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Mimicking multichannel scattering with single-channel approaches
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The collision of two atoms is an intrinsic multichannel (MC) problem, as becomes especially obvious in the
presence of Feshbach resonances. Due to its complexity, however, single-channel (SC) approximations, which
reproduce the long-range behavior of the open channel, are often applied in calculations. In this work the complete
MC problem is solved numerically for the magnetic Feshbach resonances (MFRs) in collisions between generic
ultracold 6Li and 87Rb atoms in the ground state and in the presence of a static magnetic field B. The obtained
MC solutions are used to test various existing as well as presently developed SC approaches. It was found that
many aspects even at short internuclear distances are qualitatively well reflected. This can be used to investigate
molecular processes in the presence of an external trap or in many-body systems that can be feasibly treated only
within the framework of the SC approximation. The applicability of various SC approximations is tested for a
transition to the absolute vibrational ground state around an MFR. The conformance of the SC approaches is
explained by the two-channel approximation for the MFR.
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I. INTRODUCTION

The tunability of the interparticle interaction on the basis
of Feshbach resonances, especially magnetic Feshbach reso-
nances (MFRs), marked a very important cornerstone in the
research area of ultracold atomic gases. At ultracold energies s-
wave scattering dominates the atom-atom interaction, such that
for large internuclear distances the elastic scattering properties
are solely described by the s-wave scattering length asc [1]. Its
sign determines the type of interaction (repulsive or attractive)
and its absolute value the interaction strength. In the presence
of an MFR this parameter can be tuned at will by applying
an external magnetic field. A wide range of experiments using
MFR techniques has been carried out including the formation
of cold, even Bose-Einstein-condensed molecules [2–4] or the
realization of a Mott insulator phase with atoms in an optical
lattice (OL) [5].

Experiments with ultracold gases are usually performed
in external trapping potentials and over an ensemble of
many particles. For tight trapping conditions the influence of
the additional potential can become essential. For example,
processes of molecule formation via photoassociation (PA)
where two ultracold atoms absorb a photon and form a bound
excited molecule [6,7] can be more efficient, if performed
under tight trapping conditions as they are accessible in
OLs [8–10].

However, the presence of a trapping potential or, worse,
the existence of many-body effects is a great challenge for
the full theoretical description of an MFR, since all accessible
spin configurations of the colliding atoms must be included,
leading to a multichannel (MC) problem. For the case of
s-wave scattering of two free atoms the separation in relative
and center-of-mass motions, the formulation in spherical
coordinates, and the continuous energy spectrum make the
numerical solution manageable. This changes, unfortunately,
if an external potential couples the six spatial coordinates
of the two colliding atoms and induces the need to find
discrete eigenenergies [11]. This can be the case for atoms
loaded in a cubic OL formed with the aid of standing
light waves [12–14]. Furthermore, the theoretical microscopic

investigation of ultracold many-body systems is feasible only
within the framework of the SC approximation. Nevertheless,
a good knowledge of two-body MC collisions should help in
understanding the consequences of SC approximations, which
must be done when many-body systems are considered.

Single-channel (SC) approximations allowed us to study
the influence of the scattering length as it results from an MFR
for three-body collisions [15,16] and in the presence of an
external trap [9,10,17]. However, to our knowledge, it is not
yet well established to what extent SC approximations describe
correctly the behavior of a coupled MC system, if more than
one channel contributes significantly. The successful usage
of (SC) pseudopotentials to model, for example, the atom-
atom interaction in OLs [18] shows that physical properties
depending on the long-range behavior of the open-channel
scattering wave function (i.e., the scattering length asc) are well
described within the SC framework. For shorter interatomic
distances in the order of the van der Waals length scale β6

[β6 = (2µC6)1/4 where µ is the reduced mass and C6 is the van
der Waals coefficient], this is not necessarily the case. Here,
all coupled channels contribute to the full wave function and
affect processes, such as transitions to molecular bound states.
For these distances, SC approximations cannot cover all details
of the MC solution. As will be shown, some important aspects
are, nevertheless, reflected and can be used to study processes
of molecule formation in the presence of an MFR where
MC calculations may be too laborious. A very systematic
investigation of both short-range and long-range parts of the
MC solutions against various SC ones is considered in this
work.

The formation of ultracold molecules especially in deeply
bound levels is currently of large interest. In order to associate
them, the starting point is often a sample of Feshbach
molecules, obtained from ultracold atoms via a sweep of the
magnetic field around an MFR [3,19,20]. These molecules
are usually formed in high-lying vibrational ground states.
Molecules in lower vibrational states and eventually in the
absolute vibrational ground state are, however, favorable since
they are more stable against inelastic collisions. The most
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successful scheme to access those molecules is the two-color
stimulated Raman adiabatic passage (STIRAP) [21] when the
passage is realized using PA via an intermediate excited state.
The dump photoassociation (DPA) process during which two
ultracold atoms absorb a photon and form directly a ground
molecule is in principle possible for heteronuclear systems,
although the yield is very small.

It has been shown theoretically and for some cases even
experimentally, that the PA and DPA yields can be significantly
increased in the presence of an MFR [3,10,22–26]. For
example, in Ref. [10] it was found that an SC scheme based
on mass variation predicts the same enhancement of the PA
rate for almost all final states except the very high-lying ones
and the ones at the PA window (for asc > 0). The reason for
the enhancement was the increase of the absolute value for the
initial-state wave function that occurs for large absolute values
of asc. As a consequence, the corresponding Franck-Condon
(FC) factors and PA yields increase with |asc| (see Sec. III G
of Ref. [10] for details). Noteworthy, a strong enhancement
of the PA rate by at least two orders of magnitude while
scanning over an MFR was predicted on the basis of an MC
calculation for a specific 85Rb resonance already in Ref. [22].
The explanation for the enhancement given in Ref. [22] is,
however, based on an increased admixture of a bound-state
contribution to the initial continuum state in the vicinity of
the resonance. This is evidently different from the reason
for the enhancement due to large values of |asc| discussed
in Ref. [10]. This suggests that both seemingly different
explanations appear to exhibit a strong correspondence. One
of the motivations of the present work is to clarify this
observation.

To mimic certain aspects of the MC wave function for
studying molecular processes, SC approaches make use of a
controlled tuning of system parameters such as the reduced
mass [10], van der Waals coefficients [27], inner wall [11]
of the interaction potential, or the interaction potential in the
intermediate range as is proposed in this work. Long-range
scattering properties like the s-wave scattering length can be
sensitive to even small changes of those parameters. To date,
the justification of these systematical variations is mainly given
by the broad variety of atomic species and their isotopes,
each with different parameter values. In this work it will be
shown that by these variational approaches one is also able
to reproduce changes of both long- and short-range collision
properties of a given scattering system as it is induced by an
external magnetic field in the proximity of an MFR.

The general validity of the SC methods will be based on
a two-channel (TC) approximation of the MFR [20,28]. This
approximation is widely used to describe the phenomenon of
an MFR and has been adopted to study many-body interactions
[29] and two-atom interactions in a time-dependent magnetic
field [30,31] and in a structured continuum induced by an
OL [32]. The TC approximation reproduces many aspects of
the coupled MC system. It allows one to describe the complex
PA transition process by just two free parameters, the maximal
transition rate and the position of the minimal transition rate
[33]. An analysis of the TC approximation reveals why SC
approaches can show an astonishing conformance with the
coupled MC predictions.

