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This paper reports a systematic study of the dependence on atomic number of the dielectronic recombination
resonance strengths for He-like, Li-like and Be-like ions. Recent measurements of dielectronic recombination
resonance strengths for the KLL and KLM manifolds for iron, yttrium, iodine, holmium, and bismuth are also
described. The resonance strengths were normalized to calculated electron impact ionization cross sections.
The measured resonance strengths generally agree well with theoretical calculations using the distorted wave
approximation. However, KLM resonance strength measurements on high atomic number open-shell ions gave
higher values than those suggested by calculations. Using recently measured data, along with existing results,
scaling laws have been generated as a function of atomic number for He-like, Li-like, and Be-like ions in the
KLL and KLM manifolds.
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I. INTRODUCTION

Obtaining accurate measured cross sections for charge-
changing processes is challenging for highly charged ions
(HCIs). Often in order to provide cross sections for atomic
processes involving HCIs, scaling laws as a function of atomic
number (Z) are generated. An example of such a scaling
law is the He-like dielectronic recombination (DR) resonance
strength scaling law developed by Watanabe et al. [1]. This
paper reports a study of resonance strengths, involving a
change in the principal quantum number of the target ion
(�n �= 0), for open L-shell ions (Li- and Be-like) as a function
of atomic number. Additionally new DR resonance strength
measurements are presented for He-like ions. The scaling law
of Watanabe et al. [2] has been updated using the new He-like
measurements. Similar scaling laws for Li- and Be-like ions
have also been generated for the first time, showing such
scaling laws to be applicable to both open- and closed-shell
systems.

The DR process is a two-stage resonant recombination
process. It can have a very large rate coefficient and often
is the dominant recombination mechanism in plasmas [3]. The
first stage of DR, called dielectronic capture, is the capture
of a continuum electron into an excited state of the target
ion. The energy balance of the reaction is maintained by the
excitation of an initially bound electron, of the target ion. If the
doubly excited state radiatively stabilizes then the DR process
is complete. As DR is a resonant process it can only occur
when the target ions interact with electrons that have specific
kinetic energies. DR is particularly interesting for HCIs due
to the high electric fields the captured electron experiences.
The high fields result in configuration mixing and correlation
effects which must be accounted for by any theoretical
modeling of the system. In HCIs of high-Z elements, quantum
electrodynamic (QED) effects, which are normally considered
minor corrections, grow to become major effects that can result

in a measured resonance strength equal to twice the value
predicted by models in which QED effects are ignored [4,5].
The required inclusion of correlation, configuration mixing,
and QED makes atomic processes involving HCIs challenging
to theoretically model.

The various types of DR processes are often split into two
groups. The first involves the capture of high-energy electrons,
with an associated change in the principal quantum number (n)
of one of the core electrons in the ion (�n �= 0 transitions).
The second involves the capture of low-energy electrons with
no change in principal quantum number (�n = 0 transitions).
The �n �= 0 group is difficult to study experimentally due
to the difficulty in measurement associated with high-energy
electrons.

For �n �= 0 DR, in a given ion, the energies at which DR
occurs are grouped into distinct manifolds. The manifolds are
represented by a three-letter combination corresponding to
an inverse Auger notation. Two letters of this combination
correspond to the orbital shells in which the bound electron,
that is, excited during DR, starts and finishes. The final letter
corresponds to the shell into which the incident electron is
captured. For example, KLM is either electron capture into the
M shell with the bound electron being excited from the K to L
shell or capture into the L shell with the bound electron being
excited from the K to M shell.

There are various ways to measure the resonance strength of
a resonance manifold, for example by measuring the resultant
charge states after either colliding ions with electron targets
in storage rings (see, for example, [6–8]), or by using crossed
beams of ions and electrons [9]. In this paper an electron
beam ion trap (EBIT) [10] was used to obtain the strength
of the resonance manifold. An EBIT is an ion trap that uses
an electron beam to create and trap highly charged ions. It is
possible to measure photons emitted from the trapped ions as
the electron beam is varied to deduce DR resonance strengths.
The energy region of interest can be scanned by using either a
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slow [11] or a rapid scan [12,13] of the energy of the electron
beam. As an alternative to using photons, DR resonance
strengths can also be measured by using ions extracted from
an EBIT. One method is to measure the number of ions in
a specific charge state while varying the length of time at a
particular energy [14]. The DR resonance strengths can then
be calculated from the rate of change of the number of ions
in the charge state studied. Alternatively, the number of ions
in each charge state can be monitored as the EBIT’s electron
beam energy is slowly changed [15]. It is a variation on the
latter extracted ion method that will now be described.

