄ω′ = 2

π
αZ2

t

{
ln

1.123

ξ ′ − 1

2

}
≡ 2

π
αZ2

t ln
C

ξ ′ . (10)

The last transcription is introduced for later convenience, C ≡
2/ exp(γE + 1

2 ) = 0.681 . . ., where γE = 0.5772 . . . is Euler’s
constant.

The application of a sharp cut in impact parameter b at
R� = R + Rt is an approximation. Lack of nuclear contact
does not imply that the projectile necessarily survives a col-
lision. In particular, it may break up through electromagnetic
dissociation (see Refs. [9,10] and references therein). Immedi-
ately outside R� , this process is so strong that it may effectively
reduce the number of surviving projectile ions. We will
consider 208Pb ions penetrating a lead target. For LHC energies
(γ = 3000), a computation along the lines laid out in Ref. [9]
gives at b = R� a probability of 36% for absorbing a single
photon with energy above the neutron-separation energy and
68% for absorbing one or more such photons, leaving only
32% of the collisions without any such photons absorbed. To
increase the fraction of collisions without photon absorption
to 90% requires an impact parameter of 3.2R� , 99% similarly
requires b = 10.0R� . For γ = 170, the fraction with no
photons absorbed above the neutron-separation energy is 38%
at b = R� , 90% at b = 2.9R� , and 99% at b = 8.6R� . To
account approximately for the depletion due to electromag-
netic dissociation, the virtual photon intensity computed at a
given impact parameter dI/dωd2b (cf. the appendix) could be
multiplied by the probability P (0)(b) for no photons absorbed
before the integration over impact parameters beyond the
minimum d ≡ R� is performed. Such a procedure reduces the
results presented in Figs. 2 and 3 by 7–8%. That is, despite large
probabilities for dissociation immediately outside R� , we may
expect to hit true intensities closer than 10% by maintaining a
sharp cut at R� and apply Eqs. (8)–(10) with this value for d.

C. Transformation to lab

In the rest frame R of the projectile, the product of the
virtual photon intensity of the target object and the photon
scattering cross section produces the double-differential radi-
ation cross section,

d2χ ′

dh̄ω′d�′ = dσ

d�′
dI ′

dh̄ω′ . (11)

Transformation from R to the laboratory may be performed
by means of the result [6]

1

ω2

d2χ

dh̄ωd�
= 1

ω′2
d2χ ′

dh̄ω′d�′ . (12)

From the relativistic Doppler shift formula ω′ = γω(1 −
β cos θ ), where θ denotes the angle of photon emission relative
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to the direction of motion of the projectile, we have

ω

ω′ = 1

γ (1 − β cos θ )
. (13)

The inverse Doppler formula combined with (13) gives

cos θ ′ = cos θ − β

1 − β cos θ
(14)

by use of 1/γ 2 = 1 − β2, where β ≡ v/c.
Generally, emission angles in the laboratory are rather small

for high values of γ : As is evident from the inverse of (14)
scattering at right angles in R corresponds to cos θ = β, that
is, to

sin2 θ = 1/γ 2 � 1, (15)

and since the scattering cross section in R is approximately
symmetric around π/2 (at least for ω′ < ω2), typical emission
angles in the laboratory are γ θ ∼ 1. For small angles, the
transformations (13)–(14) reduce to

ω

ω′ � 2γ

1 + γ 2θ2
, cos θ ′ � 1 − γ 2θ2

1 + γ 2θ2
. (16)

From these relations, we may deduce a couple of further results
to be used in the transformation to the laboratory:( ω

ω′
)2 1

2
(1 + cos2 ψ ′) � 4γ 2 1 + γ 4θ4

(1 + γ 2θ2)4
, (17)

sin2 ψ ′

2
� 1

1 + γ 2θ2
(18)

(θ ′ = π − ψ ′).

D. Radiation cross section

Combining the results (6), (7), (10)–(12), and (17),
we get

d2χ

dh̄ωd�
= 16

3
αZ2

t Z
2r2

p

3γ 2(1 + γ 4θ4)

2π (1 + γ 2θ2)4
ln

(
C

ξ ′

)
�, (19)

where, according to (9) and (16),

C

ξ ′ = 2γ 2cC

ωR�(1 + γ 2θ2)

×

⎧⎪⎨
⎪⎩

1 bare nucleus[
1 +

(
2γ 2c

aT F ω(1+γ 2θ2)

)2
]−1/2

neutral atom

⎫⎪⎬
⎪⎭ . (20)

The quantity � is the factor in curly brackets in the scattering
cross section [Eqs. (6) and (7)] with frequency and emission
angle expressed by their laboratory values according to
Eqs. (16) and (18).