In order to compare concrete MC and SC solutions the
exemplary case of 6Li and 87Rb scattering is considered and
the relative motion of this system in a static magnetic field
B is fully solved employing the R-matrix method [34]. This
system is of great importance by itself for its large static
dipole moment, which makes it interesting for applications
in quantum information processing [35,36] or the exploration
of lattices of dipolar molecules [37]. The applicability of the
different SC approaches is studied by considering the process
of molecule formation by a direct PA of the 6Li-87Rb system
to the absolute vibrational ground state in the presence of an
MFR. We describe this process by using the exact MC solution
and compare to different SC approximations.

The article is organized in the following way. In Sec. II, a
theoretical description of 6Li and 87Rb scattering is given and
the TC approximation is briefly introduced. The possibility of
SC approaches is motivated by considering the results of a
full MC calculation for different resonant and off-resonant
magnetic field values. In Sec. III, diverse SC approaches
are introduced and their wave functions are compared to
those of the full MC calculation. The direct dumping to the
absolute vibrational ground state is considered in Sec. IV.
The prediction of the TC approximation is presented and MC
and SC results are compared. Finally, a conclusion is given in
Sec. V. All equations in this article are given in atomic units
unless otherwise specified.

II. MULTICHANNEL APPROACH

A. Hamiltonian

The Hamiltonian of relative motion for two colliding
ground-state alkali-metal atoms—in the present case 6Li
(atom 1) and 87Rb (atom 2)—is given as [38]

Ĥ = T̂µ +
2∑

j=1

(
V̂ hf

j + V̂ Z
j

) + V̂int, (1)

where T̂µ is the kinetic energy and µ is the reduced mass. The
hyperfine operator V̂ hf

j = a
j

hf�sj · �ij and the Zeeman operator

V̂ Z
j = (γe�sj − γn

�ij ) · �B in the presence of a magnetic field �B
depend on the electronic spin �sj and nuclear spin �ij of atom
j = 1, 2. For the present system the values of the hyperfine
constants a1

hf , a2
hf , and those of the nuclear and electronic

gyromagnetic factors γn and γe are adopted from Ref. [39].
In Eq. (1) the central interaction V̂int(R) between the atoms is
a combination of electronic singlet and triplet contributions

V̂int(R) = V0(R)P̂0 + V1(R)P̂1, (2)

where P̂0 and P̂1 project on the singlet and triplet components
of the scattering wave function, respectively. The potential
curve V0 (V1) for the singlet (triplet) states of 6Li-87Rb in Born-
Oppenheimer (BO) approximation were obtained using data
from Refs. [40,41] and references therein. In Ref. [40] refined
potential parameters such as the van der Waals and exchange
coefficients, which we use in the following, were determined
by a comparison of MC calculations with experimentally
observed resonances. It is important to note that the MC
approach considered in the present work is formulated in
relative motion coordinates. This is based on the assumption
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that the center-of-mass and relative motion of two atoms may
be decoupled and effects due to coupling may be neglected.
Furthermore, calculations of the present work assume the BO
approximation to be valid [42].

For the interactions present in Hamiltonian (1) the projec-
tion MF of the total spin angular momentum �F = �f1 + �f2 on
the magnetic field axis is conserved during the collision. Here,
�fj = �sj + �ij is the total spin of atom j . For a given MF of the

colliding atoms only spin states with the same total projection
of the angular momentum can be excited during the collision.
If {|α〉}α is a complete basis of the electron and nuclear spins
of the MF subspace, one may use the function,

�(R) =
∑

α

ψα(R)

R
|α〉, (3)

in order to find the s-wave scattering solution of the stationary
Schrödinger equation with Hamiltonian (1). This ansatz yields
a system of coupled second-order differential equations,(

− 1

2µ

∂2

∂R2
+ Vα(R) + Eα(B) − E

)
ψα(R)

+
∑
α′

Wα′α(R)ψα′(R) = 0, (4)

where the channel threshold energies Eα , the channel poten-
tials Vα(R), and the coupling potentials Wα′α(R) depend on
the chosen spin basis and will be specified below.

Depending on the spin basis, the scaled channel functions
ψα(R) will be used in the analysis instead of the full channel
functions ψα(R)/R, while the name “channel function” is kept
for convenience.

1. Atomic basis

If the two atoms are far apart from each other, the central
interaction V̂int(R) may be neglected and the two-body system
is described by the spin eigenstates |fj ,mfj

〉 of each atom. In
this atomic basis (AB) the collision channels |α〉 are written as
a direct product of the atomic states |χ〉 = |f1,mf1〉|f2,mf2〉.
In this case the threshold energy Eχ (B) of channel |χ〉 is
given as the sum of Zeeman and hyperfine energies of the two
atoms. The channel potential Vχ (R) in the AB is identical for
all channels,

Vχ (R) = V+(R) = V0(R) + V1(R)

2
. (5)

The long-range asymptote of V+ is described by an attractive
van der Waals interaction, that in the present case of 6Li and
87Rb atoms in their ground states is given as

VvdW(R) = −
5∑

n=3

C2n

R2n
, (6)

with C6 = 2543 a.u., C8 = 228250 a.u., and C10 =
25 645 000 a.u. The coupling between the channels in the AB
is given as Wχ ′χ (R) = 〈χ ′|P̂0 − P̂1|χ〉V−(R), where

V−(R) = V0(R) − V1(R)

2
= 1

2
Vex(R). (7)

The exchange interaction Vex is in the long-range regime very
well represented in the Smirnov and Chibisov form [43],

Vex(R; J0, α) = J0R
7
α
−1e−αR. (8)

In Eq. (8) J0 = 0.0125 is a normalization constant and α =
1.184 depends on the ionization energies of each atom. For
a given magnetic field B the channel threshold energies Eχ

and coupling matrix Wχχ ′ are fixed and V−(R) describes how
strongly the different channels |χ〉 are coupled.

The total energy E available to the system is the kinetic
energy (i.e., the energy at a time prior to the interaction
when particles are far apart from each other). Since the
coupling vanishes exponentially, the channels in the AB are
asymptotically uncoupled. If the threshold energy of a channel
either lies above or equals the total energy available to the
system, Eχ (B) � E, the channel is considered to be “open”,
otherwise it is “closed”. Without loss of generality we consider
in the following an elastic collision where only the channel
|a1〉 = |1/2, 1/2〉|1, 1〉 with the lowest threshold energy is
open. The threshold energy Ea1 marks the zero point of the
energy scale throughout the article.

2. Molecular basis

Another possible choice of the spin basis of the channels
|α〉 is the molecular basis (MB) |ξ 〉 = |S,MS〉|mi1 ,mi2〉 where
S and MS are the quantum numbers of the total electronic
spin and its projection along the magnetic field. Furthermore,
mi1 and mi2 are the nuclear spin projections of the individual
atoms. In the MB, the threshold energy Eξ (B) is equal to
the Zeeman energy of the two atoms. Depending on the
value of S, the channel potentials correspond to the singlet
(S = 0) or triplet (S = 1) potential, that is, Vξ (R) = VS(R).
Although in the AB the coupling Wχ ′χ is strong for small
internuclear distances, in the MB the channels are only coupled
by the relatively weak hyperfine interaction. The coupling
Wξ ′ξ = 〈ξ ′|V̂ hf

1 + V̂ hf
2 |ξ 〉 is, on the other hand, present for all

internuclear distances, which makes it impossible to define
open and closed channels in the MB.

Depending on the distance between the two particles the
set of interacting states is preferably considered in either of
the two bases [44,45]. The AB of asymptotically uncoupled
states is convenient for the description of the long-range part
of the wave function. The MB is suitable for the short-range
part where the exchange interaction leads to a strong coupling
in the AB. Although inappropriate for large distances, the MB
is the natural choice to study molecular processes, such as the
association of molecules, which takes place when the atoms
are close to each other. Presently for 6Li-87Rb the transition
from the description in the AB to the MB is appropriate
at a distance Rsh ≈ 20a0 (a0 is the Bohr radius) where the
exchange interaction is equal to the hyperfine interaction,
that is, where 	Ehf(6Li) + 	Ehf(87Rb) = J0R

7
α
−1e−αR , with

	Ehf(6Li) = 228.2 MHz and 	Ehf(87Rb) = 6834.7 MHz
being the hyperfine splittings [39].