II. METHOD

The measurements of DR resonance strengths were under-
taken at the Tokyo electron beam ion trap (EBIT) [16,17].
The EBIT electron beam was set to a particular energy and
sufficient time was given to reach charge state equilibrium
in the ion trap. Ions will evaporate continuously from the
trap. Those ions that escape out of the trap and pass through
the electron beam collector electrode were passed along
a beam line. The ion beam was passed through a charge
separating magnet and ions with charge-to-mass ratios within
a certain range impacted onto a microchannel plate (MCP).
The resultant charge pulses at the back of the MCP were then
detected on a resistive anode. The ions of interest can have a
similar charge-to-mass ratio as ions created from background
impurities. For example, He-like iron has almost the same
charge-to-mass ratio as H-like nitrogen. In all cases in which
the MCP produced overlapping charge pulses the pulse height
of the individual MCP pulses was used to distinguish the
ions under study. The energy of the electron beam in the
EBIT was varied, in steps of several electron volts. For all
measurements these steps were much smaller than the energy
spread of the electron beam. The subsequent data analysis
requires charge state equilibrium to be maintained and hence
data acquired within 100 ms of a change in beam energy
were not included. The experimental method is similar to that
described by Watanabe et al. [2].

When the EBIT is in charge state equilibrium at any
particular energy the following relationship can be written:

nq−1

nq

= 1

σEII
q−1

⎡
⎣(

σDR
q + σRR

q

)

+ e

j

qmax∑
i=q

ni

nq

(
n0σ

CX(i−q+1)
i ν̄i + εi

)⎤⎦ , (1)

where ni is the number of ions in charge state i, n0 is
the number density of neutrals, ν̄i is the mean velocity of
the ions, and j is the electron beam current density. The
cross sections of radiative recombination, electron impact
ionization, and dielectronic recombination are σRR , σEII , and
σDR , respectively. It is important to note that σCX(i) is the
total cross section for more than i − 1 electron capture from
neutrals. εi is the ion escape rate, and qmax is the maximum
charge state in the trap. The derivation of this equation is
given in the supporting information. The ratio is composed of

FIG. 1. Plot of the ratio of He-like iodine to Li-like iodine as
a function of energy. The KLL resonant regions are clearly visible
above the nonresonant background.

a slowly varying background due to slowly varying processes
such as electron impact ionization and rapidly varying features
due to resonant processes, such as dielectronic recombination.
This is demonstrated by Fig. 1, which shows clear resonant
peaks on a nonresonant background. To reflect the resonant
and nonresonant parts Eq. (1) can be rewritten as
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q
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= nq−1

nq

−
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where α0 = σRR
q /σEII
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q ν̄q + εq)/σEII

q−1 and,

for i � 1, αi = (e/j )(n0σ
CX(i+1)
q+i ¯νq+i + εq+i)/σEII

q−1 [2]. The
terms αi vary slowly with energy, but they are multiplied by
a ratio of the number of ions in different charge states. The
resultant terms (αi

nq+i

nq
) may then have a rapid variation with

energy due to DR affecting the number of ions in either the
q or the q + 1 charge state. The dielectronic recombination
manifolds for different ion charge states are at different
energies. Hence the resonant features of αi

nq+i

nq
may lie fully, or

partly, within the nonresonant energy ranges of the measured
ion ratio. The values of αi depend on various charge exchange
cross sections and escape rates, but these are not measured
or evaluated in this method. Hence the shape of the resonant
feature αi

nq+i

nq
is not known.

The ion charge state ratio that the first alpha (α0) is
multiplied by ( nq−1

nq
) is the ratio of interest. As such its resonant

features should not be removed. However, its nonresonant,
slowly varying contribution can be removed by simply fitting
to the nonresonant background of the measured ion ration and
subtracting. The other alpha values can be estimated by using
the maximum likelihood estimator (MLE) as described in [2].
The summation terms in Eq. (2) can then be evaluated and
subtracted from the measured ratio, reducing Eq. (2) to

σDR
q

σEII
q−1

=
(

nq−1

nq

)∗
, (3)

where the starred ratio is the ratio after subtraction of the
summation terms in Eq. (2). The effect of the summation
terms is to increase the final value of the resonance strength
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FIG. 2. Diagram showing the change in resonant features before
and after the alpha terms have been corrected. Also shown is a linear
fit with its R2 value. The improved fitting in the nonresonant regions
shows that some resonant features have been corrected.

calculated, giving at maximum a 5% systematic contribution
in resonance strengths.