For the hypothetical scattering cross section (6), we have

� =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
ZMp

M

)2
; (1 + γ 2θ2)ω < 2γω1

1; 2γω1 < (1 + γ 2θ2)ω < 2γω2

	

[
1
4

(
2γω2

ω

)2
− (1 + γ 2θ2)

]
; 2γω2 < (1 + γ 2θ2)ω

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (21)

For any fixed photon frequency in the laboratory, each of the
three conditions listed in Eq. (21) defines an allowed range of
emission angles θ , if any. Integration of Eq. (19) over these
angles gives the single-differential radiation cross section,

dχ

dh̄ω
= 8αZ2

t Z
2r2

p

× ((ZMp/M)2[G(2γω1/ω) − G(1)]	(2γω1 − ω)

+ [G(2γω2/ω) − G(max{1, 2γω1/ω})]	(2γω2−ω)

+ [G((γω2/ω)2) − G(2γω2/ω)]	(γω2/2 − ω)),

(22)

where the function G is defined as

G =
∫

dt
t2 − 2t + 2

t4
ln

(
C

ξ ′

)
, t = 1 + γ 2θ2, (23)

with C/ξ ′ given by Eq. (20). For a neutral target atom (screened
exponentially at the Thomas-Fermi distance), G assumes the

form

G(t) = 2/3 − b2

b3

[
tan−1

(
t

b

)
− π

2

]
+ 1

2b2
ln

(
t2

t2 + b2

)

+ 2

3b2t
− t2 − t + 2/3

2t3
ln

(
a2

t2 + b2

)
(24)

with parameters defined as

a = 2γ 2cC

ωR�

, b = 2γ 2c

aT F ω
. (25)

For a bare target nucleus, G reduces to

G0(t) = 1

t
− 1

2t2
+ 2

9t3
− t2 − t + 2/3

t3
ln

(a

t

)
. (26)

The calculation of the radiation cross section for the
realistic scattering cross section (7) proceeds in analogy to the
calculation for the hypothetical case. Introducing the notation

H (t↑; t↓)

= 0.793
∫ t↑

t↓
dt

t2 − 2t + 2

(t2 − (2γEm/h̄ω)2)2 + t2(2γ�/h̄ω)2
ln

(
C

ξ ′

)
(27)
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and

I (t↓) = 1.93
∫ “∞′′

t↓
dt

t2 − 2t + 2

t4
ln

(
C

ξ ′

)

× exp

[
−ε h̄ω̃2

(
ω

2γ ω̃2
− 1

t

)]
, (28)

where t ≡ 1 + γ 2θ2 as in Eq. (23) and C/ξ ′ is given by
Eq. (20), we get

dχ

dh̄ω
= 8αZ2

t Z
2r2

p

× ((ZMp/M)2[G(2γω1/ω) − G(1)]	(2γω1 − ω)

+H (2γ ω̃2/ω; max{1, 2γω1/ω}) 	(2γ ω̃2 − ω)

+ I (max {1, 2γ ω̃2/ω})). (29)

Actual values of H and I are obtained by numerical integra-
tion. For the case of bare target nuclei, it is possible to write up
a closed expression for the latter (containing the exponential
integral Ei). The somewhat unconventional notation for the
upper limit of integration in Eq. (28) signifies that this limit,
although very large, is not formally infinite since the angle is
limited to π . Furthermore, since the asymptotic form of the
virtual-photon spectrum has been applied, integration should
only extend up to the zero point of the logarithmic factor in
the integrand.

E. Bremsstrahlung spectra

Figure 1 shows the hypothetical bremsstrahlung spectrum
obtained from Eqs. (22), (24), and (25) for a bare lead
nucleus impinging on a lead target at a γ value of 170.
The energies characterizing the photon scattering in R are

FIG. 1. Radiation cross section for noncontact encounters of bare
lead ions (γ = 170) with neutral lead atoms (at rest) obtained with the
hypothetical scattering cross section (6). The dashed curve shows the
part of the spectrum where the projectile acts as a rigid structureless
charged particle [upper line in Eq. (6)], the dotted curve corresponds
to coherent action of Z quasifree protons [two lower lines in Eq. (6)],
and the solid curve is the sum of these two contributions. The chained
curve displays the result (1) with the logarithmic factor given by
(3). The insert shows the radiation cross section corresponding to
incoherent action of Z quasifree protons in noncontact collisions,
Subsec. III G.

FIG. 2. Radiation cross section for noncontact encounters of bare
lead ions (γ = 170) with neutral lead atoms (at rest) obtained with the
representation (7) of the cross section for elastic photon scattering on
208Pb nuclei. The solid curve shows the full bremsstrahlung spectrum,
the dashed curve displays the contribution from scattering events
where the projectile acts as a rigid structureless object (ω′ < ω1),
and the dotted curve shows the contribution originating from elastic
scattering at frequencies beyond ω1 in the projectile rest frame. The
dash-dotted curve is identical to the chained curve in Fig. 1.

chosen as h̄ω1 = 8 MeV and h̄ω2 = h̄c/R = 28.2 MeV. The
spectrum peaks at 2γh̄ω1 = 2.72 GeV and terminates at
2γh̄ω2 = 9.60 GeV. The somewhat unusual shape of the peak
is due to the discontinuity of the scattering cross section (6)
at ω1 (a jump by a factor of 6 occurs here for lead). The
figure further shows that processes where the projectile acts
as a structureless rigid object [first component of Eq. (22)]
contribute only modestly to the radiation cross section except
for energies tending to zero where it gives the sole contribution.
By far, the major part of the radiation cross section derives from
coherent scattering of virtual photons on Z quasifree protons
[last two components of Eq. (22)] at essentially all finite photon
energies. The computed bremsstrahlung spectrum is less, for
most energies much less, than the result (1) pertaining to a
pointlike and structureless particle of the same charge and mass
as the projectile nucleus except in a very narrow region near
the peak where the computed spectrum slightly overshoots (1).