B. Computational details

Since for the present case of 6Li-87Rb the channel with the
lowest threshold energy |a1〉 = |1/2,1/2〉|1,1〉 is considered as
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TABLE I. Atomic and molecular basis states of the 6Li-87Rb
system for the manifold of states with MF = 3/2.

Index |χ〉 Atomic basis Index |ξ〉 Molecular basis

|a1〉 |1/2,1/2〉|1,1〉 |S1〉 |0,0〉|1,1/2〉
|a2〉 |3/2,1/2〉|1,1〉 |S2〉 |0,0〉|0,3/2〉
|a3〉 |3/2,3/2〉|1,0〉 |T1〉 |1,−1〉|1,3/2〉
|a4〉 |1/2,1/2〉|2,1〉 |T2〉 |1,0〉|0,3/2〉
|a5〉 |1/2,−1/2〉|2,2〉 |T3〉 |1,0〉|1,1/2〉
|a6〉 |3/2,3/2〉|2,0〉 |T4〉 |1,1〉|−1,3/2〉
|a7〉 |3/2,1/2〉|2,1〉 |T5〉 |1,1〉|0,1/2〉
|a8〉 |3/2,−1/2〉|2,2〉 |T6〉 |1,1〉|1,−1/2〉

the open entrance channel, only channels with the total angular
momentum MF = 3/2 are coupled during the collision. All
eight coupled atomic and molecular basis states are given in
Table I.

The system of eight coupled equations is numerically
solved in the AB employing the R-matrix method [34]. This
method is a general ab initio approach to a wide class of
atomic and molecular collision problems. The essential idea is
to divide the physical space into two or possibly more regions.
In each region, the stationary Schrödinger equation may be
solved using techniques designed to be optimal to describe
the important physical properties of that region. The solutions
and their derivatives are then matched at the boundaries. The
transition from AB to MB is carried out by a unitary basis
transformation.

The wave function � in Eq. (3) must obey appropriate
boundary conditions in order to reduce the number of the
independent solutions of the set of equations in Eq. (4) to one.
The condition ψα(0) = 0 ensures that the full wave function
does not diverge at R = 0. Another demand is that functions
of the closed channels ψχ (R) must vanish at R → ∞. The
implementation of these boundary conditions allows one to
solve Eq. (4) leaving one free parameter in the solution (e. g.,
the normalization of the open channel). We chose to scale the
open channel function to the sin-normalized form,

ψa1 (R)|R→∞ = sin(kR + δ), (9)

with k = √
2µE. The phase shift δ is a result of the interaction

and is connected via

tan(δ) = −kasc, (10)

to the s-wave scattering length asc. In order to normalize the
incoming channel function its asymptotic form is matched
using Eq. (9). The value of asc is automatically determined
by the matching procedure. As will become evident in
Sec.II D a variation of the magnetic field around a resonance
leads to a transition of the phase through π/2 and thereby
drastically changes the value of asc. There are different types
of normalization (e. g., the energy or momentum ones). For
calculating observables like absolute transition rates the norm
plays a role. However, general conclusions of the present work
do not depend on the choice for the normalization.

The kinetic energy E of two atoms when they are far apart
is set to the arbitrarily chosen small value of 50 Hz. Since this
energy is very small, the collisions are limited to the s-wave
type only. The choice of a small but finite energy is justified
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FIG. 1. (Color online) Scattering length asc as a function of
the external magnetic field value B for 6Li-87Rb scattering at
E = 50 Hz. A broad and a narrow MFR are visible at B0 =
1066.917 G and B0 = 1282.576 G. The horizontal line marks the
background scattering length abg = −17.8a0 of the left resonance.

because under ultracold conditions two particles collide with
a low but nonzero energy. Furthermore, the nonzero energy
helps to avoid nonphysical numerical artifacts in the definition
of the phase δ.

C. Multichannel results

The system of 6Li-87Rb features for a collision energy
E = 50 Hz two s-wave resonances in the range of B <

1500 G, a broad one at B = 1066.917 G, and a narrow
one at B = 1282.576 G (see Fig. 1). Although the narrow
resonance is also examined, this article focuses on MC
solutions around the broad resonance. This resonance has been
also observed experimentally [46] and is well reproduced by
the MC calculations. Moreover, processes like, for example,
PA are more efficient for a broad resonance because three-body
losses can be minimized in this case.

Figures 2 and 3 present the channel functions of the MC
calculations in AB and MB, respectively, for a collision
of 6Li-87Rb at two different magnetic field strengths B.
Figures 2(a) and 3(a) show the case of a far-off-resonant field
of B = 1000 G, which results in a small scattering length of
only asc = −14.9a0. Figures 2(b) and 3(b) are taken close to
the resonance at B = 1066.9 G with a scattering length of
asc = −65 450a0. This large value is arbitrarily chosen for the
present study. It is already a good representation of the resonant
case asc = −∞.

The change of the long-range behavior between two
scattering situations with small and large asc can be more
clearly analyzed in the AB where all but one channel are closed
[i.e., decay for large internuclear separations (see Fig. 2)]. As
is evident from Figs. 2(a) and 2(b), the open-channel wave
function ψa1 changes the slope resulting in a plateau when
changing asc from small to large. Furthermore, the resonant
open-channel function has a much larger amplitude within the
considered range of interatomic distances than the off-resonant
one. This large difference in amplitudes (about four orders
of magnitude) sustains in the region of small internuclear
distances [see insets of Figs. 2(a) and 2(b)].
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FIG. 2. (Color online) The channel functions ψχ (R) for the 6Li-
87Rb collision in an off-resonant field B = 1000 G (a) and a field
B = 1066.9 G close to the resonance (b). The atomic labels (see
Table I) are indicated in (a). The insets focus on a region of small
internuclear distance.

At small internuclear distances above R ≈ 7a0 the channel
functions in the AB show quite irregular behaviors (see insets
of Fig. 2), which is a result of the large coupling proportional
to the exchange energy Vex(R). In the MB the coupling
between the channels is induced by the hyperfine interaction
that is much smaller. Hence, the channel functions show
a clear behavior of pure singlet and triplet wave functions
for small internuclear distances (see insets of Fig. 3). For
distances R � 7a0 the triplet components vanish due to their
higher exchange energy. Accordingly, also in the AB the
channel functions are similar to pure singlet wave functions
at R � 7a0 (see insets of Fig. 2). All channel functions in
the MB contribute correspondingly to the decomposition of
the open channel ψa1 into states of the MB. Therefore, at large
internuclear distances they look similar to ψa1 . It is important
to note that at small distances the closed channel functions
have nonzero amplitudes even in the B-field-free case; they
are slightly excited during the collision and add a background
contribution to the scattering process. Therefore, the two-
body collision is a multichannel process even in field-free
space.
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FIG. 3. (Color online) The channel functions ψξ (R). The same
as Fig. 2 but in MB. The molecular labels are indicated in (a).

