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Zeeman relaxation of magnetically trapped Eu atoms
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We perform rigorous quantum mechanical calculations for collisions between magnetically trapped Eu atoms
to elucidate the results of recent experimental studies. We show that the relaxation from the maximally stretched
ms = 7/2 level is entirely determined by the magnetic dipole-dipole interaction and analyze the role of the
electronic spin-exchange interaction in transitions from the lower-energy Zeeman levels. The relaxation of the
ms = 5/2 state is shown to be very sensitive to the spin-exchange parameter that determines the splitting between
the lowest electronic states of the Eu dimer. We suggest that cold collision experiments with trapped atoms can
be used as a tool for obtaining accurate information on the electronic spin anisotropy in complex molecules such
as Eu2.

DOI: 10.1103/PhysRevA.81.022701 PACS number(s): 34.50.−s, 32.60.+i, 34.20.−b, 31.10.+z

I. INTRODUCTION

Atomic ensembles can generally be cooled to ultracold
temperatures using a combination of buffer-gas cooling and
magnetic trapping [1–13]. The efficacy of buffer-gas cooling is
determined by the electrostatic interaction anisotropy between
atoms in the buffer-gas cell [14]. The anisotropy must be low to
minimize Zeeman relaxation of atoms in the low-field-seeking
levels induced by collisions with buffer-gas atoms. A number
of recent experimental and theoretical studies of atomic
collisions at cold temperatures revealed important information
not only on the prospects for buffer-gas cooling of different
atoms, but also on the electrostatic interaction anisotropy,
which is of interest in a much broader context. For example,
measurements of Zeeman relaxation in collisions of transition-
metal (Ti and Sc) [4] and lanthanide (Tm, Er, Nd, Tb, Pr, Ho,
Dy) [5] atoms with He atoms demonstrated the suppression
of the orbital angular momentum interaction anisotropy for
submerged open electronic shells (3d and 4f ) [15–17].

Considerable effort has been recently made to cool and trap
atoms with large magnetic moments, particularly, heavy metal
atoms with zero electronic orbital angular momentum. Large
magnetic moments lead to significant trap depths increasing
the magnetic trapping efficiency. The absence of the elec-
tronic orbital angular momentum ensures suppression of the
anisotropic electrostatic interactions between atoms to lowest
order. However, in a series of studies using 52Cr(7S) atoms,
efficient dipolar relaxation was found to prevent evaporative
cooling, and the mechanism of the dipolar relaxation was
investigated in detail both experimentally and theoretically
[6–9,18,19]. Cooling in an optical trap was suggested as a
remedy, and an ensemble of 52Cr atoms was successfully
Bose-condensed in a magneto-optical trap [20,21]. Magnetic
trapping at cold temperatures was extended to other atoms
with large magnetic moments, such as Mn(6S) [10], Mn-Cr
mixture [11], and Mo(7S) [12]. The trap loss was observed
and inelastic rates of the order of 10−12–10−13 cm3/s were
measured in these experiments, suggesting the dominant role
of the magnetic dipole interaction. Careful analysis of the
relaxation of Mn atoms in a magnetic trap, however, revealed
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an important contribution of the spin-exchange transitions on
the background of the relaxation induced by the magnetic
dipole-dipole interaction [10].

Eu(8S◦) is another example of an atom with a large magnetic
moment. Owing to zero orbital and large spin electronic
angular momenta, atomic Eu was used for the first realization
of buffer gas loading into a magnetic trap [13]. The atoms
in the maximally stretched ms = 7/2 (ms is projection of the
electronic spin s of the Eu atom on a space-fixed quantization
axis) Zeeman level were trapped in a magnetic trap with the
trap depth of 0.52 T at a temperature of 250 mK. A very long
trap lifetime of atoms was observed (>100 s). The decay of the
trapped ensemble cooled to 170 mK was found to be mediated
by two-body collisions with the effective loss rate (2.5 ± 1.5) ×
10−13 cm3/s tentatively assigned to dipolar relaxation [13,22].
Subsequent analysis [23] revealed that, in contrast to other
S atoms, the lower-energy Zeeman levels of Eu, namely,
ms = 5/2 and 3/2, are also amenable to trapping under the
same conditions. However, the corresponding collisional loss
rates were not measured.