Figure 2 shows the realistic bremsstrahlung spectrum
obtained from Eq. (29) with G, H , and I given by Eqs. (24),
(25), (27), and (28) for a bare lead nucleus impinging on a lead
target at a γ value of 170. The spectrum shows features similar
to the spectrum based on the hypothetical scattering cross
section (Fig. 1). But due to the giant dipole resonance in the
scattering cross section, the peak value is now more than four
times higher than the maximum in Fig. 1, the peak position is
shifted upward in energy by roughly 50%, and the peak shows
a smoother behavior. Due to the strong GDR, the contribution
from events where the projectile acts as a rigid and structureless
scatterer is of even less importance relatively than in the
hypothetical case. Also due to the GDR, the bremsstrahlung
spectrum is stronger than that for a hypothetical point nucleus
(of the same charge and mass as the actual projectile) up to,
about, 8 GeV. Due to the exponential depletion of the scattering
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FIG. 3. As Fig. 2 but with γ = 3000.

cross section (7) at high photon frequencies, the spectrum falls
gradually to zero rather than abruptly as the spectrum of Fig. 1.

Figure 3 shows the bremsstrahlung spectrum, again ob-
tained from Eq. (29), for a bare lead nucleus impinging on
a lead target at an energy as that foreseen for CERN’s Large
Hadron Collider, γ = 3000. The spectrum shows the same
features as the spectrum for γ = 170 (Fig. 2); only the energies
are shifted upward in proportion to γ and the peak value is 37%
higher.

Figure 4 demonstrates the variation with primary energy
quite clearly: By plotting as a function of photon energy
divided by the γ value of the projectile, spectra for different
projectile energies fall on top of each other. The peak value
increases with γ but saturates due to screening. The peak
position is slightly below twice the peak position of the giant
dipole resonance, 2Em = 0.0274 GeV. The two other charac-
teristic energies, 2h̄ω1 = 0.0154 GeV and 2h̄ω̃2 = 0.044 GeV,
are positioned on opposite sides of the peak.

Atomic screening becomes increasingly important as the
projectile energy is raised. For bare lead ions at γ = 170, the

FIG. 4. Radiation cross section for noncontact encounters of bare
lead ions with neutral lead atoms at rest as a function of photon
energy divided by γ . Spectra for three different values of γ are
displayed: γ = 3000 full-drawn curve, γ = 170 dotted, and γ =
100 000 chained.

FIG. 5. Effect of screening on bremsstrahlung at high projectile
energy. A bare lead ion is incident on a lead target at γ = 100 000. The
full-drawn peaked spectrum is obtained by the same procedure as the
full-drawn curve in Fig. 2 (“screening included”). The dotted peaked
spectrum shows the result of the same calculation if the neutral target
atom is replaced by a bare ion (“no screening”). The two flat curves
display the point-nucleus result (1) with (full-drawn) and without
(dotted) target screening.

difference in the bremsstrahlung intensity for an atomic lead
target and a target consisting of bare lead ions is less than 1%
for photon energies above 1 GeV. The difference increases with
decreasing photon energy, but at the lower crossing point with
the result (1) pertaining to a pointlike projectile (0.3 GeV),
the difference still only amounts to 5%. Figure 5 shows the
results for the same collision systems when the γ value of
the projectile is raised to a very high value, γ = 100 000.
Obviously screening has a major influence on bremsstrahlung
throughout the spectrum at this energy.

F. Energy loss

The stopping power due to bremsstrahlung emission, that is,
the radiative energy loss per unit penetrated depth, is obtained
as the atomic density N of the target times the integral of the
radiation cross section [Eq. (29) with the definitions (24), (25),
(27), and (28)]

−dE

dx
= N

∫
dh̄ω

dχ

dh̄ω
. (30)

Figure 6 shows a plot of this stopping power divided by the
total projectile energy E = γMc2 as a function of γ for lead
ions penetrating a lead target. Due to screening, the relative
energy loss saturates at high projectile energies at a value of
N × 0.119 mbarn (3.91 × 10−6 cm−1). In Ref. [4], we gave a
rough estimate of the radiative energy loss. For the considered
collision system, this estimate, Eq. (7) in Ref. [4], comes out
at around 2/3 of the result shown in Fig. 6 for bare target
nuclei. (In view of the roughness of the estimate, it should be
considered accidental that it hits this close to the actual value
of the energy loss.)

