Theoretical energies of low-lying states of light helium-like ions

Vladimir A. Yerokhin
Center for Advanced Studies, St. Petersburg State Polytechnical University, Polytekhnicheskaya 29, St. Petersburg 195251, Russia

Krzysztof Pachucki
Institute of Theoretical Physics, University of Warsaw, Hoża 69, PL-00-681 Warsaw, Poland
(Received 13 December 2009; published 18 February 2010)

Abstract

A rigorous quantum electrodynamical calculation is presented for energy levels of the $1^{1} S, 2{ }^{1} S, 2^{3} S, 2^{1} P_{1}$, and $2^{3} P_{0,1,2}$ states of helium-like ions with the nuclear charge $Z=3, \ldots, 12$. The calculational approach accounts for all relativistic, quantum electrodynamical, and recoil effects up to orders $m \alpha^{6}$ and $m^{2} / M \alpha^{5}$, thus advancing the previously reported theory of light helium-like ions by one order in α.

DOI: 10.1103/PhysRevA.81.022507
PACS number(s): 31.30.J-, 12.20.Ds, 06.20.Jr, 31.15.-p

I. INTRODUCTION

Atomic helium and light helium-like ions have long been attractive subjects of theoretical and experimental investigations. From the theoretical point of view, helium-like atoms are the simplest few-body systems. As such, they are traditionally used as a testing ground for different methods of the description of atomic structure. On the experimental side, small natural line widths of transitions between the metastable ${ }^{3} P$ and ${ }^{3} S$ states of helium-like ions permit spectroscopic measurements of high precision. For atomic helium, experimental investigations are nowadays carried out with the relative accuracy up to 7×10^{-12} [1]. An advantage of the helium-like ions as compared to, for example, hydrogenlike ones, is that the transition frequency increases slowly with the nuclear charge number $Z(\sim Z)$. This feature ensures that wavelengths of a significant part of the helium isoelectronic sequence fall in the region suitable for accurate experimental determination.

There are presently two main theoretical approaches that allow one to systematically account for the electron-correlation, relativistic, and quantum electrodynamical (QED) effects in few-electron systems. The first one, traditionally used for light systems, relies on an expansion of the relativistic and QED effects in terms of α and $Z \alpha$ (where α is the fine-structure constant) and treats the nonrelativistic electronelectron interaction nonperturbatively. This approach started with the pioneering works of Araki [2] and Sucher [3], who derived the expression for the Lamb shift in many-electron systems complete through the order $m \alpha^{5}$. The other approach aims primarily at high- Z ions. It does not use any expansion in the binding-strength parameter $Z \alpha$ (and thus is often referred to as the all-order approach) but treats the electronelectron interaction within the perturbative expansion with the parameter $1 / Z$. A systematic formulation of this method is presented in Ref. [4].

These two approaches can be considered as complementary, the first being clearly preferable for light atoms and the second for heavy ions. The intermediate region of nuclear charges around $Z=12$ is the most difficult one for theory, as contributions not (yet) accounted by either of these methods have their maximal value there. In order to provide accurate predictions for the whole isoelectronic sequence, it is necessary to combine these two approaches.

For the first time a combination of the complementary approaches was made by Drake [5]. His results for energies of helium-like ions comprise all effects up to order $m \alpha^{5}$ in the low- Z region, whereas in the high- Z region, they are complete up to the next-to-the-leading order in $1 / Z$ for nonradiative effects and to the leading order for radiative effects. Since then, significant progress was achieved in theoretical understanding of energy levels of atomic helium, whose description is now complete through order $m \alpha^{6}[6,7]$. Also in the high- Z region, theoretical energies have recently been significantly improved by a rigorous treatment of the twoelectron QED corrections [8], which completed the $O(1 / Z)$ part of the radiative effects.

In the present investigation we aim to improve theoretical predictions of the $n=1$ and $n=2$ energy levels of light helium-like ions. To this end, we perform a calculation that includes all QED and recoil effects up to orders $m \alpha^{6}$ and $m^{2} / M \alpha^{5}$ (where M is the nuclear mass). In order to establish a basis for merging the current approach with the all-order calculations, we perform an extensive analysis of the $1 / Z$ expansion of individual corrections. This analysis also provides an effective test of consistency of our calculational results and of the $1 / Z$-expansion data available in the literature.