In this paper, we analyze these studies of Eu and report the
results of rigorous quantum scattering calculations of inelastic
Eu-Eu collisions in a magnetic field. First, we examine the
relaxation of atoms in the maximally stretched ms = 7/2 level.
We show that the dipolar relaxation provides the dominant
mechanism of trap loss, while the effects of the hyperfine
and spin-exchange interactions are negligible. Second, we
analyze the role of the electronic spin-exchange interactions in
determining transitions from the lower Zeeman states. The ef-
ficiency of Zeeman relaxation is shown to be strongly affected
by the spin anisotropy suggesting that the measurements of trap
loss rates for multiple Zeeman states may provide a sensitive
probe of spin-exchange interactions in the Eu dimer.

The remainder of this paper is organized as follows. The
computation details are described in Sec. II, Sec. III presents
the results, and the conclusions are summarized in Sec. IV.

II. COMPUTATIONAL DETAILS

A. Dynamical calculations

The methodology of the present calculations is based on the
theory described in Refs. [14,24–28]. The total Hamiltonian
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of two Eu atoms in the presence of an external magnetic field
can be written in atomic units as

Ĥ = − 1

2µR

∂2

∂R2
R + l2

2µR2
+ V̂es + V̂dip + Ĥas, (1)

where µ is the reduced mass of the Eu2 molecule, R is the
interatomic separation, and l is the orbital angular momentum
of the collision complex. The V̂es operator in Eq. (1) cor-
responds to the electrostatic nonrelativistic interaction. The
electronic interaction anisotropy between two S atoms with
the nonzero electronic spins reduces to the splitting between
molecular states with different total electronic spin S, which
can be referred to as the spin anisotropy [14]. In this case, V̂es

can be defined in terms of the Born-Oppenheimer interaction
potentials VS(R) of the diatomic molecule as

V̂es =
∑
S,MS

|SMS〉VS(R)〈SMS |, (2)

where MS is the projection of S on a space-fixed quantization
axis.

The operator V̂dip in Eq. (1) describes the magnetic dipole-
dipole interaction, which in the space-fixed coordinate frame
is given by [25]

V̂dip = −
√

24π

5

α2
fs

R3

∑
q=0,±1,±2

(−1)qY2−q[sa ⊗ sb](2)
q , (3)

where αfs is the fine-structure constant [29], and sa and sb

are the electronic spin angular momenta of the two Eu atoms
(labeled as a and b).

The asymptotic Hamiltonian Ĥas in Eq. (1) is the sum of
the operator Ĥz, which describes the interaction of Eu atoms
with the magnetic field B, and the operator of atomic hyperfine
interaction Ĥhf

Ĥas ≡ Ĥ (R → ∞) = Ĥhf + Ĥz. (4)

If the quantization z axis is chosen in the direction of B, the
Zeeman Hamiltonian Ĥz takes the form

Ĥz =
∑

α=a,b

[
gLµBsαz

− µα
n

iα
iαz

]
B, (5)

where gL is the Landé g factor [1.99 for Eu(8S◦) [23]], sαz

is the z component of the electronic spin momentum of the
corresponding Eu atom, µn are the nuclear magnetic moments,
and iαz

is the z component of the nuclear spin momentum iα
of the corresponding Eu atom.

The operator Ĥhf for the Eu atoms has the form [23]

Ĥhf =
∑

α=a,b

Aαiαsα + Bα

3
2 iαsα(2iαsα + 1) − i2αs2

α

2iα(2iα − 1)sα(2sα − 1)
, (6)

where Aα is the hyperfine magnetic dipole coupling constant
and Bα is the hyperfine electric quadrupole coupling constant.
Hyperfine constants for the naturally occurring Eu isotopes are
given in Table I.