The cross section (1) pertaining to a pointlike and struc-
tureless lead nucleus is around 0.1 barn for photon energies
all way up to the primary (kinetic) energy. Hence the actual
radiative stopping power (Fig. 6) is down by three orders of
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FIG. 6. Energy loss through bremsstrahlung emission for a lead
ion penetrating a lead target. The figure shows −N−1E−1dE/dx as
a function of the γ value of the projectile. The full-drawn curve
displays the result for an atomic target. The dotted curve pertains
to the hypothetical case of a target consisting of bare lead ions (no
screening). To get the fractional energy loss −E−1dE/dx per cm, the
ordinate in the figure should be multiplied by 3.30 × 10−5.

magnitude compared with what one would get by assuming
the projectile to radiate as a pointlike and structureless object.

In Ref. [4], we produced a rough estimate showing that
bremsstrahlung emission is of considerably less importance
for the slowing down of relativistic bare heavy ions in matter
than electron-positron pair creation. We may now quantify
that for our standard collision system. Neglecting the small
contribution from pair creation on atomic electrons, the
stopping power due to pair production is(

−dE

dx

)
PP

= πZ2Z2
t α

2r2
e Nγmc2 �, (31)

where m is the electron mass and re ≡ e2/mc2 the classical
electron radius. The logarithmic factor � is approximately
given as

� = 19

9
ln

183Z
−1/3
t

1 + 4e11/6183Z
−1/3
t /γ

; (32)

see [4]. For bare lead ions penetrating a lead target, Eqs. (31)
and (32) produce stopping powers which are higher than the
radiative stopping power computed above by factors ranging
from 74 to 105 for γ values ranging from 170 to 100 000.
That is, pair production overshoots bremsstrahlung in the
energy-loss process for relativistic heavy ions by two orders
of magnitude.

Let us close the discussion by comparing the radiative
energy loss to the stopping due to atomic excitation and
ionization (the “electronic energy loss”) which brings the
major contribution to the stopping at nonrelativistic as well
as moderately relativistic energies. The electronic stopping
power is given as(

−dE

dx

)
electr

= 4πZ2e4

mv2
NZt L, (33)

where NZt = n is the average density of target electrons.
For energies sufficiently high that the density effect is in full

FIG. 7. Energy loss of bare lead ions in a lead target. The full-
drawn curve is the same as in Fig. 6, the dashed curve shows the
energy loss through electron-positron pair creation [Eqs. (31) and
(32)], and the dotted curve shows the ionization energy loss [Eq. (33)
with the high-energy approximation Eq. (34)].

action and close collisions are limited by the finite size of the
projectile nucleus, the logarithmic factor L takes the simple
form [11]

L → ln (1.62c/Rωpl), (34)

where ωpl =
√

4πne2/m is the plasma frequency of the target.
For heavy projectiles in condensed matter, Eq. (34) applies
quite accurately for γ values beyond 100. For bare 208Pb
ions penetrating a lead target, Eqs. (33) and (34) give a
relative energy loss of N × 19.6/γ barn. The electronic and
the radiative losses become equal at γ = 1.65 × 105 beyond
which value the radiative loss is the larger of the two. The
electronic and the pair-production losses become equal at
γ = 1790 (or, if production on atomic electrons is included,
at γ = 1730 [3]) beyond which value pair-production losses
dominate. Figure 7 gives an overview of the magnitude of the
energy-loss mechanisms.

G. Incoherent scattering

Bremsstrahlung is emitted as a result of coherent scattering
of virtual photons of the target on the projectile in noncontact
collision. Incoherent scattering on single protons in the pro-
jectile nucleus generally results in breakup. Let us terminate
the study of noncontact processes by an estimate of radiation
emitted as a result of incoherent photon scattering.

Roughly, incoherent scattering requires ω′ > ω2, and the
cross section is given approximately by an expression similar
to the last line in Eq. (6) except that Z2 has to be replaced by
Z and the angular restriction (the argument of the Heaviside
function) is the opposite. Going through the same steps as
in Sec. III D, we end up with the following estimate for the
incoherent radiation cross section:
dχ

dh̄ω
= 8αZ2

t Zr2
p[−G(max{1, 2γω2/ω, (γω2/ω)2})], (35)

where G is given by Eq. (24) or, for a bare target nucleus, by
Eq. (26). In the derivation of Eq. (35), we have neglected the
value of G at the upper limit of integration compared to that
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at the lower limit. This requires ω � ω2, which is of course
always fulfilled for GeV photon energies. For bare nuclei and
ω > 2γω2, the incoherent radiation cross section reduces to

dχ

dh̄ω
= 16

3
αZ2

t Zr2
p

(
ln

2γ 2cC

ωR�

− 13

12

)
. (36)

As opposed to the coherent case incoherent scattering is not
limited to rest-frame energies of a few times h̄ω2, and hence,
the incoherent radiation is not limited to a few times 2γh̄ω2 but
extends to much higher energies. Despite this, we have used
the asymptotic expression (10) for the virtual photon spectrum
to obtain the expressions (35) and (36). In the main, this gives
a quite reasonable estimate, but the expressions should of
course not be used where they produce negative values and
the depletion with increasing energy near their zero point is
obviously less abrupt than Eqs. (35) and (36) predict. The insert
in Fig. 1 shows the estimate (35) of the incoherent radiation
cross section. It is much lower than the bremsstrahlung in the
region where the latter has its support but extends to much
higher energies.