Due to the resonant coupling at B = 1066.9 G, the
admixture of the closed channels increases about four orders
of magnitude. This is well described by the TC approxima-
tion [20,28] where the admixture of the closed channel and
the long-range behavior of the open channel show a similar
dependence on the scattering length (see Sec. II D). In contrast
to the TC approximation where one assumes that a bound
state composed of a superposition of all closed channels is
simply scaled at the resonance, the relative amplitudes change
in reality between the resonant and off-resonant cases. On
the other hand, the functional form of all closed channels
indeed stays constant [compare, e. g., channel |a4〉 in Figs. 2(a)
and 2(b)]. Altogether, this gives hope to be able to reproduce
the change of the amplitude of both the open channel and the
closed channels at small internuclear distances around an MFR
with just one SC wave function.

D. Two-channel approximation

The TC approximation is very successfully used to describe
resonance phenomena in MC problems [20,25,28]. It is briefly
introduced in order to understand to what extent SC approaches
can mimic MC systems. A more rigorous introduction may be
found in Refs. [33,47,48].
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Within the TC approximation one projects the MC Hilbert
space onto two subspaces, the one of the closed channels (with
projection operator Q̂) and the one of the open channel (with
projection operator P̂ ). The full wave function is thus written
as |�〉 = (P̂ + Q̂)|�〉 = |�P 〉 + |�Q〉. An MFR occurs, if the
energy E of the system is close to the eigenenergy E0(B) of a
bound state |�b〉 of the closed-channel subspace. In the one-
pole approximation one effectively assumes that the closed-
channel wave function is simply a multiple A of the bound
state |�b〉, i.e., |�Q〉 = A|�b〉. This approximation yields the
closed-channel admixture [33],

A = −C̃

√
2

π

sin δres, (11)

where C̃ is a normalization constant. The long-range behavior
of the open channel is given as

�P (R)|R→∞ = C̃

√
2µ

πk
sin(kR + δbg + δres). (12)

If the wave function is sin normalized, then C̃ = √
πk/2µ.

Another popular choice is the energy normalization with C̃ =
1. However, the presence of an external trap can also induce a
dependence of the normalization on the long-range behavior
of the open channel parameterized by asc, such that in general
C̃ = C̃(asc).

The total phase shift δ = δbg + δres results from the back-
ground phase shift δbg of the open channel without coupling
to the closed channels and from a contribution δres due to the
resonant coupling to the bound state. Via Eq. (10) the total
phase shift is connected to the scattering length asc. The TC
approximation yields for k → 0 the well-known relation [49],

asc = abg

(
1 + 	B

B − B0

)
, (13)

between scattering length and magnetic field strength, where
abg = − tan δbg/k is the background scattering length, 	B is
the width of the resonance, and B0 its position.

We note that independently of the normalization function
C̃(asc) both the admixture of the closed channel A and the
long-range open-channel solution (12) show for small energy,
not too large internuclear distances (i.e., kR 	 δ), and small
background phase shifts (i.e., δ ≈ δres) a similar dependence
on the scattering length asc.

Usually, for small energy E the background phase shift
δbg = − arctan(kabg) is necessarily also small. Since a scaling
of the open-channel wave function in the long range is more or
less directly continued to shorter distances, the proportionality
between A and �P (R) holds approximately also for smaller R.
Therefore, looking at molecular processes taking place at small
internuclear distances, the enhancement of the closed-channel
contribution is already reproduced by the open channel. This
paves the way to an SC description that will now be discussed.

III. SINGLE-CHANNEL APPROACHES

A. Variations of the single-channel Hamiltonian

In order to reflect the molecular behavior at small distances,
we will seek to base the SC approximations on pure singlet
or triplet interaction potentials. This ensures that the nodal

structure of the resulting SC wave function is similar to the
relevant singlet or triplet components of the MC system. The
final aim is to mimic in parallel the long-range behavior of the
open channel and the variation of the amplitude of singlet or
triplet components in the vicinity of an MFR.

In an SC approach the interaction strength can be artificially
varied by a controlled manipulation of the Hamiltonian,

H (R) = − 1

2µ

∂2

∂R2
+ V (R). (14)

Subject to modification are the interatomic potential V (R) and
the reduced mass µ of the system. The modifications can lead
to a shift of the energy of the least bound state relative to
the potential threshold. When lifted above the threshold, the
bound state turns into a virtual state [48,50]. A large scattering
length of the solution of the SC Schrödinger equation with
Hamiltonian (14) can be elegantly explained by a resonance
of the scattering state with either a real bound state or a virtual
state close to the threshold [48,50]. Within an SC approach the
energy of a bound or virtual state is changed in order to induce a
variation of the scattering length. In this respect SC approaches
show striking similarities to MFRs where the energy of a bound
state in the closed-channel subspace is moved by changing its
Zeeman energy by an external magnetic field.

As argued before, the SC wave functions should be
either of singlet or triplet character for small internuclear
distances. We reduce our considerations for Li-Rb to the
singlet case and choose as initial potential the one for the
X 1�+ electronic ground state, that is, V (R) = VX 1�+(R).
This potential is varied by a controlled manipulation of the
strong-repulsive inner wall [11], the long-range van der Waals
attraction VvdW(R) [27], and a Gaussian perturbation around
the transition point Rsh between the molecular and the atomic
description of the system (introduced in Sec. II A2). These
procedures will be called s variation, C6 variation, and G

variation, respectively.
The potential variations are induced by replacing V (R) by

V s(R) =
{

V
(
R − s R−Re

Rc−Re

)
, R � Re,

V (R), R > Re,
(15)

V δG(R) = V (R) + δG exp

(
R − RG

σ

)2

, (16)

or

V δC6 (R) = V (R) + δC6

R6
f (R), (17)

where Re = 6.5a0 is the equilibrium distance and Rc = 4.6a0

is the crossing point of the VX 1�+(R) with the threshold. The
width in the G variation is chosen as σ = 2a0 and its position as
VG = Rsh + σ . The smooth variation of the long-range region
of the potential in the C6 variation is achieved by the gradual
stepping function,

f (R) = (
1 + e

γ (R0−R)
	

)−1
, (18)

where γ = ln(999) ≈ 6.9 ensures that f (R) rises from 0.001
to 0.999 in the region R0 − 	 � R � R0 + 	. For the present
study the parameters of the tuning function are chosen as
	 = 6 and R0 = 16a0. The three potential variations are
depicted in Fig. 4.
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FIG. 4. (Color online) Original X 1�+ potential V (R) [blue
(thick) solid] with applied s variation (black solid), C6 variation
(dashes) and G variation (dots). The variation parameters are s =
0.03a0, δC6 = C6/2, and δG = V (Rsh) (see Table II for the adopted
parameters). The insets show some relevant ranges of R on an
enlarged scale.

An alternative way to tune asc is offered by the µ variation
within which one changes the reduced mass of the system by
µ → µ − δµ [10]. This alters the kinetic energy operator and
can modify the energy of the least bound state like potential
variations. In contrast to the presented potential variations that
act on either the short-range, mid-range, or long-range part
of the potential, the mass variation influences the Schrödinger
equation at any distance. It is very similar to a scaling of
the potential by V (R) → γV (R) [15]. The only difference
is an additional change of the energy-momentum relation
E(k) = k2/(2µ), which can, for example, slightly influence
the normalization of the wave function.

One can think of several other approaches to vary the SC
Hamiltonian. For example, one can vary the strength of the
exchange energy J0, its decay parameter α, or the van der
Waals parameters C8, C10 [27,51]. The current approaches are
chosen to comprise variations that act on the short range of
interatomic distance (s variation), on an intermediate range
(G variation), on the long range (C6 variation), and on the full
range (µ variation).

No matter which SC approach is finally chosen, a mapping
between the MC system and an appropriate SC Hamiltonian
is straightforward. Knowing the parameters 	B and B0 in
Eq. (13) for an MFR either from experimental data or a coupled
MC calculation one can connect each value of the magnetic
field B to a scattering length asc and a corresponding value
of the SC variation parameter that induces the same value of
the scattering length. Clearly, this additional information is
required (i.e., the SC model has no predictive power by itself).