The total wave function of the Eu-Eu collision system is
expanded as follows

� = R−1
∑
βlml

Fβlml
(R)ψβ |lml〉. (7)

TABLE I. Natural abundances of Eu isotopes, nuclear spins, and
hyperfine constants. Constants taken from Ref. [30].

Isotope Natural Nuclear A B

abundance spin (MHz) (MHz)
(%) (i)

151Eu 47.81 5/2 −20.05 −0.7
153Eu 52.19 5/2 −8.85 −1.78

Here Fβlml
(R) is the expansion coefficient, |lml〉 is the

eigenfunction of the l2 operator, ml is the projection of l on
the magnetic field axis, and ψβ is the eigenfunction of the
asymptotic Hamiltonian

Ĥasψβ = εβψβ, (8)

where εβ is the asymptotic energy of the collision channel β.
Different angular momentum coupling schemes can be used

to represent ψβ, but none of them provides the eigenchannel
representation for the asymptotic Hamiltonian Ĥas in the
presence of a magnetic field. For strong magnetic fields, the
collision theory is best formulated in the fully uncoupled
space-fixed representation of the wave function [26]

ψ0
β = |samsa

〉|iamia 〉|sbmsb
〉|ibmib〉, (9)

where msα
and miα are the projections of sα and iα on the

magnetic field axis. The transformation from basis (9) to the
asymptotic channel functions ψβ can then be constructed nu-
merically for each value of the magnetic field by diagonalizing
the matrix of Ĥas [25]. Our choice of the representation (9) is
motivated by high magnetic fields used in the experiment to
trap Eu atoms [13,23]. Nonzero off-diagonal matrix elements
of Has in representation (9) are given by the atomic hyperfine
interaction, which is significantly weaker in comparison with
the Zeeman splitting at high fields. [According to Table I, the
hyperfine constants A and B for Eu are on the order of MHz,
while 1µB = 14 GHz/T. At magnetic fields B > 0.005 T, the
diagonal elements of Ĥas in the basis (9) are very close to the
exact Zeeman eigenenergies.]

The Zeeman Hamiltonian Ĥz given by Eq. (5) is diagonal
in the uncoupled basis (9). The matrix elements of the V̂es

operator can be obtained using the transformation between the
total electronic spin |SMS〉 representation and the uncoupled
representation (9), as described in Ref. [14]. The electrostatic
interaction mixes states with different msa

and msb
but induces

no coupling between states with different msa
+ msb

. The
matrix elements of V̂dip given by Eq. (3) can be evalu-
ated analytically by rewriting the components of the tensor
[sa ⊗ sb](2) in terms of the ladder operators sα± as suggested
in Refs. [25,26]. The resulting matrix elements couple states
with different msa

,msb
, and ml but the sum msa

+ msb
+ ml is

conserved. The selection rules for the matrix elements of V̂dip

are l − l′ = 0, 2 and l = l′ 	= 0, and MS − M ′
S = 0,±1,±2.

The hyperfine interaction couples states with different mia

and mib , but conserves the total spin angular momentum of
the atom fα and its projection on the magnetic field axis
mfα

= msα
+ miα . The nonvanishing matrix elements of Ĥhf

correspond to transitions with msα
− m′

sα
= 0,±1,±2 and

miα − m′
iα

= 0,∓1,∓2.
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There are two naturally occurring isotopes of Eu, namely,
151Eu and 153Eu. In principle, three types of collisions should
be examined and the results should be averaged according
to the natural abundances of the isotopes. In addition,
one should also take into account symmetry considerations
for collisions between indistinguishable particles (see, e.g.,
Refs. [31,32]). However, both isotopes have almost equal
natural abundances, the same nuclear spin, and similar hy-
perfine constants (see Table I). As indicated in the following
section, the difference between Eu isotopes is found to be
negligible at the high magnetic fields which are considered
in this work (B � 0.05 T). For most of our calculations, we
therefore consider only collisions between different isotopes,
151Eu + 153Eu.