Rather than use the MLE method it is possible to to
explore the parameter space, covered by {αi} for i > 0, to
find values which lead to the most successful removal of
the effects of the terms αi

nq+i

nq
, for i > 0. The success can

be quantified by evaluating the terms αi
nq+i

nq
, subtracting

these from the measured ion charge state ratio ( nq+1

nq
), and

measuring the goodness of fit of a slowly varying function
(representing α0

nq−1

nq
) to the nonresonant areas of the altered

ratio. This method works since subtraction of the evaluated
terms causes the resonant contribution of each term to be
removed. Certain alpha values will provide the most complete
removal of resonant features. The point in parameter space
providing the most complete removal of resonant features will
correspond to the fit with maximum value for the coefficient
of determination [18] (see Fig. 2). The values at which this
maximum occurs are taken to provide the αi values for the
correction given in Eq. (2). The variation of the value of the
coefficient of determination when αi is varied in the region of
this maximum provides the uncertainty in αi , a quantity which
is used in evaluating the final resonance strength uncertainties.
The goodness of fit can be measured by both the coefficient of
determination and chi-squared and both methods give similar
answers.

The number of alpha terms required is equal to n − 1, where
n is the number of electrons in the target ion. For simple
searching methods, the length of time required to complete
this method scales with the power of the number of alphas
required. It is this scaling that limits the use of this method to
Li-like or Be-like ions. He-like systems only require one term
to be corrected, namely α0

nq−1

nq
. As this is removed by simple

nonresonant background subtraction, for He-like systems, both
the MLE and new methods are equivalent. An example of a
resonant feature before and after alpha correction is shown in
Fig. 2.

Interference between radiative and dielectric recombination
occurs since the initial and final states in both recombination
schemes are identical [19]. In the case of very highly charged
ions, the profile of the interference might extend into the

FIG. 3. A plot showing the B-like to Be-like holmium ratio in
the energy range corresponding to the first two peaks in the KLL
resonance manifold. Also shown is the area assigned as resonant
(and therefore excluded from fitting) when the alpha values were
calculated (1) and the new range (2) chosen to check if the alpha
values varied. In this case the alpha terms did not vary.

nonresonant region used in evaluating the αi
nq+i

nq
terms,

causing miscalculation. Even without interference, incorrect
assessment of the start and end points of nonresonant regions
can also cause miscalculation. In this case the miscalculation
arises due to attempting to correct part of the studied resonant
peak, as if it was a feature due to the αi

nq+i

nq
terms. To guard

against this, the αi
nq+i

nq
terms were calculated several times,

with differing end points chosen for the nonresonant regions.
As the end points approach the resonant features at some point
the alpha values start to systematically change. The end points
that gave the largest nonresonant energy range before the
resultant alpha values started to systematically change were
used in the final calculation. It is not sufficient to start by
selecting an energy range far from the resonant peaks because
the resonant features of the terms being evaluated must be
detectable. A demonstration of a test of alpha values with two
different energy ranges is shown in Fig. 3.

Once the αi
nq+i

nq
terms have been subtracted from the

measured ion ratio, the starred ratio of Eq. (3) has been
obtained. Equation (3) shows that, by rescaling the starred
ratio, using electron impact ionization cross sections, the DR
cross sections can be obtained. Hence calculated electron
impact ionization cross sections were used to rescale the DR
cross sections. The electron impact ionization cross sections
were calculated using distorted wave calculations [20], with
the ionic structure and energy levels obtained using the GRASP2
code [21,22]. Electron impact ionization cross sections were
calculated at several points in the range of energies required.
There is little variation in the electron impact ionization
cross section across the measured energy range. Therefore,
interpolation can be used to calculate intermediate energies.
By rescaling and plotting one obtains the DR cross section
plot convolved with the energy potential profile of the EBIT’s
electron beam.

The energy profile of the electron beam is of the order
of tens of volts and varies depending on the electron beam
current [23]. As the energy profile of the electron beam is much
larger than the spacing between the individual DR transition
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energies it is the resonance strength of the DR manifolds that is
measured rather than individual cross sections. The resonance
strength of a manifold is given by the equation

S =
∫

σDR
q dE, (4)

where the integration limits are chosen to fully encompass
all the peaks belonging to the manifold under consideration.
In this analysis the limits of integration were set to include
all effective cross section values greater than 10−25 cm2. This
approximation provides a negligible source of error, as was
verified by checking convergence of the values produced when
this threshold was changed. By using Eq. (3) the manifold’s
resonance strength is then given by

S =
∑(

nq−1

nq

)∗
σEII

q−1 �E, (5)

with the limits of the summation being equal to the integral
limits of Eq. (4). Here �E is the energy per channel in the
measured data.