II. THEORY OF THE ENERGY LEVELS

In this section, we present a summary of contributions to the energy levels of two-electron atoms complete up to orders $m \alpha^{6}$ and $m^{2} / M \alpha^{5}$.

According to QED theory, energy levels of atoms are represented by an expansion in powers of α of the form

$$
\begin{equation*}
E(\alpha)=E^{(2)}+E^{(4)}+E^{(5)}+E^{(6)}+E^{(7)}+\cdots, \tag{1}
\end{equation*}
$$

where $E^{(n)} \equiv m \alpha^{n} \mathcal{E}^{(n)}$ is a contribution of order α^{n} and may include powers of $\ln \alpha$. Each of $\mathcal{E}^{(n)}$ is in turn expanded in powers of the electron-to-nucleus mass ratio m / M :

$$
\begin{equation*}
\mathcal{E}^{(n)}=\mathcal{E}_{\infty}^{(n)}+\mathcal{E}_{M}^{(n)}+\mathcal{E}_{M^{2}}^{(n)}+\cdots, \tag{2}
\end{equation*}
$$

where $\mathcal{E}_{M}^{(n)}$ denotes the correction of first order in m / M and $\mathcal{E}_{M^{2}}^{(n)}$ is the second-order correction. Note that, for the nonrelativistic energy, it is more natural to expand in m_{r} / M (where m_{r} is the reduced mass) rather than in m / M, since such expansion has smaller coefficients. For the relativistic
corrections, however, the natural recoil expansion parameter is m / M, so for consistency we use it for the nonrelativistic energy as well.

The terms of the double perturbation expansion (1) and (2) are expressed as expectation values of some effective Hamiltonians (in some cases, of nonlocal operators) and as secondand higher order perturbation corrections induced by these Hamiltonians (operators). It is noteworthy that the expansion (1) is employed also for the states that are mixed by the relativistic effects, namely $2{ }^{1} P_{1}$ and $2^{3} P_{1}$. The mixing effects are treated perturbatively. (So, the leading effect due to the $2{ }^{1} P_{1}-2{ }^{3} P_{1}$ mixing appears naturally as the second-order $m \alpha^{6}$ correction, together with contributions from other intermediate states.) This differs from the approach used, for example, in Ref. [5], where a two-by-two matrix was constructed for this pair of states and the energies were obtained by a diagonalization.

The leading contribution to the energy $\mathcal{E}_{\infty}^{(2)} \equiv \mathcal{E}_{0}$ is the eigenvalue of the nonrelativistic Hamiltonian,

$$
\begin{equation*}
H^{(2)} \equiv H_{0}=\sum_{a}\left(\frac{\vec{p}_{a}^{2}}{2}-\frac{Z}{r_{a}}\right)+\sum_{a<b} \frac{1}{r_{a b}} \tag{3}
\end{equation*}
$$

The first- and second-order recoil corrections to the nonrelativistic energy are given by

$$
\begin{align*}
\mathcal{E}_{M}^{(2)} & =-\frac{m}{M} \mathcal{E}_{\infty}^{(2)}+\left\langle H_{\mathrm{rec}}^{(2)}\right\rangle, \tag{4}\\
\mathcal{E}_{M^{2}}^{(2)}= & \left(\frac{m}{M}\right)^{2} \mathcal{E}_{\infty}^{(2)}-2 \frac{m}{M}\left\langle H_{\mathrm{rec}}^{(2)}\right\rangle \\
& +\left\langle H_{\mathrm{rec}}^{(2)} \frac{1}{\left(\mathcal{E}_{0}-H_{0}\right)^{\prime}} H_{\mathrm{rec}}^{(2)}\right\rangle, \tag{5}
\end{align*}
$$

where

$$
\begin{equation*}
H_{\mathrm{rec}}^{(2)}=\frac{m}{M} \sum_{a<b} \vec{p}_{a} \cdot \vec{p}_{b} \tag{6}
\end{equation*}
$$

is the mass polarization operator.
The leading relativistic correction $\mathcal{E}_{\infty}^{(4)}$ is given by the expectation value of the Breit-Pauli Hamiltonian $H^{(4)}$ [9],