The substitution of expansion (7) into the Schrödinger
equation with Hamiltonian (1) results in a system of coupled
differential equations for the expansion coefficients Fβlml

(R).
The scattering S-matrix elements are obtained by applying
appropriate boundary conditions to the solutions Fβlml

(R)
in the asymptotic region [26]. The cross sections for elastic
and inelastic energy transfer are computed from the S-matrix
elements as shown in Ref. [26]. For collisions between two
identical Eu isotopes, an additional symmetrization procedure
is performed. (The details of the symmetrization in the case of
indistinguishable particles can be found in Ref. [32].) The
system of closed coupled equations is propagated using the
log-derivative propagator of Manolopoulos [33] on a grid of
R from 2.0 to 200 Å with an integration step of 0.05 Å. The
propagation matrix is then transformed to the representation
in which Ĥas is diagonal, before the scattering S matrix is
constructed. The scattering calculations for collisions between
151Eu(ms = 7/2) and 153Eu(ms = 7/2) were performed at
different magnetic fields in the range from 0.05 to 0.52 T
and 300 collision energies Ecoll covering, with a variable
step, the interval from 10−7 to 1 cm−1. Up to 14 partial
waves were included in the basis to ensure convergence of
the cross sections in the entire range of the collision energies
to within 10%. We also performed calculations for the lower
initial Zeeman state ms = 5/2 at selected values of Ecoll

and B for collision between different isotopes. For these
calculations, eight partial waves in the basis were found to
be sufficient to achieve convergence. Since V̂dip—the only
operator that couples different partial waves—does not couple
channels with l of different parity, we performed calculations
for even and odd partial waves separately and summed the
results to obtain the total cross sections. In addition, we found
that states with ms � +1/2, ms � −1/2, and ms � −3/2
do not affect the results and can be excluded from ex-
pansion (7) for, respectively, 151Eu(ms = 7/2) + 153Eu(ms =
7/2), 151Eu(ms = 7/2) + 153Eu(ms = 5/2), and 151Eu(ms =
5/2) + 153Eu(ms = 5/2) collisions. To first order, these chan-
nels are not coupled by any of the interactions entering Eq. (1)
with the initial states ms = 7/2 and 5/2 considered in this
work.

B. Interaction potentials

The interatomic interaction operator V̂es is determined by
Eq. (2) through the set of the Born-Oppenheimer potentials

FIG. 1. (Color online) Ab initio electronic potentials arising
from the Eu(8S◦) + Eu(8S◦) asymptote. Adapted from the data of
Ref. [34]. Inset: behavior of the ab initio potentials in the region of
the interaction minimum.

VS . The total spin S of Eu2 may take the values from 0 to
7 that correspond to eight electronic states 1�+

g , 3�+
u , 5�+

g ,
7�+

u , 9�+
g , 11�+

u , 13�+
g , and 15�+

u in the conventional LS-
coupling notations. For the scattering calculations reported
here, the ab initio based potential model from Ref. [34] was
implemented. In brief, it utilizes the Heisenberg spin-exchange
model [35,36] to express the potentials in the following form
[34]:

VS(R) = VS=7(R) − 1
2J (R)[S(S + 1) − 56], (10)

where VS=7(R) is the interaction potential for the spin-
polarized electronic state S = 7 and J (R) is the spin-exchange
parameter. These two parameters were calculated using a
combination of accurate single and multi reference ab initio
methods in an extended basis set [34]. The computed interac-
tion potentials for Eu2 are shown in Fig. 1.

The ab initio calculations validated the proposed
Heisenberg model and demonstrated very weak antiferromag-
netic spin coupling [34]. The effective value of J is equal to
−0.3 cm−1, while the energy difference between the lowest
S = 0 and highest S = 7 states at the equilibrium distance of
4.92 Å amounts to only 9 cm−1 (see Fig. 1). The coupling
is so weak because the spin-bearing 4f 7 atomic shells are
screened by the outer closed 6s2 atomic shells, which keeps
their atomic character in the dispersion-bound Eu2 dimer. This
effect can be considered as the suppression of spin exchange
(or spin anisotropy) by analogy to similar effects of the
suppression of orbital angular momentum anisotropy observed
in lanthanide atoms with nonzero electronic orbital angular
momenta [16,17,37]. However, such small splittings are
comparable to the accuracy of quantum chemistry calculations
[34] and no reliable experimental data are available for Eu2 to
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assess them. It is therefore of great interest to elucidate the
sensitivity of cold collision dynamics to the magnitude of the
spin-exchange energy.