Table II presents typical values of the four variation
parameters for three different situations: a small negative
scattering length that corresponds to an off-resonant magnetic
field, a large negative scattering length that corresponds to a
magnetic field close to the resonance position, and finally an
infinitely large scattering length at the resonant magnetic field.
For the last case two values of each variational parameter are
shown that lead to a resonance of the scattering length. These

TABLE II. Values of the parameters for s, C6, G, µ variations at
small and large scattering lengths resulting from a magnetic field
far away, close, and right at an MFR. For the last case two possible
parameter sets are shown, which are used in Sec. IV C to perform
an SC variation that keeps the number of bound states constant. An
infinitesimally small change of the field right at the resonance (B =
1066.92 G) switches the interaction regime from infinitely attractive
(asc = −∞) to infinitely repulsive (asc = +∞).

B (G) asc/a0 s/a0 δC6/C6 δG/|V (Rsh)| δµ/µ

1000.00 −14.93 −0.00947 −0.0281 −0.1310 −0.00235
1066.90 −65450 −0.04142 −0.1282 −0.6296 −0.01046
1066.92 ±∞ −0.04145 −0.1283 −0.6302 −0.01047

0.13065 0.3357 −4.3856 0.02984

two parameter sets will be useful to keep the number of bound
states constant while tuning the scattering length around a
resonance (see Sec. IV C).

While the variational methods generally allow both positive
and negative values of the variational parameter this is not
necessarily the case for the G variation. Here a sufficiently
large positive parameter would lead to a bulge of the interaction
potential above the threshold leading to the possibility of
metastable bound states.

The wave functions resulting from the different variation
methods are denoted φυ(R), where υ ∈ {s,G,C6, µ} stands
for the applied υ variation.

B. Multichannel versus single channel

In the following, the wave functions of the SC and MC
approaches are compared. As discussed in Sec. II A2, the
appropriate choice of the MC basis depends on the interatomic
distance. Although for large interatomic distances (R > Rsh)
the description in the AB is adequate, their basis states are
strongly coupled for shorter distances. Here, the MB describes
the physical properties far better. Due to the weak hyperfine
coupling, the states in the MB keep to a good degree of
accuracy the structure of an uncoupled singlet or triplet state,
respectively. Close to an MFR, solely the amplitudes of some
of the states are heavily increased. Figure 5 shows, for example,
a comparison of the singlet state |S1〉 close to an MFR with
the same state far away from the resonance and with the
other singlet state |S2〉 again close to the resonance. Clearly,
for R < Rsh they differ only by a constant prefactor. This is
important, as it allows one to describe the short-range behavior
of the MC wave function by either a pure singlet or triplet
channel function depending on the physical process that is to be
described. For example, only singlet components contribute to
the DPA process for the transition into the absolute vibrational
ground state (as it will be discussed in Sec. IV), hence, the
triplet components may be omitted.

In the following, the aim of the SC approach is to
mimic the behavior of the MC singlet components for R <

Rsh by a controlled variation of the SC Hamilton operator
(14) with singlet potential VX 1�+ (R). With the help of the
s, C6,G, and µ variations presented in Sec. III A the SC wave
function is adjusted to match the asymptotic behavior (i.e., the
scattering length asc) of the open channel for a given external
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FIG. 5. (Color online) The channel functions of the singlet state
|S1〉 close to the resonance (asc = −65 450a0) and away from the
resonance (asc = −14.9a0) are depicted together with the channel
function of the close to resonant |S2〉 state. All three functions differ
for R < 30a0 only by a constant prefactor.

magnetic field B. The cases of an off-resonant magnetic
field (B = 1000.0 G) and one close to a resonance (B =
1066.9 G) are considered. The corresponding scattering
lengths are asc = −14.9a0 and asc = −65 450a0 (see Sec. II C
and Figs. 2 and 3).

Figure 6 shows a comparison of the SC wave functions
φυ(R) with the channel functions of the dominant singlet
channel |S1〉 and the open channel |a1〉 for the full range
of short and long interatomic distances. Figure 6 allows
one to examine how the different variational methods are
able to reflect both the behavior of the singlet components
for distances R < Rsh and the one of the open channel
for R > Rsh.

Generally, any SC approach has to induce a shift of the
phase δ in order to tune the scattering length asc = − tan(δ)/k.
The difference δ − δini from the phase of the unperturbed
system δini is accumulated where the variation of the SC
Hamiltonian takes place. Since the scattering length of the
original singlet potential VX 1�+(R) is with aini

sc = 2.3a0 rela-
tively close to asc = −14.9a0, hardly any phase shift has to be
acquired (δ − δini = 8.6 × 10−5π ) to match the open channel
for the off-resonant magnetic field B = 1000 G. Accordingly,
the nodal structure of the MC singlet component is very
well matched in Fig. 6(a). The situation changes close to the
resonance where the large scattering length asc = −65 450a0

requires a phase shift of δ − δini = 0.22π [Fig. 6(b)]. This is
about halfway to the resonant phase shift π/2.

For the s variation the total phase shift to match the open
channel is acquired for distances R < 6.5a0. Accordingly, the
nodal structure between the |S1〉 channel function and the SC
φs(R) wave function is shifted for R > 6.5a0 [see upper left
plot in Fig. 6(b)]. Contrarily, both the C6 variation and the
G variation induce a phase shift for distances R larger than
RG − σ = 20a0 and R0 = 16a0. Thus, for smaller internuclear
distances, the SC wave functions φG(R) and φC6 (R) coincide
with the |S1〉 channel function. Finally, since the µ variation
acts on any internuclear distance, the phase difference is
gradually accumulated for φµ(R).
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FIG. 6. (Color online) Comparison of the SC wave functions
φυ (R) with the MC functions of the singlet state |S1〉 (scaled)
and the open channel |a1〉. The SC potentials are varied to match
the asymptotic behavior of the MC channel functions of the open
channel. (a) Off-resonant case with asc = −14.9a0 (B = 1000 G).
(b) Resonant case with asc = −65 450a0 (B = 1066.9 G). The
according values of the s, δC6, δG, and δµ parameter are given in
Table II. The smaller plots focus, respectively, on a region of small
internuclear distance (left) and a region R ≈ Rsh (right).

Depending on the range of variation for the SC approaches,
also the matching to the open channel of AB differs. The s

variation matches the open channel already closely before Rsh.
Surprisingly, also the µ variation shows a reasonable match
already before Rsh, although it acts also for larger distances
by changing at least the dispersion relation E(k). This effect
may, however, not be visible, since kR 	 1 in the plotted
region. The C6 variation changes the long-range behavior of
the interaction potential. Correspondingly, the wave function
shows a clear difference to the open channel even up to R =
100a0. The Gaussian perturbation of the G variation acts only
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around Rsh. This results in the favorable situation that both the
|S1〉 channel for R < 20a0 and the open channel for R > 24a0

are matched by the SC wave function.
Since the nodal structure among different singlet and

different triplet channels coincides for R < Rsh the presented
results are generalizable to any singlet or triplet state. Thus,
SC approaches are generally able to reproduce the asymptotic
behavior of the open channel of the MC wave function
in the presence of an MFR while also reflecting certain
aspects of singlet or triplet components for small internuclear
distances. Depending on the region of the variation of the SC
Hamiltonian, the nodal structure of any channel function in
the MB can be reproduced for R < Rsh. The most flexible SC
approach is the G variation, which is able to smoothly switch
between the accurate description of an MB channel and the
open channel. Furthermore, it offers the advantage that one
can define the transition point (here R = Rsh) at will, such that
also for slightly larger distances MB channel functions can be
emulated.