$$
\begin{align*}
H^{(4)}= & \sum_{a}\left[-\frac{\vec{p}_{a}^{4}}{8}+\frac{\pi Z}{2} \delta^{3}\left(r_{a}\right)+\frac{Z}{4} \vec{\sigma}_{a} \cdot \frac{\vec{r}_{a}}{r_{a}^{3}} \times \vec{p}_{a}\right] \\
& +\sum_{a<b}\left\{-\pi \delta^{3}\left(r_{a b}\right)-\frac{1}{2} p_{a}^{i}\left(\frac{\delta^{i j}}{r_{a b}}+\frac{r_{a b}^{i} r_{a b}^{j}}{r_{a b}^{3}}\right) p_{b}^{j}\right. \\
& -\frac{2 \pi}{3} \vec{\sigma}_{a} \cdot \vec{\sigma}_{b} \delta^{3}\left(r_{a b}\right)+\frac{\sigma_{a}^{i} \sigma_{b}^{j}}{4 r_{a b}^{3}}\left(\delta^{i j}-3 \frac{r_{a b}^{i} r_{a b}^{j}}{r_{a b}^{2}}\right) \\
& +\frac{1}{4 r_{a b}^{3}}\left[2\left(\vec{\sigma}_{a} \cdot \vec{r}_{a b} \times \vec{p}_{b}-\vec{\sigma}_{b} \cdot \vec{r}_{a b} \times \vec{p}_{a}\right)\right. \\
& \left.\left.+\left(\vec{\sigma}_{b} \cdot \vec{r}_{a b} \times \vec{p}_{b}-\vec{\sigma}_{a} \cdot \vec{r}_{a b} \times \vec{p}_{a}\right)\right]\right\} . \tag{7}
\end{align*}
$$

The finite-nuclear-mass correction to the Breit contribution $\mathcal{E}_{M}^{(4)}$ is conveniently separated into the mass scaling, the mass polarization, and the operator parts. The mass scaling prefactor is $\left(m_{r} / m\right)^{4}$ for the first term in Eq. (7) and $\left(m_{r} / m\right)^{3}$, for all the others. The mass polarization part represents the first-order
perturbation of $\mathcal{E}_{\infty}^{(4)}$ by the mass-polarization operator (6). The operator part is given by the expectation value of the recoil addition to the Breit-Pauli Hamiltonian,

$$
\begin{equation*}
H_{\mathrm{rec}}^{(4)}=\frac{Z m}{2 M} \sum_{a b}\left[\frac{\vec{r}_{a}}{r_{a}^{3}} \times \vec{p}_{b} \cdot \vec{\sigma}_{a}-p_{a}^{i}\left(\frac{\delta^{i j}}{r_{a}}+\frac{r_{a}^{i} r_{a}^{j}}{r_{a}^{3}}\right) p_{b}^{j}\right] . \tag{8}
\end{equation*}
$$

$\mathcal{E}_{\infty}^{(5)}$ is the leading QED correction [2,3]. We divide it into logarithmic and nonlogarithmic parts, $\mathcal{E}_{\infty}^{(5)}=\mathcal{E}_{\infty}^{(5)}(\log)+$ $\mathcal{E}_{\infty}^{(5)}($ nlog $)$, which are given by

$$
\begin{align*}
\mathcal{E}_{\infty}^{(5)}(\log)= & \frac{14}{3} \ln (Z \alpha) \sum_{a<b}\left\langle\delta^{3}\left(r_{a b}\right)\right\rangle \\
& +\frac{4 Z}{3} \ln \left[(Z \alpha)^{-2}\right] \sum_{a}\left\langle\delta^{3}\left(r_{a}\right)\right\rangle \tag{9}
\end{align*}
$$

and

$$
\begin{align*}
\mathcal{E}_{\infty}^{(5)}(\mathrm{nlog})= & \frac{164}{15} \sum_{a<b}\left\langle\delta^{3}\left(r_{a b}\right)\right\rangle-\frac{14}{3} \sum_{a<b} \widetilde{Q}_{a b} \\
& +\left[\frac{19}{30}-\ln \left(\frac{k_{0}}{Z^{2}}\right)\right] \frac{4 Z}{3} \sum_{a}\left\langle\delta^{3}\left(r_{a}\right)\right\rangle+\left\langle H_{\mathrm{fs}}^{(5)}\right\rangle \tag{10}
\end{align*}
$$