III. RESULTS

In order to reproduce the experimental measurements and
elucidate the mechanism of spin relaxation in Eu-Eu collisions,
we performed detailed scattering calculations for Eu atoms
initially in the maximally stretched ms = 7/!2 level. First,
we considered three types of collisions between different Eu
isotopes at B = 0.05 T and different values of Ecoll in the
interval from 10−7 to 1 cm−1. The calculations for different
hyperfine states (miα = −5/2, . . . ,+5/2; α = a, b) reveal
strong suppression of the hyperfine effects in the relaxation
process. The cross sections for Zeeman relaxation, as well
as for elastic scattering, for all combinations of initial mia

and mib states are the same to within 3%. Furthermore, the
cross sections calculated for different types of collisions do
not differ by more than a few percent (taking into account
the presence of a symmetrization factor of 2 for collisions
between identical isotopes with mia = mib ). Such a small
effect of the hyperfine interaction is consistent with the
experimental observation of the persistence of all trapped
hyperfine sublevels of the ms = 7/2 manifold throughout
the trap lifetime [22]. All hyperfine substates, including the
doubly polarized state with ms = 7/2 and mi = 5/2, should
therefore have almost the same speed of depopulation in the
magnetic trap. The doubly polarized state is, however, immune
to the hyperfine-induced inelastic collisions because there are
no other states with the same values of f and mf . This
indicates that the hyperfine-unmodified, state-independent
dipolar relaxation (i.e., when different hyperfine substates
have equal dipolar relaxation rates) is predominant in the trap
loss mechanism since other possible pathways of inelastic
scattering, including spin exchange and hyperfine-modified
dipolar relaxation, are mediated by the hyperfine interactions
and should therefore be inefficient. To confirm this, we
performed additional calculations with the terms V̂dip and Ĥhf

omitted from Eq. (1). The results of these calculations show
that the Zeeman relaxation cross sections computed without
V̂dip decrease by two to three orders of magnitude, whereas
those computed without Ĥhf decrease only by a few percent.
We also verified that our code produces zero inelastic cross
sections in a calculation without V̂dip for collisions between
Eu atoms in the maximally stretched hyperfine state. The
insignificant role of the hyperfine interaction at high magnetic
fields, small difference in atomic masses, almost equal natural
abundances, and the same nuclear spins of the Eu isotopes
(see Table I), implies that, to a good approximation, we
can consider only collisions between different isotopes. The
remaining computations were therefore performed only for
this case and only for one combination of the nuclear substates
mia = mib = 1/2.

Figure 2 shows the energy dependence of the elastic cross
section σelastic calculated for collision between 151Eu(msa

=
7/2, mia = 1/2) and 153Eu(msb

= 7/2, mib = 1/2) atoms at the
magnetic field value B = 0.1 T. Calculations at other values of
B established that the elastic scattering is largely insensitive
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FIG. 2. Cross section for elastic energy transfer induced by
collisions of 151Eu with 153Eu both initially in the hyperfine substate
mi = 1/2 of the ms = 7/2 manifold as a function of the collision
energy. Inset: components of the elastic scattering cross sections with
odd and even l.

to the strength of the applied field. The elastic cross section
displays several broad resonances in the interval between 10−1

and 1 cm−1. The inset of Fig. 2 shows that the peaks of the
cross sections calculated for even and odd partial waves in this
interval are shifted, resulting in a broadening of the resonances
after the summation over even and odd l. In the limit of
vanishing collision energy, the elastic cross section tends to
a constant value, in agreement with the Wigner law for s-wave
scattering [38,39].