An aspect of the MB channels that cannot be reflected
by the present approaches is their absolute amplitude. Since
the amplitudes at small internuclear distances of the different
channels change drastically in the presence of an MFR, they
have a large impact on molecular processes such as the
association of molecules utilizing MFRs. In the next section
the exemplary case of a direct dumping of the scattering state
to the vibrational ground state of the X 1�+ is considered.
The transition rate depends strongly on the behavior of the
amplitude of the dominant singlet state |S1〉, which was
considered in this section. It will be shown that although the
absolute amplitude of this state is not reproduced by any SC
approach, the relative enhancement of the transition rate at
magnetic fields close to a resonance can be well reflected.

IV. PHOTOASSOCIATION OF 6Li-87Rb TO THE
ABSOLUTE VIBRATIONAL GROUND STATE

Ultracold polar molecules are of great interest for many
applications in quantum information processing [35,36], the
exploration of lattices of dipolar molecules [37], precision
measurement of fundamental constants [52], and ultracold
chemical reactions [53,54]. Since standard cooling technics
developed for atoms are not suitable for molecules due
to their complex level structure, ultracold molecules may
alternatively be associated directly from ultracold atoms. As
was already mentioned in the introduction, the starting point
to create ultracold molecules in their vibrational ground state
is often Feshbach molecule formation by a sweep of the
magnetic field around an MFR in a high-lying vibrational level
[20]. These loosely bound molecules are usually transferred
by complex PA schemes via intermediate excited states
to the desired vibrational ground state [55,56]. Especially
STIRAP [57–60] was shown to be successful in efficiently
creating ultracold ground-state molecules. However, Feshbach
molecules possess a relatively short lifetime such that a
Feshbach optimized transition directly at the resonance can be
favorable [61].

For all schemes that take advantage of the resonant
coupling to a molecular bound state at an MFR [3,10,22–26],
the increase of the amplitude for the relevant channels as

the scattering length grows is of great importance to enhance
the molecule creation. Although in the last section it was
shown that the absolute amplitude of the MB channels is not
reproduced by the SC approaches, the TC approximation gives
hope that the relative enhancement can still be recovered. In
Sec. II D it was discussed that both the admixture of the closed-
channel bound state and the open-channel function scale
similarly with the scattering length. One can therefore expect
to be able to combine this collective relative enhancement into
one channel.

In the following, the Feshbach optimized DPA (FOPA)
[61] to the absolute vibrational ground state of 6Li-87Rb
in the electronic X 1�+ state is considered to examine the
applicability of SC approaches to study processes of molecule
creation. We consider this case since it has an interest
on its own for the creation of bound ultracold molecules.
Furthermore, the transition rate to the absolute vibrational
ground state depends on the scattering wave function at very
small internuclear distances (see Fig. 7). We also examined the
transition to the vibrational ground state of the electronic triplet
state a3�+, which is situated at slightly larger interatomic
distances. Since we found no essential differences to the
singlet case, we focus on presenting only its results in this
work.

A. Calculation of transition rates

Given the solution of the MC problem �(R) = ∑
ξ

ψξ (R)
R

|ξ 〉
in the MB for a given magnetic field B the free-bound FOPA
transition rate 
↓(B) to the final molecular state �f(R) =
�ν (R)

R
YM

J (�,�)|ξf〉 with vibrational quantum number ν and
rotational quantum number J within the dipole approximation
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FIG. 7. (Color online) Sketch of the resonant SC wave functions
obtained via G variation and respective BO potentials relevant for
the DPA transition to either the singlet ground state (thin, solid) or
the triplet ground state (thin, dashed) of the respective X 1�+ (thick,
leftmost at start) and a3�+ (thick, rightmost at start) potentials. For
better visibility, the potentials and wave functions are shifted along
the y axis. In reality, singlet and triplet potentials have the same
threshold energy.

022719-9



GRISHKEVICH, SCHNEIDER, VANNE, AND SAENZ PHYSICAL REVIEW A 81, 022719 (2010)

is proportional to the squared dipole transition moment [62],

IMC(B) =
∣∣∣∣∣∣

∞∫
0

�ν(R)D(R)ψξf (R)dR

∣∣∣∣∣∣
2

. (19)

Here, D(R) is the electronic dipole moment. Within the dipole
approximation only transitions from the s-wave scattering
function to a final state with J = 1 are allowed. Due to the
orthogonality of the MB, only one molecular channel has to
be taken into account in Eq. (19).

The TC approximation predicts a rate [33],

ITC(B) = |C̃C|2| sin[δres(B) − δ0]|2, (20)

where the constants C and δ0, explicitly given in Ref. [33], do
not depend on the magnetic field within the TC approximation.
The phase shift δ0 is usually small [33] and thus the minimum
lies close to a vanishing resonant phase shift δres = 0 (i.e., close
to the background scattering length abg). We determine abg by
a fit of asc(B) to Eq. (13), which yields abg = −17.8a0. From
δ = δres + δbg and Eq. (13) one can then directly determine
δres(B). The behavior of Eq. (20) accurately reflects the one of
an MC system for well-separated resonances [33]. We use it
here to determine the maximal MC transition rate.

The transition rate 
υ
↓ to the final state within an SC

approach is simply proportional to

Iυ
SC(asc) =

∣∣∣∣
∫ ∞

0
�ν(R)D(R)φυ(R)

∣∣∣∣
2

, (21)

where υ, as before, denotes the variational method, which for
the present analysis induces the scattering length asc equal to
the one of the MC system for a given B-field value.

D(R) is again the electronic dipole transition moment. For
the purpose of the present study we reduce our considerations
to the linear approximation D(R) = D0 + D1R. The SC scat-
tering wave function is orthogonal to the different vibrational
bound states. In the MC case, only the weak hyperfine coupling
in the MB causes a very slight nonorthogonality. The influence
of D0 can be therefore safely ignored. Calculations with
higher-order expansions showed that the exact functional
behavior of D(R) (obtainable from Ref. [63]) does hardly
influence the relative enhancement of the transition rate. Thus,
the use of D(R) = D1R does not restrict generality. It is
important to note that Eqs. (19)–(21) are only valid within
the dipole approximation. It is supposed to be applicable, if
the wavelength of the associating photon is much larger than
the spatial extension of the atomic or molecular system. The
shortest PA laser wavelength corresponds to the transition to
the lowest vibrational state. Although the spatial extension of
the initial state is infinite, the integrals for dipole transition
moments is finite, as it contains a finite wave function of
the bound vibrational state as a factor. Therefore, the dipole
approximation is valid.

B. Comparison of transition rates

A change of asc leads to an increase or decrease of 
v
↓. In

order to quantify the magnitude of this change, an enhancement
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FIG. 8. (Color online) Comparison of MC and SC results for
the transition rate to the absolute vibrational ground state relative to
the respective maximal transition rate as a function of the scattering
length (a) and the inverse scattering length (b). The MC results are
fitted according to the TC approximation [Eq. (20)].

or suppression factor may be introduced [10]:

gv(asc) = 
v
↓(asc)


v
↓
(
aref

sc

) = I v(asc)

I v
(
aref

sc

) . (22)

It describes the relative enhancement [gv > 1] or suppression
[gv < 1] of the DPA rate at a given asc versus a reference
scattering length aref

sc , for a specific variational method v.
Although it may appear to be most natural to choose aref

sc = 0,
a large nonzero value offers some advantages. In this case,
I v(aref

sc ) is not too small and large numerical errors are avoided.
Figure 8 shows a comparison of the SC transition rate for

the different variational approaches with the correct MC result.
In the calculation of the MC transition rates, we assume a
measurement in which the nuclear spins are not resolved. This
corresponds in practice to the case in which the transition
rates from the |S1〉 and |S2〉 channel are summed. All rates are
normalized to their respective maximum value (aref

sc = ∞).
Note, however, that the different absolute dipole transition
moments disagree by some orders of magnitude.