The results obtained by this process were compared with
theoretically calculated resonance strengths. Again the GRASP2
code was used to provide the initial energy levels, final energy
levels, and the ionic structure. The dielectronic recombination
cross sections were then obtained using the distorted wave
approximation and included, when necessary, the effect of the
generalized Breit interaction (GBI). The theoretical method
used to calculate the DR cross sections is similar to that
used in [24]. To compare the calculated cross sections to
experimental results, the calculated cross sections were binned
in energies with a bin width equal to the step in energy used
during measurements. Then the binned cross sections were
convolved with a Gaussian of FWHM similar to the profile of
the electron beam. This procedure produces a convolved cross
section plot that could then be compared to that experimentally
obtained. The energy of the electron beam and thus of the
electron ion interaction is difficult to determine accurately
experimentally. Hence the absolute experimental energy is
determined by shifting the experimental energy axis so the
DR manifold peaks align with those theoretically calculated.
An example of aligned effective cross section plots is shown
in Fig. 4. By integrating the cross sections under the calculated
resonant peaks the resonance strengths could be obtained. The
experimental energy axis shifting is of the order of tens of
electron volts and so makes no practical difference to the
electron impact ionization cross section used for rescaling or
thus the resonance strength measured.

The measurements obtained had several sources of uncer-
tainty. These include statistical uncertainty, background fitting
uncertainty, and uncertainty associated with the alpha value
calculations. All these uncertainty sources were taken into
account when calculating the error bars.

III. RESULTS

The experimental and calculated resonance strengths for
He-like, Li-like, and Be-like ions of iron, iodine, holmium,
and bismuth in the KLL and KLM resonances are given in
Table I. Only KLL resonances were measured for yttrium.

FIG. 4. Effective DR cross sections for He-like, Li-like, and
Be-like bismuth ions in the KLL resonance region obtained both
experimentally and theoretically (see main text for details). The
theoretical cross sections have been binned and convolved with a
Gaussian with a FWHM of 70 eV. For clarity, the Li-like and Be-like
plots are offset by an amount indicated in the figure legend.

Previously, an empirical scaling law for He-like resonance
strengths was determined by weighted least squares fitting of

S = 1

m1Z2 + m2Z−2
, (6)

where Z is the atomic number and m1 and m2 are the free fit
parameters [1]. By taking the present data and incorporating
the results used in [1] the parameters m1 and m2 can be
recalculated, to update the scaling law. The scaling formula
is derived from the scaling predicted for an isolated H-like
resonance. It does not include the effects of QED; however, the
formula has been shown phenomenologically to be applicable
to collective groups of resonances in He-like target ions [1].
This applicability is because in the low-Z and high-Z limits
the asymptotic form of the sum of resonance strengths for a
group of independent resonances is the same as the asymptotic
form of Eq. (6). This applies to open- or closed-shell systems
and hence this equation should be applicable to all the systems
(He-, Li-, and Be-like) under study here.

For the He-like system, Eq. (6) was refitted, including the
new data points, by weighted least squares with the weights
obtained from the error bars in the included measurement.
Figure 5 shows plots of the scaling law for He-like systems
in the KLL and KLM manifolds. Equation (6) was then fitted
to the other measured systems (Li- and Be-like). Figures 6
and 7 show scaling graphs for Li-like and Be-like ions in
the KLL and KLM manifolds, respectively. For both KLL
manifolds, in the region Z < 30, the fit is much better than the
KLM fit, due to a previous highly accurate KLL measurement
with neon ions [27]. In order to demonstrate the fitting
uncertainty the error envelopes are also plotted for all three
figures. The error envelope is obtained by varying the fitted
parameters within 1σ of the best fit to obtain functions giving
the maximum and minimal values. All the fitted parameters
for the isoelectronic scaling functions plotted are given in
Table II.

IV. DISCUSSION

The He-like scaling law has many data points for 20 <

Z < 50 and thus very good fitting for data points for Z < 50.
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TABLE I. Table of the experimental and calculated resonances strength for He-like, Li-like, and Be-like ions of iron, yttrium, iodine,
holmium, and bismuth in the KLL and KLM resonance regions. Resonance strengths are given in units of 1 × 10−20 cm2 eV and the bracketed
figures indicate the 1σ uncertainty level.