Figure 3 presents the inelastic cross sections σinelastic

calculated for the same initial states and the magnetic field
values B = 0.05, 0.1, and 0.5 T. The energy dependence of
σinelastic is similar at different values of B. The relaxation cross
section rises rapidly as 1/

√
Ecoll with decreasing energy in

agreement with the Wigner threshold law [38,39]. In the energy
interval between 10−4 and 10−2 cm−1, the cross sections
show a rich structure due to shape resonances. The positions
of the resonances are independent of the magnetic field. A
partial-wave analysis of the cross sections indicates that the
odd and even values of l are responsible for resonances of
different types. The inset of Fig. 3 demonstrates that the
cross sections calculated for odd partial waves contribute
to one broad resonance near 2 × 10−4 cm−1 and the dense
manifold of resonance peaks above 1 × 10−3 cm−1, whereas
those calculated for even partial waves contribute only to two
broad resonances near 7 × 10−4 and 4 × 10−3 cm−1. We note
that a similar combination of broad and narrow resonances
was observed in the previous calculations for collisions of
52Cr atoms initially in the ms = 3 state [19]. The results
in Fig. 3 also show that, at larger magnetic fields, σinelastic

decreases slightly because of the larger Zeeman splitting and
the energy-gap law [27]. For high magnetic fields, the Zeeman
splitting is so large that the centrifugal barrier in the final
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FIG. 3. (Color online) Cross sections for inelastic energy transfer
induced by collisions of 151Eu with 153Eu both initially in the hyperfine
substate mi = 1/2 of the ms = 7/2 manifold as functions of the
collision energy. Inset: components of the inelastic scattering cross
sections with l = even and l = odd at B = 0.05 T.

channel (which tends to suppress the transition probability
with decreasing B) becomes negligible.

The rate constants for elastic energy transfer and Zeeman
relaxation were obtained by Boltzmann averaging of the cross
sections in Figs. 2 and 3. The calculated rate constants are
shown in Fig. 4 as functions of the temperature in the range
from 10−5 to 0.25 K at different values of B. Figure 4 shows
that, as the temperature decreases, the field-independent elastic
rate constant passes through a maximum near 10−2 K and
decreases at lower temperatures. The inelastic rate constants
also exhibit maxima near 10−2 K, which apparently originate
from the broad shape resonances displayed in Fig. 3. The lower
panel of Fig. 4 shows that the ratio of the rates for elastic
scattering and spin relaxation γ decreases with decreasing
temperature, especially below 10−3 K. This suggests that the
loading temperatures of 170–250 mK achieved in a magnetic
trap [13] can be somewhat lowered by evaporative cooling,
but, for temperatures less than a few mK, this method should
be quite inefficient. These conclusions are in qualitative
agreement with the experimental and theoretical observations
for 52Cr [9,18,19].

We have also evaluated the inelastic rate constant �inelastic

for the total Zeeman relaxation in a magnetic trap. In the
experiment, most of the Eu atoms (>90%) were subjected to
magnetic fields varying from 0.05 to 0.52 T and the density
of the trapped atoms was assumed to have a Boltzmann
distribution over B [13,23]. Under the assumption that the loss
is due to collisions between atoms in the maximally stretched
ms = 7/2 level, the two-body trap loss rate constant was found
to be �inelastic = (2.5 ± 1.5) × 10−13 cm3/s at 170 mK [13].
To account for the experimental conditions, we integrated

FIG. 4. (Color online) (a) Rate constants for collisions of 151Eu
and 153Eu in the maximally stretched ms = 7/2 state as functions of
the temperature for field-independent elastic energy transfer (solid
curve) and inelastic Zeeman relaxation (broken curves). (b) Ratio (γ )
of rate constants for elastic scattering and Zeeman relaxation.

the field-dependent inelastic rate constants with a normalized
Boltzmann distribution function in the range of the applied
fields. These calculations yield �inelastic = 8.6 × 10−13 cm3/s,
in reasonable agreement with the measured value.