IV. CONTACT COLLISIONS

In Secs. III A–III F, we considered the bremsstrahlung
emitted in collisions between a relativistic bare heavy ion and a
stationary target atom at impact parameters larger than the sum
of the nuclear radii. This is our main focus. For comparison,
let us now turn to the electromagnetic radiation emitted in
collisions with nuclear contact where the collision partners
break up. We aim for the characteristics and level of the
radiation, particularly in the region where bremsstrahlung is
appreciable, and consider a rough estimate sufficient.

Initially we proceed along the lines laid out by Jeon et al.
[12]. Although they present a relatively simple calculation, we
note that a later study [13] based on a microscopic transport
model (the so-called ultrarelativistic quantum molecular dy-
namics model) produces results which agree with the outcome
of Eq. (11) in Ref. [12] within 20–30% for those angles
which contribute the major part of the total cross section. The
calculation is based on classical electrodynamics according
to which the radiated intensity per frequency ω and per solid
angle � may be expressed in terms of the electromagnetic
current density J of the source as

d2I

dωd�
= ω2

4π2c3
|A(n, ω)|2, (37)

A(n, ω) ≡
∫

dt

∫
d3r n × [n × J]eiω(t−n·r/c), (38)

where n is the direction of emission; see [6].

A. Instantaneous interaction

We consider a central collision between two identical nuclei
of spherical shape, but as opposed to the situation described
in Ref. [12], one is originally at rest in the laboratory. The
incoming projectile is moving along the z axis in the positive
direction at speed v0 aiming at the target at rest at the origin.
(In this section, subscript 0 is included on the initial projectile
velocity to distinguish it from the velocities of the reaction
products.) The collision happens instantaneously at time zero,

t = 0, at least in our first approach. Before the collision, the
electromagnetic current density hence assumes the form

J = σP (r⊥)v0δ(z − v0t)ẑ, t < 0, (39)

where ẑ is a unit vector along the z axis in the positive direction
and σP (r⊥) is the charge density of the projectile integrated
along z at fixed transverse position r⊥ =

√
x2 + y2 (Cartesian

coordinates). After the collision, all fragments are assumed to
move parallel to the z axis with a distribution in the longitudinal
velocity v. Following Jeon et al. [12], we introduce the rapidity
ϒ defined by the relation

v/c = tanh ϒ, (40)

where c is the speed of light. The distribution in velocity
translates into a distribution ρ in rapidity,∫ ∞

−∞
dϒρ(r⊥, ϒ) = 1, (41)

and the current density after the collision may hence be
written as

J = σF (r⊥)
∫ ∞

−∞
dϒρ(r⊥, ϒ)v(ϒ)δ(z − v(ϒ)t)ẑ, t > 0.

(42)

No redistribution of nuclear matter is assumed to take place in
transverse space which implies that σF (r⊥) = 2σP (r⊥).

Since the current density in our model always is directed
along the z axis, the vector n × [n × J] has a fixed direction
to which we assign the unit vector eA. Introducing the
emission angle θ and the direction of the x axis through n ≡
(sin θ, 0, cos θ ), we have n × [n × J] = sin θJ eA. Expression
(38) for A then reduces to

A(n, ω) = eA sin θ

∫
dt

∫
d3r J (r, t) eiω[t−(x sin θ+z cos θ)/c].

(43)

The delta function appearing in the expressions (39) and (42)
for J takes care of the integral over z. In turn, the integration
over time may be performed. Since the acceleration vanishes
outside a time window of (any) finite length, the evaluation
requires use of a standard trick (see, e.g., Jackson [6]): The
integrand is multiplied by a convergence factor e−ε|t |, the
integral is subsequently evaluated, and the answer is finally
taken in the limit ε → 0. The result is

A(n, ω) = eA

sin θ

iω

∫
d2r⊥e−iωx sin θ/cσP (r⊥)

×
[

v0

1−β cos θ
−2

∫ ∞

−∞
dϒρ(r⊥, ϒ)

v(ϒ)

1−βϒ cos θ

]
,

(44)

where β ≡ v0/c and βϒ ≡ v(ϒ)/c. The distribution in rapidity
was computed in Ref. [12] in a microscopic model (different
from that used later in Ref. [13]) for two identical gold nuclei
colliding head on at an energy of 100 GeV/n (equal but
opposite velocities). The distribution was found to be roughly
flat overall. Furthermore, the radiation corresponding to a flat
distribution was found to be quite close to that corresponding
to the computed distribution. For our purpose of getting
a relatively rough idea of the radiation emitted in contact
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collisions, we shall hence assume a similar flat distribution
in ϒ and r⊥ for the fixed-target case; that is,

ρ = 1/ϒ0 for 0 � ϒ � ϒ0 and r⊥ < R, (45)

where R is the nuclear radius, and ρ = 0 otherwise. The
maximum rapidity ϒ0 corresponds to the velocity v0 of the
incoming ion,