A fit of the MC result by the TC estimate with only two
free parameters C and δ0 reveals that the simple dependence
of the transition rate given by Eq. (20) describes the transition
process of the MC system correctly.

All SC approaches agree with the MC result for large
scattering lengths in the proximity of the resonance [see
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Fig. 8(b)]. For small scattering lengths where the transition rate
is already suppressed by more than four orders of magnitude,
deviations from the MC result appear. The differences mainly
originate from a shift of the minimal transition rates of the
SC approaches compared to the MC result. In the MC case,
the minimum lies at asc = −21.1a0 close to the background
scattering length abg = −17.8a0 in accordance with the TC
approximation. The minima of the SC approaches tend to
be situated on the positive side around asc ≈ 50a0. This
is, however, not a general trend, since we observed for
other transitions also minimal SC transition rates at negative
scattering lengths. The location of the minimum depends on
the system under investigation and on the applied SC variation.

Figure 8(a) features two kinks of the transition rate at
asc = 40a0 for the s and µ variations. This can be explained by
the shift of the nodes of the SC wave functions, which takes
place at the equilibrium distance of the bound molecule and
therefore influences the PA rate. Since the variation parameters
are tuned around their resonance value, with increasing
distance from the resonance both left and right of it, eventually
the same scattering length is induced (see Fig. 9). However,
the nodal structure of φs(R) and φµ(R) for short ranges can
differ, leading to different transition rates. This does not occur
for the C6 and G variations that act far beyond the equilibrium
distance. Note, however, the scale at which the kink is visible.
Its effect on the rate is minute.

Analogous examinations were also done for the other MFR
of 6Li-87Rb at B = 1282.58 G. Although this resonance is two
orders of magnitude narrower than the one considered before
and the amplitudes of the channels are different, no significant
differences for the relative rates were observed. The generality
of our considerations is also supported by calculations of the
dumping rate to the vibrational ground state of the triplet
configuration a3�+. In all cases the SC approaches showed a
comparable ability to reflect results of the MC system.

It is also interesting to note that results of the g0 analysis
show that neither the details of the interatomic nor magnetic-
field interactions are relevant for the calculation of the relative
rate. A simple SC model turns out to be adequate to calculate
the relative enhancement of the PA process. This is also
true for SC models using the pseudopotential interaction.
Since these models do, however, not reproduce the nodal
structure in the short range of the scattering wave function they
are inappropriate to, for example, study the relative intensities
of the PA spectrum. For a thorough comparison of the PA
transition rate using realistic SC interaction potentials and
pseudopotentials we refer the reader to Ref. [10] and references
therein.

In view of the important question of how to optimize the
efficiency of DPA, Fig. 8 reveals once more that the use of a
large absolute value of the scattering length is favorable.

C. Number of bound states

As already mentioned, SC resonances are evoked by
artificially shifting the least bound state or a virtual state
across the threshold. By turning a bound state into a virtual
state or vice versa, the total number of bound states Nb

changes necessarily. This can be avoided by stopping the
variation just before the bound or virtual states reach the
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FIG. 9. (Color online) (a) Scattering length asc as a function of the
δµ parameter of the mass variation. By constraining the variation to
one branch (thick line), any scattering length is reached while keeping
the number of bound states Nb constant. By a variation between two
branches (dashed lines), any scattering length is reached while Nb

changes. (b) Resonant SC functions (asc = ∞) at two different δµ

parameters: δµ ≈ −0.01µ (dashed), δµ ≈ 0.03µ (thick). In order to
make the relevant phase and amplitude difference at small internuclear
distances visible, one of the wave functions is multiplied by −1 in
the inset.

threshold. Nevertheless, it is possible to achieve any scattering
length by changing the variational parameter between two
different resonant values as they are given in Table II. This is
illustrated by the example of the µ variation in Fig. 9(a) where
three branches of the asc(δµ) curve are depicted. As discussed
in Ref. [10], the question arises whether it is preferable to
keep Nb constant or to change the variation parameter across
an SC resonance as was done so far in this work.

In Figs. 10(a) and 10(b) the relative transition rate is
depicted as a function of the phase shift δ. In comparison
to a 1/asc plot [Fig. 8(b)], this allows an enlarged view on
the region of resonance where the phase δ suddenly crosses
π/2. In Fig. 10(a) the SC variations are performed in the same
way as in Fig. 8 around one SC resonance while changing
Nb. This results in a perfect agreement with the MC result
[the deviations at small relative rates as shown in Fig. 8(a) are
not visible on a linear scale of the relative rate]. Furthermore,
large values of the scattering length can be obtained by slight
modifications of the SC Hamiltonian. By fixing Nb, one has
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FIG. 10. (Color online) Comparison of MC and SC results for
the transition rate I 0 to the absolute vibrational ground state relative
to the respective maximal transition rate as a function of the phase
shift δ. The different SC variation parameters are either varied around
one SC resonance (a) or between two resonances staying on the same
asc(δµ) branch (b). The MC results are fitted, according to the TC
approximation [Eq. (20)]. Note the sin2-like form of the functions.

to stay on the same branch of the resonant curve asc(υ).
This modifies the SC Hamiltonian strongly and can lead to a
sudden change of the relative rate by some 30% as is shown in
Fig. 10(b).

The reason for the sudden change of the wave function
is twofold. In all cases the asymptotic behavior of the
wave functions are the same at different resonant points
corresponding to the same asc, but different Hamiltonians lead
to a slightly different continuation of the wave function toward
smaller distances. If the variation takes place at ranges larger
than the equilibrium distance Re (C6,G, and µ variation),
the wave function around Re where it influences directly the
transition rate can differ slightly in amplitude. Secondly, if the
variation takes place around Re (s and µ variation) the nodal
structure of the SC wave functions differs for both resonant
SC parameters, since the necessary phase shift is acquired in
different ways. Both effects induce a “step” in the transition
rate at δ = π/2 as is visible in Fig. 10(b). The nodal shift
can in principle change the transition rate more strongly than in

the present case. Figure 9(b) compares the two wave functions
of the µ variation at different resonant δµ parameters. One
can observe around R ≈ Re both effects just described: the
change of amplitude and the change of the nodal structure for
different resonant variation parameters.

To conclude, in order to calculate relative PA rates it should
be in most cases preferable not to keep the number of bound
states fixed and to avoid a sudden change of the SC scattering
wave function while going over the resonance. The drawback
is of course a sudden change of the wave function for small
scattering lengths. But here the SC approaches show in any
way differences to the MC result, such as a shift of the minimal
transition rate along the asc axis [Fig. 8(a)]. Noteworthy, for the
energy spectrum analysis (as it was done, e. g., in Ref. [11] for
two atoms in an OL), it is more convenient to stay on the same
SC resonant branch. The alternative variation with nonconstant
Nb does not influence the resulting energy spectrum. However,
the disadvantage is that the numbering of the discrete levels
should be changed across an SC resonance.

V. CONCLUSION

We presented single-channel approaches that were able to
reproduce both the long-range behavior of the open channel
as well as the nodal structure and relative enhancement of any
singlet or triplet state of a multichannel system in the presence
of a magnetic Feshbach resonance. However, single-channel
variations induce a shift of the nodal structure not present in the
multichannel solution. Furthermore, the overall amplitude of
the wave function stemming from the asymptotical behavior
can be slightly modulated by long- and intermediate-range
variations. The intermediate variation, introduced in this work,
was shown to reproduce the corresponding multichannel
components at short and long interatomic distances most
accurately.