As mentioned above, the ab initio calculations revealed
significant suppression of the exchange interaction in the Eu2

complex, which can be attributed to the effect of the submerged
valence f -shell under a spherical closed s-shell in Eu atoms.
To explore the sensitivity of the Zeeman relaxation from
different Zeeman states to the spin anisotropy and elucidate
the consequences of its suppression, we carried out a series
of calculations with varying interaction potentials. As before,
we considered collisions between different isotopes. The spin
anisotropy of the interaction potential operator used in our
computations is given by the Heisenberg exchange interaction
in Eq. (10). The modified interaction potentials were con-
structed by replacing the computed exchange parameter J (R)
in Eq. (10) by a modified one, J̃ (R) = ηJ (R), with η varying
in the interval from 0 (zero spin anisotropy) to 5 (maximum
spin anisotropy considered here). According to Eq. (10), the
VS=7 potential remained unaffected by this modification, while
the other potentials corresponding to S = 0–6 were subject to
change. The splitting between the potentials E0,7 calculated
as the difference between VS=7 and VS=0 at R = 4.92 Å—a
distance close to equilibrium for all potentials—varied from
0 (η = 0) to 44 (η = 5) cm−1. Using the modified potentials
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we studied three types of collisions between different iso-
topes involving the highest ms = 7/2 and lower-lying ms =
5/2 Zeeman states, namely, 151Eu(msa

= 7/2) + 153Eu(msb
=

7/2), 151Eu(msa
= 7/2) + 153Eu(msb

= 5/2), and 151Eu(msa
=

5/2) + 153Eu(msb
= 5/2). As in our previous calculations,

we considered the initial nuclear states with mia = mib =
1/2 but note that the Zeeman relaxation of lower magnetic
states should be more sensitive to the hyperfine interaction
in the presence of a stronger spin-exchange interaction.
To explore the contribution of the magnetic dipolar relax-
ation, we also repeated the calculations with Vdip set to
zero.

Figure 5 presents the dependences of the computed inelastic
cross sections on E0,7 at a magnetic field strength of 0.1
T and a collision energy of 0.001 cm−1. We verified that
the qualitative trends discussed below remain valid for all

FIG. 5. (Color online) Cross sections for inelastic collisions
between 151Eu(msa ) and 153Eu(msb ) as functions of the splitting E0,7

between the interaction potentials of the Eu2 molecule. Squares –
msa = 7/2 and msb = 7/2; triangles – msa = 7/2 and msb = 5/2;
diamonds – msa = 5/2 and msb = 5/2. Both Eu atoms are initially in
the hyperfine substate mi = 1/2. The collision energy is 0.001 cm−1

and the magnetic field is 0.1 T. The cross sections were obtained from
the full calculation (solid lines and filled symbols) and calculation
without the V̂dip term (dashed lines and open symbols). Vertical dashed
line indicates the unmodified splitting corresponding to the original
ab initio calculations.

combinations of initial hyperfine substates and the other values
of B and Ecoll considered in this work. The spin anisotropy
conserves both S and MS, and therefore it cannot play any role
in collisions of atoms in the maximally stretched electronic
spin state. Figure 5 confirms this. Calculations without Vdip

indicate that transitions from lower Zeeman states can be
driven by dipolar relaxation, but only when the spin anisotropy
is suppressed. Figure 5 shows that, in the absence of splitting
between the adiabatic potentials (η = 0), these collisions are
entirely magnetic dipole induced, and the cross sections do not
differ significantly from those obtained for msa

= msb
= 7/2.

The role of the electronic spin-exchange interaction, however,
increases quickly with the splitting between the potentials.
The calculations with the splitting E0,7 ≈ 9 cm−1 (η = 1)
revealed different mechanisms of Zeeman relaxation of the
ms = 5/2 state depending on the initial state of the collision
partner. The results denoted by the vertical dashed line in Fig. 5
show that the magnetic dipole interaction plays the dominant
role when the collision partner is in the ms = 7/2 state, but
when both atoms are initially in the ms = 5/2 state, the spin
anisotropy plays the dominant role. The collision dynamics of
subjacent Zeeman states (ms � 7/2) in a magnetic trap is de-
termined predominantly by collisions involving the maximally
stretched state (ms = 7/2). Therefore, the ab initio results
establish the dipolar relaxation to be the main binary loss
mechanism for the ms = 5/2 state. At higher values of E0,7

(η > 1), the contribution of the dipolar relaxation quickly
becomes negligible, and this tendency is more prominent for
msa

= msb
= 5/2.

