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Rotational excitations in two-color photoassociation
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We show that it is possible to excite higher rotational states J > 2 in ultracold photoassociation by two laser
fields. Usually higher J states are suppressed in photoassociation at ultracold temperatures in the regime of
Wigner threshold laws. We propose a scheme in which one strong laser field drives photoassociation transition
close to either J = 1 or J = 2 rotational state of a particular vibrational level of an electronically excited
molecule. The other laser field is tuned near photoassociation resonance with J > 2 rotational levels of the same
vibrational state. The strong laser field induces a strong continuum-bound dipole coupling. The resulting dipole
force between two colliding atoms modifies the continuum states forming continuum-bound dressed states with a
significant component of higher partial waves in the continuum configuration. When the second laser is scanned
near the resonance of the higher J states, these states become populated due to photoassociative transitions from
the modified continuum.
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I. INTRODUCTION

Photoassociation (PA) spectroscopy [1,2] of ultracold
atoms by which two colliding atoms absorb a photon to form
an excited molecular state is an important tool for studying
ultracold collisional properties at the interface of atomic
and molecular states. PA is particularly useful for producing
translationally cold molecules [3–9] and generating optical
Feshbach resonance [10–14]. More than a decade ago, theoret-
ical models [15,16] were developed to explain PA line shape
in the weak-coupling regime. The effects of laser intensity
on PA spectra [17–22] have been an important current issue.
Over the years, two-color Raman-type PA has emerged as an
important method for creating translationally cold molecules
in the ground electronic configuration. Recently, using this
method, cold polar molecules [7] in rovibrational ground state
have been produced. Molecules created by one- or two- color
PA of ultracold atoms generally possess low-lying rotational
levels J � 3. Motivated by recent experimental observation
of excitation of higher rotational states in ultracold PA with
an intense laser field [23], we here explore theoretically the
possibility of rotational excitations in two-color PA. This may
be important for producing translationally cold molecules in
selective higher rotational states. Previously, two-color PA has
been investigated in different other contexts [24–31], such as
photoionization of excited molecules [24–27], shielding of
atomic collision [28–30], measurement of s wave scattering
length [31], and so on.

In this article we propose a method of two-color pho-
toassociation of two homonuclear atoms for exciting higher
rotational levels. Our proposed method is schematically shown
in Fig. 1. Laser LA is a strong field and the laser LB is
a weak one. LA is tuned near either the JA = 1 or JA = 2
rotational state of a particular vibrational level v of the excited
state. This rotational state is predominantly accessed by PA
transition from s-wave scattering state. A photon from LA

causes PA excitation from the continuum (s wave) to the
bound level JA. A second photon from the same laser can
cause a stimulated de-excitation back to the continuum state.

This is a stimulated Raman-type process which can lead to
significant excitation of higher partial waves in the two-atom
continuum. Now, if a weak laser LB is tuned near JB > 2
states, these higher rotational states get excited due to PA
from the modified continuum. In this scheme of two-color PA,
three photons are involved. This does not fit into a standard
� or V-type process. Here bound-bound transition is absent.
All the transitions are of continuum-bound type. This scheme
may be viewed as a combination of � and V-type process
with continuum acting as an intermediate state for V-type
transitions. In the previous Raman-type PA experiments, the
excited molecular state is used as an intermediate state.
Furthermore, usually two-color PA is carried out in the weak
coupling regime. In contrast, our proposed scheme involves
necessarily one strong laser field for inducing strong PA
coupling. We demonstrate excitation of higher rotational
levels in two-color ultracold PA by resorting to a simplified
model. We first evaluate higher partial-wave scattering states
modified due to strong photoassociative coupling [14] induced
by the strong laser LA. We employ these modified wave
functions to calculate two-color stimulated line widths which
are significantly enhanced compared to those in the case of
one-color.

The article is organized as follows. In the following section
we describe the formulation of the problem and its solution.
The numerical results and discussion has been given in
Sec. III. Finally the article is concluded in Sec. IV.