where

$$
\begin{equation*}
\widetilde{Q}_{a b}=\left\langle\frac{1}{4 \pi r_{a b}^{3}}+\delta^{3}\left(r_{a b}\right) \ln Z\right\rangle \tag{11}
\end{equation*}
$$

and the singular operator r^{-3} is defined by

$$
\begin{align*}
\left\langle\frac{1}{r^{3}}\right\rangle \equiv & \lim _{a \rightarrow 0} \int d^{3} r \phi^{*}(\vec{r}) \phi(\vec{r}) \\
& \times\left[\frac{1}{r^{3}} \Theta(r-a)+4 \pi \delta^{3}(r)(\gamma+\ln a)\right] \tag{12}
\end{align*}
$$

where γ is the Euler constant. The Bethe logarithm is defined as

$$
\begin{equation*}
\ln \left(k_{0}\right)=\frac{\left\langle\sum_{a} \vec{p}_{a}\left(H_{0}-\mathcal{E}_{0}\right) \ln \left[2\left(H_{0}-\mathcal{E}_{0}\right)\right] \sum_{b} \vec{p}_{b}\right\rangle}{2 \pi Z\left\langle\sum_{c} \delta^{3}\left(r_{c}\right)\right\rangle} \tag{13}
\end{equation*}
$$

The operator $H_{\mathrm{fs}}^{(5)}$ is the anomalous magnetic moment correction to the spin-dependent part of the Breit-Pauli Hamiltonian. $H_{\mathrm{fs}}^{(5)}$ does not contribute to the energies of the singlet states nor to the spin-orbit averaged levels but it yields the $m \alpha^{5}$ contribution to the fine-structure splitting. It is given by

$$
\begin{align*}
H_{\mathrm{fs}}^{(5)}= & \frac{Z}{4 \pi} \sum_{a} \vec{\sigma}_{a} \cdot \frac{\vec{r}_{a}}{r_{a}^{3}} \times \vec{p}_{a} \\
& +\sum_{a<b}\left\{\frac{1}{4 \pi} \frac{\sigma_{a}^{i} \sigma_{b}^{j}}{r_{a b}^{3}}\left(\delta^{i j}-3 \frac{r_{a b}^{i} r_{a b}^{j}}{r_{a b}^{2}}\right)\right. \\
& +\frac{1}{4 \pi r_{a b}^{3}}\left[2\left(\vec{\sigma}_{a} \cdot \vec{r}_{a b} \times \vec{p}_{b}-\vec{\sigma}_{b} \cdot \vec{r}_{a b} \times \vec{p}_{a}\right)\right. \\
& \left.\left.+\left(\vec{\sigma}_{b} \cdot \vec{r}_{a b} \times \vec{p}_{b}-\vec{\sigma}_{a} \cdot \vec{r}_{a b} \times \vec{p}_{a}\right)\right]\right\} . \tag{14}
\end{align*}
$$

We note that despite the presence of terms with $\ln Z$ in Eq. (10), the correction $\mathcal{E}_{\infty}^{(5)}($ nlog $)$ does not have logarithmic terms in its $1 / Z$ expansion.

The recoil correction $\mathcal{E}_{M}^{(5)}$ consists of four parts [10]:

$$
\begin{equation*}
\mathcal{E}_{M}^{(5)}=\frac{m}{M}\left(\mathcal{E}_{1}+\mathcal{E}_{2}+\mathcal{E}_{3}\right)+\left\langle H_{\mathrm{fs}, \text { rec }}^{(5)}\right\rangle, \tag{15}
\end{equation*}
$$

where

$$
\begin{align*}
\mathcal{E}_{1}= & -3 \mathcal{E}_{\infty}^{(5)}+\frac{4 Z}{3} \sum_{a}\left\langle\delta^{3}\left(r_{a}\right)\right\rangle-\frac{14}{3} \sum_{a<b}\left\langle\delta^{3}\left(r_{a b}\right)\right\rangle, \tag{16}\\
\mathcal{E}_{2}= & Z^{2}\left[-\frac{2}{3} \ln (Z \alpha)+\frac{62}{9}-\frac{8}{3} \ln \left(\frac{k_{0}}{Z^{2}}\right)\right] \sum_{a}\left\langle\delta^{3}\left(r_{a}\right)\right\rangle \\
& -\frac{14 Z^{2}}{3} \sum_{a} \widetilde{Q}_{a}, \tag{17}
\end{align*}
$$