ϒ0 = tanh−1 β = ln [(1 + β)γ ] � ln (2γ ), (46)

where γ ≡ 1/
√

1 − β2 is the Lorentz factor of the projectile.
With ρ independent of r⊥ (inside R), the square-bracket
factor in Eq. (44) may be taken outside the integral and
the remaining integral over transverse coordinates reduces to
ZeF (ω sin θ/c), where Ze is the nuclear charge and F is the
form factor defined as

F (q) = (Ze)−1
∫

d3rρN (r)eiq·r, (47)

where ρN is the nuclear charge density. Finally, performing the
integration over rapidity and inserting the resulting expression
for A into Eq. (37) leads to the differential intensity

d2I

dh̄ωd�
= α

4π2
sin2 θZ2 |F (ω sin θ/c)|2 S2, (48)

S ≡ 2
cos θ

sin2 θ
+ 2

ϒ0 sin2 θ
ln (γ (1 − β cos θ )) − β

1−β cos θ
.

(49)

The introduction of h̄ has produced a dimensionless result.
Equations (48) and (49) represent a transcription to the fixed-
target case of the final Eq. (11) in Ref. [12]; the modification
appears entirely in the factor S2.

B. Characteristic angles and radiation cross section

The differential intensity [Eqs. (48) and (49)] vanishes at
θ = 0 and peaks at a small angle for high values of γ . For the
moment, let us neglect the form factor (that is, we put F = 1,

which in any case is true by definition in the limit θ = 0). A
small-angle expansion gives

S � 2ϒ−1
0 ln (1 + (γ θ )2) − θ2

θ2
− 2γ 2

1 + (γ θ )2
, θ � 1.

(50)

This shows that the characteristic angle of emission is 1/γ ,

θ ∼ 1/γ. (51)

It may further be noted that S changes sign at an angle θ0 way
beyond 1/γ . From the expansion (50) and the result (46), it is
seen that

θ2
0 � 2/γ (52)

in the limit of high γ . With F = 1, there is exact equipartition
of the intensity at θ0; that is, integration over emission angles
smaller and larger than θ0 gives identical results,

dI

dh̄ω

∣∣∣∣
θ<θ0

= dI

dh̄ω

∣∣∣∣
θ>θ0

, F = 1. (53)

With F = 1, there is no dependence on emission frequency
and dI/dh̄ω shows roughly a dependence on primary energy
of the form a ln γ + b (a and b constants).

FIG. 8. Bremsstrahlung intensity in central collision between two
bare lead ions as a function of emission angle. The curves correspond
to photon energies of 0 GeV (upper full drawn), 1 GeV (dashed),
5 GeV (dotted), 10 GeV (chained), and 20 GeV (lower full drawn).
One ion is originally at rest, and the other is impinging at γ = 170.

Inclusion of the form factor introduces a variation of the
radiation intensity with frequency. Generally, F causes a
damping for arguments larger than, approximately, 1/R. Near
the peak in the differential spectrum, where θ ∼ 1/γ , this
implies damping for

h̄ω � 0.2 GeV fm × γ /R. (54)

For lead ions at γ = 170, this estimate reads as h̄ω � 5 GeV.
As to the specific expression for F , we shall choose that
pertaining to a homogeneously charged sphere of radius R,

F (q) = 3

(qR)2

[
sin(qR)

qR
− cos(qR)

]
. (55)

Figure 8 displays the double-differential spectrum [Eqs. (48)
and (49)] with the form factor given by Eq. (55) as a function of
emission angle for different photon energies for our standard
case. The curve for vanishing photon energy corresponds to
F = 1. The remaining curves show how damping increases
with h̄ω and confirm the estimate (54). It should be noted
that while the curve for h̄ω = 1 GeV shows rather limited
damping in the region around the characteristic emission angle
displayed in Fig. 8, the integrated intensity dI/dh̄ω is actually
reduced to 45% of its value at h̄ω = 0 GeV.

Integration of the expression (48) over angles gives the
intensity dI/dh̄ω for a collision at impact parameter b = 0.
We define the radiation cross section as

dχ

dh̄ω
=

∫
d2b

dI

dh̄ω
(b). (56)

As a rough model for the radiation cross section pertaining
to collisions with nuclear contact, we shall assume that the
variation of intensity with impact parameter is given by the
variation in overlap area between two coplanar circular disks
of radius R with interspacing between centers. Equation (56)
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FIG. 9. Radiation cross section for collisions with nuclear contact
as a function of emission energy. The collision partners are lead
nuclei, one is originally at rest, and the other is impinging at γ = 3000
(solid line) or γ = 170 (dashed line). The abscissa in the main plot
is photon energy divided by γ . The insert shows the variation at very
small emission energies. Curves in the lower left of the figure show
the bremsstrahlung spectra for the same two values of γ (repeated
from Fig. 4).

then reduces simply to

dχ

dh̄ω
= πR2 dI

dh̄ω
(0)