Element Fe Y I Ho Bi

KLL
He-like 64.1(11.5) 54.8(13.7) 36.2(2.2) 30.0(8.1) 19.9(4.4)
Calculated 76.6 55.0 36.2 26.7 22.4
Li-like 72.7(16.7) 34.4(8.3) 25.1(1.8) 19.1(4.6) 12.0(1.0)
Calculated 58.2 39.7 24.0 16.3 12.5
Be-like 50.9(17.8) 39.6(7.1) 20.3(2.0) 17.9(4.8) 7.99(0.4)
Calculated 51.8 35.0 21.9 13.5 8.36

KLM
He-like 48.1(8.7) – 19.7(2.2) 11.5(1.4) 9.06(2.36)
Calculated 43.0 23.8 13.9 9.62 7.72
Li-like 24.2(5.6) – 16.8(1.7) 10.1(1.3) 9.09(1.64)
Calculated 27.4 14.3 8.38 7.52 5.81
Be-like 35.7(12.5) – 15.1(1.5) 9.00(1.17) 6.14(0.92)
Calculated 33.1 17.4 10.8 6.44 5.22

For the He-like resonance strength measurements for higher
atomic numbers, in the KLL manifold, the scaling law starts
to predict smaller values than those measured. This deviation
could be due to the emergence of QED effects which are not

FIG. 5. Plots of He-like ion resonance strengths in the KLL and
KLM manifolds against atomic number. Calculated values obtained
using the distorted wave method are also plotted. A fitted scaling
function based on Eq. (6) is also plotted. The scaling law was obtained
by fitting to the existing [14,25,26] and new data points. The dotted
and dashed lines indicate the 1σ error envelope as described in the
main text.

included in the scaling model. For example, GBI is known
to alter the strength of cross sections for high-atomic-number
ions [28]. However, more measurements would be required to
properly test this.

FIG. 6. Plot of Li-like and Be-like ion resonance strengths in the
KLL manifold against atomic number. Calculated values obtained
using the distorted wave method are also plotted. Both species of
ions have the fitted scaling function plotted. The neon results were
obtained from [27]. The dotted and dashed lines indicate the 1σ error
envelope as described in the main text.
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FIG. 7. Plot of Li-like and Be-like ion resonance strengths in the
KLM manifold against atomic number. Calculated values obtained
using the distorted wave method are also plotted. Both species of
ions have the fitted scaling function plotted. The dotted and dashed
lines indicate the 1σ error envelope as described in the main text.

In contrast to the He-like system, there are fewer mea-
surements available for the Li- and Be-like KLL resonance
manifolds. The fits in these systems are highly constrained
by the bismuth data point so it is not possible to make any
meaningful assertion about the breakdown of Eq. (6) in these
cases. It is however clear that the fit to Eq. (6) has useful
predictive power for the KLL resonance strength of elements
for which data are not available.

For the open-shelled KLM systems, the large error envelope
in the predicted resonance strength, especially for ions with
Z < 30, makes producing firm conclusions difficult. The large
uncertainty arises from the lack of KLM DR resonance strength
measurements of low-Z ions. Also, difficulty obtaining the
iron measurement resulted in large error bars, and thus the

TABLE II. Table of parameters obtained by fitting the function
1

m1Z2+m2Z−2 to various sets of measurements of dielectronic recombi-
nation varying isoelectronically. The data points used are given in [1]
and in Table I. The bracketed figures indicate the 1σ uncertainty level.

Ion Manifold m1 (cm−2 eV−1) m2(cm−2 eV−1)

He-like KLL 9.86(4) × 1014 4.80(38) × 1020

He-like KLM 2.36(15) × 1015 2.42(29) × 1020

Li-like KLL 1.30(7) × 1015 4.65(21) × 1020

Li-like KLM 1.91(19) × 1015 1.92(74) × 1021

Be-like KLL 1.75(8) × 1015 7.60(48) × 1020

Be-like KLM 2.34(8) × 1015 7.8(26) × 1020

weighted fitting is not very constrained in the low-Z range. In
the future, several low-Z measurements would significantly
help in reducing the uncertainty and greatly extend the
applicability of the scaling formula.

All results were obtained via normalization to electron
impact ionization cross sections supplied from distorted wave
calculations. The distorted wave cross sections were compared
to those obtained by using the Lotz scaling law [29], to give
a rough check on their values. In all cases the distorted wave
and Lotz values were as close as can be expected given the
limitations of the Lotz formula.

All measured KLL and He-like KLM resonance strengths
agree, within uncertainties, with calculated values. KLM reso-
nance strengths of the open-shell Li-like and Be-like systems
do appear to have a clear discrepancy between the measured
and calculated values. The reason for the discrepancy is
unknown at present and again points to the need for more
measurements of this type. It is important to note that the
correction in going from Eq. (2) to Eq. (3) (i.e., removal of
the summation terms) only gives at most a 5% change in the
resonance strength. Therefore this process cannot be the cause
of the discrepancy.
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