II. THE MODEL AND ITS SOLUTION

To start with, let us consider that PA laser couples con-
tinuum (scattering) states of collision energy E = h̄2k2/(2µ)
(where µ is the reduced mass) of two alkali-metal-type
homonuclear ground-state S atoms to an excited diatomic
(molecular) bound state which asymptotically corresponds to
one ground S and another excited P atom. Under electric
dipole approximation, the interaction Hamiltonian can be
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FIG. 1. A schematic diagram showing the strong (double-arrow
thick line) and weak (single-arrow thin line) field couplings between
the excited rotational levels Jα (α = A, B) and the continuum state.
Strong laser LA modifies the continuum state by a two-photon
process (curly lines) as described in the text. The laser LB is
tuned near resonance with the rotational levels JB � 3 which are
then populated due to PA transition from the modified continuum.
Molecular rotational levels J = 1 and J = 2 are accessible from
s-wave (� = 0) scattering state, but J � 3 can only be accessed from
higher partial-wave (� > 0) scattering states.

expressed as

Hint =
∑
i=1,2

ELπ̂ · d̂i , (1)

where d̂i = −eri is the dipole moment of i-th atom whose
valence electron’s position is given by ri with respect to the
center of mass of this atom. Here e represents an electron’s
charge, EL is the laser field amplitude, and π̂ is the polarization
vector of the laser. The total Hamiltonian in the center-of-mass
frame of the two atoms can be written as

H = Helec(r1, r2; ra, rb) − h̄2

2µ
∇2

r − h̄2

2M
∇2

R + Hhf + Hint,

(2)

where Helec is the electronic part of the Hamiltonian which
includes terms corresponding to kinetic energy of the two
valence electrons, mutual Coulomb interactions between
nuclei and the electrons, exchange, and electronic spin-orbit
interaction. Here ra and rb represent the position vectors
of the nuclei of atoms a and b, respectively; ∇r and ∇R

denote the Laplacian operators corresponding to the relative
coordinate r = ra − rb and the center-of-mass coordinate R =
(ra + rb)/2 and Hhf stands for the hyperfine interaction of two
atoms. Under the Born-Oppenheimer approximation, while
solving the electronic part of the Hamiltonian, the nuclear
coordinates appear merely as parameters. PA laser couples
only two electronic molecular states which are the initial
ground and the final excited diatomic states represented by
〈r1, r2; r | g〉 = φg(r1, r2; r) and 〈r1, r2; r | e〉 = φe(r1, r2; r),
respectively. These internal electronic states have parametrical
dependence on the internuclear coordinate r . They satisfy the
eigenvalue equations

Helecφα(r1, r2; r) = Vα(r)φα(r1, r2; r); α = g, e. (3)

We assume that the matrix element 〈e | Hint | g〉 � �eg(r)
depends only on separation r . Then the center-of-mass motion
gets decoupled from relative motion. Henceforth we consider
only the relative motion. By specifying the electronic parts of
both the bound and the continuum states, one can calculate
the matrix element of Hint over the electronic parts of the two
molecular levels involved in free-bound transition and thus
obtain molecular coupling strength �(r).

The continuum-bound dressed state can be written as
�E(r1, r2; r) = ∑

α=g,e �α(r) | α〉 which is assumed to be
energy normalized with E being the energy eigenvalue. In
the absence of atom-field interaction Hint , the problem is
to find out the multichannel scattering wave function in
the ground electronic configuration. The scattering channels
correspond to two separated atoms a and b in hyperfine
spin fa and fb, respectively. The molecular hyperfine state
is characterized by the spin

−→
F = −→

f a + −→
f b. A channel is

defined by the angular state |F ; fa, fb, �〉, where
−→F = −→

F +−→
� = −→

f a + −→
f b + −→

� , where � is the mechanical angular
momentum of the relative motion of the two atoms. This
asymptotic basis |F ; fa, fb, �〉 can be expressed in terms of
the adiabatic molecular basis |F ; S, I, �〉 [32], where S and I

are the total electronic and nuclear spin angular momentum of
two atoms. In the case of excited molecular state, S should
be replaced by electronic angular momentum Je = S + L.
Alternatively, the adiabatic basis |F ; Je, I, �〉 can also be
expressed in terms of |F ; J (Je, �)I 〉. Thus the rotational
state of a diatom can be expressed in terms of the matrix

element |J�M〉 = iJ
√

2J+1
8π2 D(J )

M�(r̂) where M and � are the z

component of J in the space-fixed and body-fixed coordinate
frame and r̂ represents the Euler angles for transformation
from body-fixed to space-fixed frame. D(J )

M�(r̂) is the rotational
matrix element. For the ground electronic configuration, we
have J = �,M = m�, and � = 0; thereby, D(J )