with \widetilde{Q}_{a} defined analogously to Eq. (11), and $(m / M) \mathcal{E}_{3}$ is the first-order perturbation of $\mathcal{E}_{\infty}^{(5)}$ due to the mass-polarization operator (6). The operator $H_{\mathrm{fs}, \text { rec }}^{(5)}$ yields a nonvanishing contribution to the fine-structure splitting only. It is given by

$$
\begin{equation*}
H_{\mathrm{fs}, \mathrm{rec}}^{(5)}=\frac{m}{M} \frac{Z}{4 \pi} \sum_{a b} \frac{\vec{r}_{a}}{r_{a}^{3}} \times \vec{p}_{b} \cdot \vec{\sigma}_{a} \tag{18}
\end{equation*}
$$

We note that the last term in Eq. (16) was omitted in the original derivation of Ref. [10].

The complete result for the $m \alpha^{6}$ correction $\mathcal{E}_{\infty}^{(6)}$ to the energy levels was derived by one of the authors (K.P.) in a series of papers $[6,7,11,12]$ as

$$
\begin{align*}
\mathcal{E}_{\infty}^{(6)}= & -\ln (Z \alpha) \pi \sum_{a<b}\left\langle\delta^{3}\left(r_{a b}\right)\right\rangle+E_{\mathrm{sec}} \\
& +\left\langle H_{\mathrm{nrad}}^{(6)}+H_{R 1}^{(6)}+H_{R 2}^{(6)}+H_{\mathrm{fs}}^{(6)}+H_{\mathrm{fs}, a \mathrm{amm}}^{(6)}\right\rangle . \tag{19}
\end{align*}
$$

The first term in this expression contains the complete logarithmic dependence of the $m \alpha^{6}$ correction. The part of it proportional to $\ln \alpha$ was first obtained in Ref. [13]. The remaining logarithmic part proportional to $\ln Z$ was implicitly present in formulas reported in Ref. [6,7]. (It originates from the expectation value of the operator $1 / r_{a b}^{3}$.) In Eq. (19), we group all logarithmic terms together so that the remaining part does not have any logarithms in its $1 / Z$ expansion.

The term $E_{\text {sec }}$ in Eq. (19) is the second-order perturbation correction induced by the Breit-Pauli Hamiltonian. (More specifically, it is the finite residual after separating divergent contributions that cancel out in the sum with the expectation value of the effective $m \alpha^{6}$ Hamiltonian.) The first part of the effective Hamiltonian, $H_{\text {nrad }}^{(6)}$, originates from the nonradiative part of the electron-nucleus and the electron-electron interaction. The next two terms, $H_{R 1}^{(6)}$ and $H_{R 2}^{(6)}$, are due to the one-loop and two-loop radiative effects, respectively. The last two parts, $H_{\mathrm{fs}}^{(6)}$ and $H_{\mathrm{fs}, \text { amm }}^{(6)}$, are the spin-dependent operators first derived by Douglas and Kroll [14]. They do not contribute to the energies of the singlet states nor to the spin-orbit averaged levels. Expressions for these operators are well known and are given, for example, by Eqs. (3) and (7) of Ref. [15]. The nonradiative part of the $m \alpha^{6}$ effective Hamiltonian is rather complicated. For simplicity, we present it specifically for a two-electron atom. The corresponding expression reads [6,7]

$$
\begin{aligned}
H_{\text {nrad }}^{(6)}= & -\frac{\mathcal{E}_{0}^{3}}{2}+\left[\left(-\mathcal{E}_{0}+\frac{3}{2} \vec{p}_{2}^{2}+\frac{1-2 Z}{r_{2}}\right) \frac{Z \pi}{4} \delta^{3}\left(r_{1}\right)\right. \\
& +(1 \leftrightarrow 2)]+\frac{\vec{P}^{2}}{6} \pi \delta^{3}(r)-\frac{\left(3+\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}\right)}{24} \pi \vec{p} \delta^{3}(r) \vec{p}
\end{aligned}
$$