The results presented in Fig. 5 show that the Zeeman
relaxation of lower Zeeman states is very sensitive to spin
anisotropy. The inelastic cross sections calculated for colli-
sions involving the ms = 5/2 state increase approximately
by a factor of 20 as E0,7 increases from 0 to 44 cm−1

making the Zeeman relaxation more efficient than that of
the maximally stretched ms = 7/2 state. Recent analysis of
the experimental data [23] showed that the ms = 5/2 and
ms = 3/2 states can be trapped under the same experimental
conditions as for the ms = 7/2 state and its hyperfine substates.
These states persisted throughout the trap lifetime. Our results
demonstrate that this may be due to the spin anisotropy
suppression. Unfortunately, Zeeman relaxation rates for the
co-trapped levels were not estimated in the experiment but,
if measured, they could provide accurate information on the
electronic spin-exchange interaction in the Eu dimer. Little is
known in the literature about the electronic structure of the
Eu2 molecule (see Ref. [34]). It was probed in a series of
experiments [40–43] which, however, provided very scarce
and contradictory information. Previous theoretical works met
with difficulties and even failed to establish with certainty the
multiplicity of the ground electronic state of the dimer [44,45].
We have used accurate ab initio potentials recently computed
for all spin states arising from the interaction of two Eu(8S◦)
atoms [34]. Our results show that cold collision experiments
with multiple Zeeman states may provide tests of the ab initio
results. We note that Eu atoms were detected in the trap by
laser absorption spectroscopy with a resolution sufficient to
distinguish transitions from ms = 7/2, 5/2, and 3/2 (see Fig. 5
in Ref. [23]) suggesting that such state-selective measurements
of collision rates should be feasible.
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IV. SUMMARY

The main results of our theoretical study of the dynamics
of collisions between magnetically trapped Eu atoms can be
summarized as follows.

(1) We have analyzed the collision-induced relaxation of
Eu atoms in the maximally stretched ms = 7/2 level.
We found that different hyperfine substates of the
ms = 7/2 manifold depopulate at the same rate, in
agreement with the experimental observations. We
confirmed that the bare (i.e., hyperfine-unmodified, state-
independent) dipolar relaxation plays the dominant role in
inducing the trap loss. We found that the collision energy
dependence of cross sections for both elastic and inelastic
scattering is modified by a manifold of shape resonances
in a multiple partial-wave scattering regime. The elastic
energy transfer is insensitive to the magnetic field, whereas
the efficacy of Zeeman relaxation slightly increases as the
magnetic field strength decreases.

(2) By averaging the calculation results over magnetic fields
and collision energies in the trap, we computed the rate
constant for Zeeman relaxation of magnetically trapped Eu
atoms. Our value of 8.6 × 10−13 cm3/s is in reasonable
agreement with the experimental value (2.5 ± 1.5) ×
10−13 cm3/s. The possibility of direct evaporative cooling
of Eu atoms was analyzed based on the calculations of the
collision rate constants at cold and ultracold temperatures.
The limiting temperatures of this technique for Eu were
found to be similar to those observed previously for
52Cr.

(3) We have analyzed the role of the electronic spin-
exchange interactions in determining transitions from
the lower-energy Zeeman levels. Using an ab initio
model [34], we demonstrated that the relaxation of the
ms = 5/2 state is very sensitive to the spin-exchange
para-meter J that determines the splitting between the
spin states of the Eu2 molecule. As a consequence of
the spin anisotropy suppression for the submerged va-
lence f shell in Eu atoms, the dipolar relaxation was
shown to play the dominant role in trap loss of ms =
5/2. We propose that cold collision experiments with
multiple Zeeman states could be a promising way for
obtaining accurate information on the electronic spin-
exchange interaction in complex molecules such as Eu2.
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