M�(r̂) reduces to
spherical harmonics Y�m�

. We thus express the ground state
�g(r) in the following form

�g(r) ∝ r−1
∑
�,m�

[∫
E′

βE′ψE′�m�
(r)dE′|�m�0〉

]
, (4)

where ψE′�m�
(r) is the energy-normalized scattering state

with collision energy E′ and β ′
E is the density of states of

unperturbed continuum. Similarly, for a particular value of �,
we can expand the excited state �e(r) in the following form

�e(r) ∝ r−1
∑
M

[φvJ (r)|J�M〉]. (5)

Substitution of Eqs. (4) and (5) into time-independent
Schrödinger equation leads to coupled differential equations.
These equations are solved by the use of real space Green’s
function. The detailed method of solution for a model problem
is given in Appendix A. In our model calculations, we consider
only a single ground hyperfine channel. The solution φvJ (r)
can be expressed as

φvJ (r) =
∫

E′
βE′

∑
�m�M

AJM;�m�
φ0

vJ (r)dE′, (6)
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where φ0
vJ (r) is the excited molecular state (unit-normalized)

in the absence of laser field and

AJ,M;�,m�
= [

fJ,M;�m�
+ Eshift

J� ÃJ

] 1

h̄δ + E − EvJ + ih̄γ /2
(7)

is the probability amplitude of excitation of J from a particular
partial wave �. Here

fJM;�m�
=

∫
φ0

vJ (r ′)�JM;�m�
(r ′)ψ0,reg

E� (r ′)dr ′ (8)

is the continuum-bound dipole matrix element and �JM;�m�
=

〈JM�|�eg|�m�0〉. ψ
0,reg

E� (r ′) represents the �-th partial-wave
regular scattering solution in the absence of laser field and

Eshift
J� = π

∫ ∫
dr ′drφ0

vJ (r ′)�JM;�m�
(r ′)

× [K�(r ′, r)]��m�;JM (r)φ0
vJ (r) (9)

is the partial light shift of the excited state. Here K�(r, r ′) is the
propagator as defined in the Appendix A. The total probability
amplitude of excitation ÃJ for a particular J is given by

ÃJ =
∑

�,m�,M

fJM;�m�

h̄δ + E − EvJ + ih̄γ /2 − Eshift
J

, (10)

where Eshift
J = ∑

�,m�,M
Eshift

J� is the total energy shift of the
excited level. h̄γ /2 is the natural line width of the excited
molecular state, EvJ is the bound state energy corresponding to
the bound-state solution φ0

vJ of the excited state. δ = ωL − ωA

is the frequency offset between the laser frequency ωL and
atomic resonance frequency ωA. The ground-state scattering
solution in the presence of PA laser is given by

ψE�m�
(r) = ψ

0,reg
E� +

∑
�′m�′ M

AJM;�′m�′ (E)

×
∫

K�(r, r ′)��m�;JM (r ′)φ0
vJ (r ′)dr ′. (11)

In the asymptotic limit (r → ∞), the modified scattering wave
function behaves like

ψE�m�
= cos ηL

� ψ
0,reg

E� + sin ηL
� ψ

0,irr
E� , (12)

where ψ
0,irr
E� is the irregular wave function of �-th partial wave.

Here ηL
� is the phase shift due to the applied laser field and is

given by

tan ηL
� = −π

∑
�′m�′ M

AJM;�′m�′ (E)f�m�;JM (13)

= −π
∑

�′,m�′ ,M

fJM;�′m�′

h̄δ + E − EvJ + ih̄γ /2 − Eshift
J

× f�m�;JM, (14)

where f�m�;JM = ∫ ∞
0 φ0

vJ (r ′)��m�;JM (r ′)ψ0,reg

E� (r ′)dr ′. The

two-color partial stimulated line width �
(2)
JB� for a particular

rotational state JB is given by

�
(2)
JB� = 2π

∣∣∣∣
∫

φ0
vJ (r)�JM;�m�

(r)ψE�m�
(r)dr

∣∣∣∣
2

(15)

and the total stimulated line width is �
(2)
JB

= ∑
�m�M

�
(2)
JB�. The

excitation of particular rotational state J from the partial wave
� is governed by the following selection rule∣∣J − |−→L + −→