$$
\begin{align*}
& -\left(\frac{Z}{r_{1}}+\frac{Z}{r_{2}}\right) \frac{\pi}{2} \delta^{3}(r)+\left(\frac{13}{12}+\frac{8}{\pi^{2}}-\frac{3}{2} \ln (2)\right. \\
& \left.-\frac{39 \zeta(3)}{4 \pi^{2}}\right) \pi \delta^{3}(r)+\frac{\mathcal{E}_{0}^{2}+2 \mathcal{E}^{(4)}}{4 r}-\frac{\mathcal{E}_{0}}{r^{2}} \frac{\left(31+5 \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}\right)}{32} \\
& -\frac{\mathcal{E}_{0}}{2 r}\left(\frac{Z}{r_{1}}+\frac{Z}{r_{2}}\right)+\frac{\mathcal{E}_{0}}{4}\left(\frac{Z}{r_{1}}+\frac{Z}{r_{2}}\right)^{2} \\
& -\frac{1}{r^{2}}\left(\frac{Z}{r_{1}}+\frac{Z}{r_{2}}-\frac{1}{r}\right) \frac{\left(23+5 \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}\right)}{32} \\
& -\frac{1}{4 r}\left(\frac{Z}{r_{1}}+\frac{Z}{r_{2}}\right)^{2}+\frac{Z^{2}}{2 r_{1} r_{2}}\left(\mathcal{E}_{0}+\frac{Z}{r_{1}}+\frac{Z}{r_{2}}-\frac{1}{r}\right) \\
& -Z\left(\frac{\vec{r}_{1}}{r_{1}^{3}}-\frac{\vec{r}_{2}}{r_{2}^{3}}\right) \cdot \frac{\vec{r}}{r^{3}} \frac{\left(13+5 \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}\right)}{64} \\
& +\frac{Z}{4}\left(\frac{\vec{r}_{1}}{r_{1}^{3}}-\frac{\vec{r}_{2}}{r_{2}^{3}}\right) \cdot \frac{\vec{r}}{r^{2}}-\frac{Z^{2}}{8} \frac{r_{1}^{i}}{r_{1}^{3}} \frac{\left(r^{i} r^{j}-3 \delta^{i j} r^{2}\right)}{r} \frac{r_{2}^{j}}{r_{2}^{3}} \\
& +\left[\frac{Z^{2}}{8} \frac{1}{r_{1}^{2}} \vec{p}_{2}^{2}+\frac{Z^{2}}{8} \vec{p}_{1} \frac{1}{r_{1}^{2}} \vec{p}_{1}+\vec{p}_{1} \frac{1}{r^{2}} \vec{p}_{1} \frac{\left(47+5 \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}\right)}{64}\right. \\
& +(1 \leftrightarrow 2)]+\frac{1}{4} p_{1}^{i}\left(\frac{Z}{r_{1}}+\frac{Z}{r_{2}}\right) \frac{\left(r^{i} r^{j}+\delta^{i j} r^{2}\right)}{r^{3}} p_{2}^{j} \\
& +P^{i} \frac{\left(3 r^{i} r^{j}-\delta^{i j} r^{2}\right)}{r^{5}} P^{j} \frac{\left(-3+\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}\right)}{192} \\
& -\left[\frac{Z}{8} p_{2}^{k} \frac{r_{1}^{i}}{r_{1}^{3}}\left(\delta^{j k} \frac{r^{i}}{r}-\delta^{i k} \frac{r^{j}}{r}-\delta^{i j} \frac{r^{k}}{r}-\frac{r^{i} r^{j} r^{k}}{r^{3}}\right) p_{2}^{j}\right. \\
& +(1 \leftrightarrow 2)]-\frac{\mathcal{E}_{0}}{8} p_{1}^{2} p_{2}^{2}-\frac{1}{4} p_{1}^{2}\left(\frac{Z}{r_{1}}+\frac{Z}{r_{2}}\right) p_{2}^{2} \\
& +\frac{1}{4} \vec{p}_{1} \times \vec{p}_{2} \frac{1}{r} \vec{p}_{1} \times \vec{p}_{2}+\frac{1}{8} p_{1}^{k} p_{2}^{l} \\
& \times\left(-\delta^{j l} \frac{r^{i} r^{k}}{r^{3}}-\delta^{i k} \frac{r^{j} r^{l}}{r^{3}}+3 \frac{r^{i} r^{j} r^{k} r^{l}}{r^{5}}\right) p_{1}^{i} p_{2}^{j} \\
& +\ln (Z) \pi \delta^{3}(r), \tag{20}
\end{align*}
$$

where $\vec{P}=\vec{p}_{1}+\vec{p}_{2}, \vec{p}=\left(\vec{p}_{1}-\vec{p}_{2}\right) / 2$, and $\vec{r}=\vec{r}_{1}-\vec{r}_{2}$. We note that the operator $H_{\text {nrad }}^{(6)}$ is defined in such a way that its expectation values does not contain any logarithmic terms in the $1 / Z$ expansion, as the last term of Eq. (20) is compensated by the corresponding contribution from the $1 / r^{3}$ operator.