= α

4π
R2Z2

∫
4π

d� sin2 θ |F (ω sin θ/c)|2 S2, (57)

where R is defined in Eq. (4) and S is given in Eq. (49). For
lead ions in a lead target, the factor in front of the integral
in Eq. (57) is 1.9 barn. Figure 9 shows the variation of the
radiation cross section (57) with photon energy for two largely
different values of the Lorentz factor. The cross section is well
above the reference electromagnetic radiation cross section
(1) [0.110 barn for complete screening, see discussion after
Eq. (3)] up to, roughly, 0.2γ GeV. Generally, we observe a
near-exponential decrease with increasing photon energy. By
plotting the cross section as a function of the reduced variable
h̄ω/γ nearly identical results, up to a ω-independent factor,
are obtained for the two γ values over the major part of the
photon-energy range [cf. Eq. (54)]. At very low energies,
a rapid variation is superimposed. For both γ values, the
radiation cross section is reduced to two thirds of its maximum
value (obtained at h̄ω = 0) over the first 100 MeV or so (see
insert in Fig. 9). This rapid reduction reflects the equipartition
(53) for F = 1 which, in view of (52), implies that half
of the intensity is emitted at angles much larger than 1/γ

for F = 1. The large-angle contribution is damped at much
smaller photon energies than the small-angle contribution
when the form factor is introduced. Figure 9 also includes the
bremsstrahlung spectra from Fig. 4. Obviously, the radiation in
central collisions is considerably stronger than bremsstrahlung
emitted in ultraperipheral collisions, and it extends to higher
photon energies.

C. Finite collision time

The instantaneous change of the electromagnetic current
at t = 0 assumed so far implies that the formulas quoted in
the previous subsections apply to the realistic collision system
only for sufficiently low frequencies. At higher frequencies,
lower yields are expected [6].

As a simple model, assume that the projectile current (39) is
switched off linearly with time starting at t = −τ and ending
at t = τ ,

τ ≡ R/c, (58)

and that the current (42) due to the reaction products is
switched on linearly over the same time interval. This modifies
the square-bracket factor in the integrand in Eq. (44) to

[ ] → v0

1 − β cos θ

sin[ωτ (1 − β cos θ )]

ωτ (1 − β cos θ )
− 2

∫ ∞

−∞
dϒ

× ρ(r⊥, ϒ)
v(ϒ)

1 − βϒ cos θ

sin[ωτ (1 − βϒ cos θ )]

ωτ (1 − βϒ cos θ )
.

(59)

For γ � 1 and θ � 1, the argument of the temporal damping
factor in the first term in (59) may be written as

ωτ (1 − β cos θ ) � ωτ

2γ 2
[1 + (γ θ )2] � ωτ

γ 2
, (60)

where the last expression applies for typical emission angles
[cf. Eq. (51)]. Temporal damping sets in when the argument
(60) becomes comparable to 1, that is, for ωτ � γ 2. Here,
R times the argument of the nuclear form factor assumes the
value

ωτ sin θ � ωτθ � γ 2/γ, (61)

which is obviously much larger than 1. Hence, the damping due
to the nuclear structure is already strong at emission energies
where temporal damping becomes effective. The analysis for
the second term in (59) is similar leading, in place of (61),
to ωτ sin θ � γ 2

ϒ/γ , where γ 2
ϒ ≡ 1/(1 − β2

ϒ ). Except for a
narrow fraction of the rapidities of the fragments damping due
to nuclear structure is again more important than temporal
damping.

The bottom line is that for high values of γ , only damping
due to nuclear structure needs to be considered when assessing
the radiation cross section. Temporal damping plays no role in
practice.

V. CONCLUDING REMARKS—OTHER SOURCES
OF RADIATION

In Sec. III, we calculated the bremsstrahlung emitted
by a relativistic heavy ion as it penetrates a substance. To
compare with the outcome of an experiment, other possible
sources of radiation need to be identified and eliminated or
accounted for. One such source is electrons ejected from target
atoms, so-called delta electrons. The energy released through
emission of bremsstrahlung by these secondaries is limited by
the electronic energy loss [Eqs. (33) and (34)], but unless the
projectile energy is very high, this does not imply a priori
that the radiation by the secondaries is small compared to the
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bremsstrahlung emitted by the projectile (cf. Fig. 7). Instead
we may note that the angular characteristics of the photon
emission from delta electrons is quite different from that of
the heavy-ion bremsstrahlung; most delta electrons are ejected
at large angles, and so is their bremsstrahlung. Furthermore,
being a secondary process, the radiation yield for the delta
electrons scales with the square of the target thickness, whereas
the intensity of the primary bremsstrahlung scales linearly
with target thickness. That is, the two contributions may be
separated experimentally by varying this parameter.

Bremsstrahlung may also be emitted by a target electron
during the collision with the penetrating heavy ion. The
energy loss due to this higher order QED process has been
evaluated by Jankus [14] (see also Refs. [1] and [2]). At the
lowest energies considered here, γ ∼ 170, Jankus’ result is an
order of magnitude higher than the energy loss due to direct
bremsstrahlung by the projectile for our standard collision
system. But, to quote Ref. [14], the radiation should not show
a marked anisotropy and the maximum photon energy should
be of the order of 0.5 MeV except for a few hard photons
close to the direction of the incident heavy particle. Besides,
the calculation does not take into account the density effect
and the finite nuclear size. Neglect of the latter could be an
important limitation since higher order QED effects primarily
belong to regions with a strong field. The finite nuclear size of
the projectile moderates its field in exactly this region.