S |∣∣ � � �
∣∣J + |−→L + −→

S |∣∣, (16)

where L is the total electronic orbital angular momentum
−→
L =−→

l 1 + −→
l 2 and S is the sum of two individual atomic spin, i.e.,−→

S = −→s 1 + −→s 2. So the lowest possible partial wave � which
can make the largest contribution to the excitation of rotational
state J = 1, 2, 3, 4, 5, 6 are 0, 0, 1, 2, 3, 4, respectively. The
two-color photoassociation rate K

(2)
PA for JB > 2 is defined as

K
(2)
PA = 〈vrelσJ 〉 = 1

hQT

∫ ∞

0
h̄P

(2)
JB

e−βEdE, (17)

where P
(2)
JB

= γ�
(2)
J /[(h̄δB + E − Ev,JB

− Eshift
JB

)2 + (γ +
�

(2)
J )2/4] and vrel = h̄k/µ is the relative velocity of two

atoms, σJ = h̄P
(2)
JB

/k2 is the inelastic cross section due to
loss of atoms. Here 〈· · ·〉 implies an averaging over the
distribution of initial velocities, QT = (2πµKBT/h2)3/2 is
the translational partition function and β = (KBT )−1. In the
next section, we apply this formalism to a model system and
obtain numerical results.

III. RESULTS AND DISCUSSION

For numerical illustration, we consider a model system
of two cold ground-state (S1/2) 23Na atoms undergoing PA
transition from ground state 3�+

u to the vibrational state v = 48
of the excited molecular 1g state [23]. At large internuclear
distance this 1g potential correlates to 2S1/2 + 2P3/2 free atoms
and at short range to 1 1�g Born-Oppenheimer potential. In
Ref. [23] higher rotational lines up to J = 6 have been clearly
observed in PA with an intense laser field. The centrifugal
barrier of � > 0 of the two atoms lies at r > 50 a0 (a0 =
Bohr radius), whereas PA excitations occur at r ∼ 27 a0.
Therefore, the higher rotational states will be unlikely to be
populated by PA transitions from � > 0 partial-wave scattering
states at ultracold temperatures in the weak-coupling regime.
Previously, higher rotational levels have been excited in PA
spectroscopy due to resonant dipole-dipole interaction with
transition occurring at large internuclear separations [33,34].
The numerically calculated rotational energies EvJ , energy
shifts Eshift

J and the corresponding energy difference �J =
EvJ − EvJ−1 for six lowest J values are given in Table I. To
demonstrate the working of our proposed scheme, we resort

TABLE I. Numerically calculated rotational energies
EvJ (in unit of GHz) and total shift Eshift

J (in unit of MHz)
for one-color laser intensity I = 1 kW/cm2 for vibrational
state v = 48 of 1g excited state. Also given are the rotational
energy spacings �J = EvJ − EvJ−1 (in unit of GHz) for a
few lowest J values.

J −→ 1 2 3 4 5 6

EvJ (GHz) 0.57 2.13 4.77 8.55 13.03 18.34
�J (GHz) – 1.56 2.64 3.78 4.48 5.31
−Eshift

J (MHz) 19.69 22.79 17.36 11.61 6.83 2.22
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FIG. 2. Two-color partial stimulated line widths �
(2)
JB� (in unit of

MHz) as a function of �Ev,JA
(in unit of GHz) at collisional energy

E = 10 µK. The intensity IA of laser LA tuned near JA = 1 (a) and
JA = 2 (b) is 40 kW/cm2 and the intensity IB of weak laser LB is
1 W/cm2. The total shift Eshift

JA
of the rotational state JA = 1 and

JA = 2 are −0.79 GHz and −0.91 GHz, respectively.

to a simplified two-state calculation. We consider only one
ground hyperfine channel with F = 4, fa = 2, and fb = 2
in the absence of any external magnetic field. In the excited
molecular state, we neglect the hyperfine interaction. The
two-color partial stimulated line width �

(2)
JB� is plotted as a

function of detuning �Ev,JA
= h̄δA + E − Ev,JA

− Eshift
JA

in
Fig. 2 for JB ranging from 3 to 6. The strong laser LA is tuned
near JA = 1 [Fig. 2(a)] and JA = 2 [Fig. 2(b)]. From Fig. 2 we
note that �

(2)
JB� strongly depends on the detuning �Ev,JA

of the
strong laser from PA resonance of the rotational level JA. The
maximun of �

(2)
JB� occurs at �Ev,JA

= 0. For lower JB values,
the probability of rotational excitation is higher.