As was demonstrated for the exemplary case of 6Li-87Rb
scattering, single-channel wave functions can be used to
study processes of molecule formation. We examined the
specific process of a direct one-photon photoassociation to
the absolute vibrational ground state of 6Li-87Rb and proved
the applicability of the single-channel approaches to model
this process. The effects of the nodal shift and the modulation
of the amplitude lead to a discontinuity in the transition rate for
either small scattering lengths, if varying the single-channel
Hamiltonian over a resonance, or at large scattering lengths,
if keeping the number of bound states constant. As was
discussed, a variation around a resonance of the single-channel
Hamiltonian is preferable, since the point of minimal transition
at small scattering lengths deviates in any way between
multichannel and single-channel results. These deviations
appear, however, at scattering lengths where the transition rate
is negligible compared to the one at resonance.

The general applicability of single-channel approaches was
based on the two-channel approximation which reveals that the
scaling of the open-channel wave function and the admixture
of closed channels depends on the scattering length in a similar
way. Additionally, with the help of this approximation, one is
able to reproduce exactly the multichannel transition rate by
adjusting two free parameters that combine all details of the
transition process.
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We can conclude that single-channel approaches are a suit-
able starting ground to study molecular processes in regimes
where full multichannel calculations are too laborious. This is,
for example, the case if the scattering takes place in an external
trapping potential like an optical lattice, which, in general,
couples relative and center-of-mass motions and spoils the
spherical symmetry. In most cases, the trapping potential does
not directly influence the scattering wave function at short
interatomic distances, but it induces an additional modulation
of the amplitude as a function of the scattering length. The
examination of effects due to these modulations are perfect
candidates for the use of single-channel approaches.

Since the nodal structure of either the singlet or the triplet
components of the multichannel wave function is reproduced
by single-channel approximations, more complicated photoas-
sociation schemes, exciting a range of higher vibrational states,
can also be examined in the presence of a trapping potential.
Furthermore, single-channel approaches allow one to treat
three- and many-body collisions with reasonable numerical
efforts in the presence of a magnetic Feshbach resonance.

Of course, the presented single-channel approaches also
have clear restrictions. For example, one has to assume that
the scattering energy and the background scattering length are
sufficiently small. This condition can be spoiled for certain
atomic systems and in deep external trapping potentials with
significantly large ground-state energy. Another problem can
be caused by the energy dependence of the scattering length,
especially for narrow Feshbach resonances. This energy
dependence is not reflected by the current approaches. Further-
more, the multichannel wave function might behave differently

compared to the single-channel one, if an energy variation
is induced by, for example, ramping up an external trap.
There exist single-channel approaches, which account for the
energy dependence of the scattering length by a well-barrier
pseudopotential [64]. However, like any pseudopotential, it is
unable to reflect the nodal structure of the scattering wave
function at small internuclear distances.

Recently, Deiglmayr et al. [26] observed for 7Li-133Cs
(at B = 0) the exceptional case of a strong deviation of
molecular channel functions from pure singlet or triplet
behavior at small internuclear distances. Since spin-orbit
coupling was neglected, they attributed this unusual effect
to strong hyperfine coupling but gave no reason why this
happens specifically for the considered system. It is certainly
interesting to further investigate this effect which would limit
the applicability of single-channel wave functions to predict,
for example, the relative transition rates to different vibrational
levels.

Apart from this unusual behavior it should be possible
from the theoretical considerations presented in this work
to determine whether and which single-channel approach is
applicable for a specific system and molecular process.
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[20] T. Köhler, K. Góral, and P. S. Julienne, Rev. Mod. Phys. 78,
1311 (2006).

[21] P. D. Drummond, K. V. Kheruntsyan, D. J. Heinzen, and R. H.
Wynar, Phys. Rev. A 65, 063619 (2002).

[22] F. A. van Abeelen, D. J. Heinzen, and B. J. Verhaar, Phys. Rev.
A 57, R4102 (1998).

[23] P. Courteille, R. S. Freeland, D. J. Heinzen, F. A. van Abeelen,
and B. J. Verhaar, Phys. Rev. Lett. 81, 69 (1998).

[24] M. Junker, D. Dries, C. Welford, J. Hitchcock, Y. P. Chen, and
R. G. Hulet, Phys. Rev. Lett. 101, 060406 (2008).

[25] P. Pellegrini, M. Gacesa, and R. Côté, Phys. Rev. Lett. 101,
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[31] K. Góral, T. Köhler, S. A. Gardiner, E. Tiesinga, and P. S.

Julienne, J. Phys. B: At. Mol. Phys. 37, 3457 (2004).
[32] N. Nygaard, R. Piil, and K. Mølmer, Phys. Rev. A 78, 023617

(2008).
[33] P. I. Schneider and A. Saenz, Phys. Rev. A 80, 061401(R)

(2009).
[34] P. G. Burke, C. J. Noble, and V. M. Burke, Adv. At. Mol. Opt.

Phys. 54, 237 (2007).
[35] A. Micheli, G. K. Brennen, and P. Zoller, Nature Physics 2, 341

(2006).
[36] P. Rabl, D. DeMille, J. M. Doyle, M. D. Lukin, R. J. Schoelkopf,

and P. Zoller, Phys. Rev. Lett. 97, 033003 (2006).
[37] G. Pupillo, A. Griessner, A. Micheli, M. Ortner, D.-W. Wang,

and P. Zoller, Phys. Rev. Lett. 100, 050402 (2008).
[38] A. J. Moerdijk and B. J. Verhaar, Phys. Rev. A 51, R4333

(1995).
[39] E. Arimondo, M. Inguscio, and P. Violino, Rev. Mod. Phys. 49,

31 (1977).
[40] C. Marzok, B. Deh, C. Zimmermann, P. W. Courteille,

E. Tiemann, Y. V. Vanne, and A. Saenz, Phys. Rev. A 79, 012717
(2009).

[41] Z. Li, S. Singh, T. V. Tscherbul, and K. W. Madison, Phys. Rev.
A 78, 022710 (2008).

[42] B. H. Bransden and C. J. Joachain, editors, Physics of Atoms
and Molecules (Prentice Hall, Essex, 2003).

[43] B. M. Smirnov and M. I. Chibisov, Sov. Phys. JETP 21, 624
(1965).

[44] M. Bhattacharya, L. O. Baksmaty, S. B. Weiss, and N. P.
Bigelow, Eur. Phys. J. D 31, 301 (2004).

[45] A. Bambini and S. Geltman, Phys. Rev. A 65, 062704 (2002).

[46] B. Deh, C. Marzok, C. Zimmermann, and P. W. Courteille, Phys.
Rev. A 77, 010701(R) (2008).

[47] H. Friedrich, Theoretical Atomic Physics (Springer-Verlag,
Berlin, 1991).

[48] B. Marcelis, E. G. M. van Kempen, B. J. Verhaar, and S. J.
J. M. F. Kokkelmans, Phys. Rev. A 70, 012701 (2004).

[49] A. J. Moerdijk, B. J. Verhaar, and A. Axelsson, Phys. Rev. A 51,
4852 (1995).

[50] R. Newton, Scattering Theory of Waves and Particles (Dover
Publications, Mineola, 2002).

[51] E. Ribeiro, A. Zanelatto, and R. Napolitano, Chem. Phys. Lett.
399, 135 (2004).

[52] T. Zelevinsky, S. Kotochigova, and J. Ye, Phys. Rev. Lett. 100,
043201 (2008).

[53] C. Chin, T. Kraemer, M. Mark, J. Herbig, P. Waldburger, H.-C.
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