As discussed in Sec. III F, creation of electron-positron
pairs contributes more to the energy loss of a heavy ion
than bremsstrahlung. The associated radiation may hence be
of concern. There are two kinds of contributions exactly as
for the case of ejection of target electrons. One is radiation
emitted in the pair-creation process, and the other is radiation
emitted after creation by the electron and positron on their
way through the rest of the target. The second kind may be
extracted experimentally by varying the target thickness. (And
it does of course not contribute to the energy loss of the primary
particle.) Furthermore, typical energies are much smaller than
the characteristic energies for the heavy-ion bremsstrahlung:
According to Ref. [15], the pair-production spectrum falls
off beyond γmc2 roughly as the inverse cube of the total
pair energy. Hence, bremsstrahlung from the pair effectively
terminates at 0.5γ MeV which is a factor of 50 below the peak
in the heavy-ion bremsstrahlung spectrum which appears near
25γ MeV (cf. Fig. 4).

For a rough estimate of the importance of photon emission
in the electron-positron pair-creation process, we proceed as
Hencken et al. [16] right before their conclusion (cross sections
given in units of the square of the Compton wavelength of
the electron): Up to a numerical factor, the cross section for
this type of radiation is Z2Z2

t α
5(mc2/h̄ω)2. The scale for the

bremsstrahlung by the heavy ion is roughly set by our Eq. (1) in
the region where the radiation cross section peaks (cf. Figs. 2–
5; the peak typically shoots above (1) by a factor of 6–8 or
so); that is, the cross section is estimated by Z4Z2

t α
3(m/M)2

again up to a numerical factor. The peak in the bremsstrahlung
spectra appears near 25γ MeV. Using this for h̄ω in the first
estimate gives a ratio of the two of 0.07(A/γZ)2 which for
208Pb reduces to 0.5/γ 2. For the values of γ considered here
(typically at least 170), this is clearly a very small number and
photon emission in the pair-creation process may be neglected.

[Note that the numerical factor in Eq. (1) is quite large, in
our case, 16L/3 � 80. Since the actual bremsstrahlung peak
furthermore overshoots (1) by a factor of 6–8, the ratios given
here may actually be expected to overestimate the relative
importance of photon emission in pair creation. In any case,
this type of emission is only appreciable for photons with
energies near or below mc2 which in the current context is
very soft photons since their energy is way below the peak in
the heavy-ion bremsstrahlung spectrum.]
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APPENDIX: VIRTUAL PHOTON INTENSITY FOR
YUKAWA POTENTIAL

An observer is stationary at a point in space. A charged ob-
ject is passing by with constant speed v on a straight path at im-
pact parameter b. Assuming v to be sufficiently close to c that
the effects of the longitudinal field component may be neglec-
ted, the virtual photon intensity encountered by the observer is

dI

dωd2b
= c

2π
|E⊥(ω)|2 (A1)

(see [6]), where E⊥(ω) is the Fourier transform of the
component of the electric field transverse to v generated by
the moving object at the position of the observer at time t ,

E⊥(ω) = 1√
2π

∫ ∞

−∞
E⊥(t)eiωtdt. (A2)

In its own rest frame, the object generates an exponentially
screened Coulomb potential. Transforming the corresponding
field to the observer’s frame and expressing in observer’s
variables (see, e.g., [6]) gives

E⊥(t) = γ

(
− ∂

∂b

q

R
e−R/a

)
, R ≡

√
b2 + γ 2v2t2, (A3)

where q is the central charge of the moving object, a the
screening length, and γ the usual Lorentz factor. Inserting the
field (A3) in Eq. (A2) leads to

E⊥(ω) = − ∂

∂b

√
2

π

∫ ∞

0
dt cos(ωt)

γ q

R
e−R/a

= −
√

2

π

q

v

∂

∂b
K0 (b

√
(ω/γ v)2 + 1/a2); (A4)

see Ref. [17] for the last step. Using the relation
K ′

0 = −K1 [18], we may express E⊥(ω) in terms of
the modified Bessel function K1 as

E⊥(ω) =
√

2

π

q

vb
xK1(x), (A5)
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where x is defined as
x =

√
(ωb/γ v)2 + (b/a)2. (A6)

Combining Eqs. (A1) and (A5) and substituting c for v finally
gives

dI

dω d2b
= q2

π2cb2
[xK1(x)]2. (A7)

The results (A5) and (A7) are identical to those obtained for
a point charge in the limit γ � 1 except that in the Coulomb
case x = ωb/γ v [corresponding to a → ∞ in Eq. (A6)].
Integration over impact parameters beyond a minimum value
d may be performed by the help of [17] and the recursion
formulas for the modified Bessel functions [17,18] to yield
Eqs. (8) and (9).
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