For comparison, we also calculate one-color partial stimu-
lated line widths �

(0)
J� for J > 2 from the expression �

(0)
J� =

2π |fJM;�m�
|2. The one-color total stimulated line width is

�
(0)
J = ∑

�,m�,M
�

(0)
J� . At 10 µK energy and at laser inten-

sity 1 W/cm2, the one-color partial stimulated line widths
�

(0)
J=3,�=1 = 15.46 Hz, �

(0)
J=4,�=2 � 0, �

(0)
J=5,�=3 � 0. A

TABLE II. Tabulated are one- and two-color partial
stimulated line widths �

(0)
J� and �

(2)
JB� at E = 10 µK for two

δA values. Here laser LA is tuned near JA = 1 rotational
state. The intensities of the two lasers are IB = 1 W/cm2

and IA = 40 kW/cm2.

δA = −1.25 GHz δA = −1.48 GHz

J � �
(0)
J� (MHz) �

(2)
JB� (MHz) �

(2)
JB� (MHz)

3 1 1.55×10−05 0.0158 0.0107
3 2 0.0000 0.0111 0.0065
3 3 0.0000 0.0085 0.0051
4 2 0.0000 0.0128 0.0075
4 3 0.0000 0.0072 0.0047
5 3 0.0000 0.0103 0.0061
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FIG. 3. The subplots (a), (b), and (c) show the light-induced scat-
tering wave functions ψE�m�

(in unit of Bohr radius−1/2 × Hartree−1/2)
for p (� = 1), d (� = 2), and f waves (� = 3), respectively. The solid
and dashed curves correspond to the detuning δA = −1.25 GHz and
δA = −1.48 GHz, respectively. The plots (d), (e), and (f) exhibit the
corresponding field-free regular wave functions ψ

0,reg

E� . All the wave
functions are plotted at collisional energy of 10 µK and intensity
IA = 40 kW/cm2.

comparison between one- and two-color partial stimulated line
widths has been made in Table II for JB > 2 at collisional
energy 10 µK. The two-color total line widths �

(2)
JB=3, �

(2)
JB=4,

�
(2)
JB=5 are 0.03537, 0.0200, and 0.0103 MHz, respectively,

when δA = −1.25 GHz and they are 0.02229, 0.0122, and
0.0061 MHz, respectively, for δA = −1.48 GHz. The cor-
responding one-color weak-coupling partial as well as total
stimulated line widths �

(0)
J� and �

(0)
J for the same rotational

states with laser intensity of 1 W/cm2 are vanishingly small
while the two-color partial �

(2)
JB� and total �

(2)
JB

exceed �
(0)
J�

and �
(0)
J by several orders of magnitude. We find the energy

shift |Eshift
JA=1| is 0.79 GHz which exceeds the spontaneous line

width γ (say, 2 MHz for the model calculation) by two orders
of magnitudes.

In order to trace the origin of increment of �
(2)
JB� we plot

perturbed ψE�m�
for � 
= 0 when laser LA is tuned near JA = 1

and the corresponding field-free regular functions ψ
0,reg

E� in

TABLE III. Tabulated are the tan ηL
� when the laser LA is tuned

near JA = 2 at E = 10 µK for three values of δA. The parame-
ters are IA = 40 kW/cm2, EvJA=2 = −2.138 GHz, and Eshift

JA=2 =
−0.91 GHz. In the field-free case, tan η0

�=1 = −1.57 × 10−4,
tan η0

�=2 = 1.20 × 10−6, tan η0
�=3 � 0, and tan η0

�=4 � 0.

δA = −2.95 GHz δA = −3.049 GHz δA = −3.17 GHz

� tan ηL
� (units of 104) tan ηL

� (units of 104) tan ηL
� (units of 104)

1 263.00 36900.00 −229.00
2 4.93 659.00 −4.09
3 0.01 2.01 −0.01
4 0.00 0.01 0.00
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Fig. 3. It is clear from this figure that the amplitudes of
ψE�m�

are greatly enhanced by several orders of magnitude
compared to those of ψ

0,reg

E� . Next, we calculate tan ηL
� by

using Eq. (14) when laser LA is tuned near JA = 2. These are
given in Table III for δA = −2.95, −3.17, and −3.049 GHz.
The first two δA values correspond to off-resonant and the
last one to resonant condition. The variation of tan ηL

� with
�Ev,JA=2 is plotted in Fig. 4 which exhibits resonance for
higher partial waves induced by strong-coupling PA. The
enhancement of the partial (� 
= 0) wave amplitude is due to the
term

∑
�′m�′M

AJM;�′m�′ (E) of Eq. (11). In Fig. 5, the two-color

total stimulated line width �
(2)
JB

is plotted as a function of
collisional energy E for two off-resonant δA values when LA is
tuned near JA = 1. The magnitude of �
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JB

for higher rotational
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function of collisional energy E (in unit of MHz) when LA is tuned
near JA = 1 for δA = −1.25 GHz (a), δA = −1.48 GHz (b) with
IA = 40 kW/cm2 and IB = 1 W/cm2.
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FIG. 6. The upper panel (a) shows two-color photoassociation
rate K

(2)
PA (in unit of m3 s−1) as a function of atom-field detuning δB

(in unit of GHz) for three higher rotational levels JB (as indicated in
the plots) for δA = −1.25 GHz when the laser LA is tuned near
JA = 1. The lower panel (b) shows the same but as a function
of detuning �Ev,JB

= h̄δB − Ev,JB
− Eshift

JB
(in unit of MHz) from

PA resonance. The other parameters for both the panels are IA =
40 kW/cm2, IB = 1 W/cm2, and T = 100 µK.

states (JB = 4, 5) is less than that of JB = 3. This is due
to the fact that the lowest possible partial-wave contribution
to the excitation of rotational states JB = 4 and JB = 5 are
d and f , respectively, while JB = 3 state can be populated
from p wave which has rotational barrier lower than that
of d and f wave. The two-color photoassociation rate K

(2)
PA

as defined in Eq. (17) has been plotted as a function of δB

[Fig. 6(a)] and �Ev,JB
[Fig. 6(b)]. The spectra in Fig. 6(b) are

red shifted due to the presence of the term �
(2)
JB

in Eq. (17). From
the selection rule, it is obvious that JB = 3, 4, 5 rotational
states cannot be populated by a PA transition from s-wave
scattering state. But the appearance of the JB = 3, 4, 5 lines
in PA spectra is an indication of the significant modification
of the partial-scattering wave functions by intense light field.

IV. CONCLUSION

In the present article we have developed a two-color PA
scheme for the excitations of higher (JB > 2) rotational levels
which are generally suppressed in the Wigner threshold law
regime. We have calculated two-color stimulated line width
(for JB > 2) by fixing strong laser either near JA = 1 or JA =
2 state and tuning another weak laser to higher rotational (JB =
3, 4, 5) states. Then we have compared these with one-color
line widths. The enhancement of stimulated line width is a
result of strong-coupling photoassociative dipole interaction
which in turn modifies the continuum states. This proposed
method may be important for coherent control of rotational
excitations and manipulation of optical Feshbach resonance
of higher partial waves.
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APPENDIX

The mathematical treatment given here is closely related
to our earlier work [14]. Treating the laser field classically,
the effective interaction Hamiltonian under rotating wave
approximation in the two state basis can be expressed as

H int
eff = exp(−iδt)�eg(r)|e〉〈g| + H.c. (A1)

From time-independent Schrödinger equation H�E = E�E ,
we obtain two coupled equations

[
− h̄2

2µ
∇2

r + Vg(r) − E

]
�g(r) = −�ge(r)�e(r) (A2)

[
− h̄2

2µ
∇2

r + Vex(r) − E − h̄δ

]
�e(r) = −�eg(r)�g(r). (A3)

Here Vg is assumed to include hyperfine interaction of
the chosen channel. Substituting Eqs. (4) and (5) into the
Schödinger equations (A2) and (A3) we get two coupled
equations

[
− h̄2

2µ

d2

dr2
+ BJ (r) + Vex(r) − h̄δ − E − ih̄

γ

2

]
φvJ

= −
∑
�m�

�JM;�m�
ψ̃E�m�

(A4)

[
− h̄2

2µ

d2

dr2
+ B�(r) + Vg(r) − E

]
ψ̃E�m�

= −
∑
M

��m�;JMφvJ , (A5)

where BJ (r) = h̄2/(2µr2)[J (J + 1) − �2] is the rotational
term of excited molecular bound state in the absence of
nuclear spin, B�(r) = h̄2/(2µr2)�(� + 1) is the centrifugal
term in collision of two ground state (S) atoms, ψ̃E�m�

(r) =∫
E′ βE′ψE′�m�

(r)dE′. The above two equations are solved by
the Green’s function method by setting �JM;�m�

= ��m�;JM =
0. The single channel scattering equation becomes

[
− h̄2

2µ

d2

dr2
+ B�(r) + Vg(r) − E

]
ψ0

E� = 0. (A6)

Let ψ
0,reg
E� (r) and ψ

0,irr
E� (r) represent the regular and irregular

solutions of the above equation. The appropriate Green’s
function for the scattering wave function can be written as

K�(r, r ′) = −πψ
0,reg
E� (r)ψ0,irr

E� (r ′)(r ′ > r) (A7)

K�(r, r ′) = −πψ
0,reg
E� (r ′)ψ0,irr

E� (r)(r ′ < r). (A8)

The regular function, ψ
0,reg
E� (r) vanishes at r = 0 and the

irregular solution ψ
0,irr
E� (r) is defined by boundary only at

r → ∞. The energy normalized asymptotic form of both
regular and irregular wave function is

ψ
0,reg
E� =

√
2µ

πh̄2k
sin

(
kr − �π

2
+ η0

�

)
, r → ∞ (A9)

ψ
0,irr
E� =

√
2µ

πh̄2k
cos

(
kr − �π

2
+ η0

�

)
, r → ∞, (A10)

where η0
� is the phase shift of �-th partial wave in the absence

of PA coupling. The homogeneous part of (A4) with γ = 0 is

[
− h̄2

2µ

d2

dr2
+ BJ (r) + Vex(r)

]
φ0

vJ = (h̄δ + E)φ0
vJ = EvJ φ0

vJ .

(A11)

The Green function corresponding to these rovibrational states
φ0

vJ can be written as

Gv(r, r ′) = − 1

h̄δ + E − EvJ + ih̄γ /2
φ0

vJ (r)φ0
vJ (r ′). (A12)

Using this Green’s function, we can write down the solution
of equation (A4) in the form

φvJ (r) = −
∑
�m�

∫
dr ′�JM;�m�

(r ′)Gv(r, r ′)ψ̃�m�
(r ′)

(A13)
=

∫
E′

βE′
∑
�m�

AJM;�m�
φ0

vJ (r)dE′,

where

AJM;�m�
=

∑
�m�

∫
dr ′�JM;�m�

(r ′)φ0
vJ (r ′)ψE�m�

(r ′)

× 1

h̄δ + E − EvJ + ih̄γ /2.
(A14)

Substituting Eq. (A13) into Eq. (A5) we obtain

[
h̄2

2µ

d2

dr2
− B�(r) − Vg(r) + E

]
ψE�m�

(r)

=
∑

�
′
m

�
′ M

AJM;�′
m

�
′ ��m�:JM (r)φ0

vJ (r). (A15)

The scattering solution can now be expressed as

ψE�m�
(r) = ψ

0,reg
E� +

∑
�′m�′M

AJM;�′m�′ (E)

×
∫

K�(r, r ′)��m�;JM (r ′)φ0
vJ (r ′)dr ′. (A16)

On substitution of Eq. (A16) into (A14) and after some algebra,
we obtain

AJ,M;�,m�
= 1

h̄δ + E − EvJ + ih̄γ /2 − Eshift
J

×
[
fJM:�m�

+ Eshift
J�

∑
�
′ 
=�,m

�
′ M ′

AJM ′:�′
m

�
′

]
.

(A17)

Let D = h̄δ + E − EvJ − Eshift
J� + ih̄γ /2. Now, adding a term

D−1Eshift
J� AJ,M;�,m�

on both sides of Eq. (A17), we can express
AJ,M;�,m�

in terms of quantity ÃJ = ∑
�m�M

AJ,M;�,m�
as well

as other parameters. On summing over all possible �,m�,M

we can evaluate ÃJ . Having done all these algebra, we can
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explicitly express

AJ,M;�,m�
=

[
fJ,M;�m�

+ Eshift
J� ÃJ

]
h̄δ + E − EvJ + ih̄γ /2

(A18)

and

ÃJ =
∑

�,m�,M

fJM;�m�

h̄δ + E − EvJ + ih̄γ /2 − Eshift
J

. (A19)
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