The effective Hamiltonians induced by the radiative effects are $[6,16,17]$

$$
\begin{align*}
H_{R 1}^{(6)}= & Z^{2}\left[\frac{427}{96}-2 \ln (2)\right] \pi\left[\delta^{3}\left(r_{1}\right)+\delta^{3}\left(r_{2}\right)\right] \\
& +\left[\frac{6 \zeta(3)}{\pi^{2}}-\frac{697}{27 \pi^{2}}-8 \ln (2)+\frac{1099}{72}\right] \pi \delta^{3}(r) \tag{21}
\end{align*}
$$

and

$$
\begin{align*}
H_{R 2}^{(6)}= & Z\left[-\frac{9 \zeta(3)}{4 \pi^{2}}-\frac{2179}{648 \pi^{2}}+\frac{3 \ln (2)}{2}-\frac{10}{27}\right] \pi \\
& \times\left[\delta^{3}\left(r_{1}\right)+\delta^{3}\left(r_{2}\right)\right]+\left[\frac{15 \zeta(3)}{2 \pi^{2}}+\frac{631}{54 \pi^{2}}\right. \\
& \left.-5 \ln (2)+\frac{29}{27}\right] \pi \delta^{3}(r) . \tag{22}
\end{align*}
$$

The second-order correction can be represented as

$$
\begin{align*}
E_{\mathrm{sec}}= & \left\langle H_{\mathrm{nfs}}^{(4)^{\prime}} \frac{1}{\left(E_{0}-H_{0}\right)^{\prime}} H_{\mathrm{nfs}}^{(4)^{\prime}}\right\rangle+2\left\langle H_{\mathrm{nfs}}^{(4)} \frac{1}{\left(E_{0}-H_{0}\right)^{\prime}} H_{\mathrm{fs}}^{(4)}\right\rangle \\
& +\left\langle H_{\mathrm{fs}}^{(4)} \frac{1}{\left(E_{0}-H_{0}\right)^{\prime}} H_{\mathrm{fs}}^{(4)}\right\rangle \tag{23}
\end{align*}
$$

where $H_{\mathrm{nfs}}^{(4)}$ and $H_{\mathrm{fs}}^{(4)}$ are the spin-independent and spin-dependent parts of the Breit-Pauli Hamiltonian (7), respectively. The operator $H_{\mathrm{nfs}}^{(4)^{\prime}}$ is obtained from $H_{\mathrm{nfs}}^{(4)}$ by a transformation that eliminates divergences in the second-order matrix elements [6]. The transformed operator is given by

$$
\begin{align*}
H_{\mathrm{nfs}}^{(4)^{\prime}}= & -\frac{1}{2}\left(\mathcal{E}_{0}-V\right)^{2}-p_{1}^{i} \frac{1}{2 r}\left(\delta^{i j}+\frac{r^{i} r^{j}}{r^{2}}\right) p_{2}^{j} \\
& +\frac{1}{4} \vec{\nabla}_{1}^{2} \vec{\nabla}_{2}^{2}-\frac{Z}{4} \frac{\vec{r}_{1}}{r_{1}^{3}} \cdot \vec{\nabla}_{1}-\frac{Z}{4} \frac{\vec{r}_{2}}{r_{2}^{3}} \cdot \vec{\nabla}_{2} \tag{24}
\end{align*}
$$

where $\vec{\nabla}_{1}^{2} \vec{\nabla}_{2}^{2}$ is understood as a differentiation of the wave function on the right-hand side as a function [omitting $\delta^{3}(r)$] and $V=-Z / r_{1}-Z / r_{2}+1 / r$.

An intriguing feature of the formulas presented in this section is that their logarithmic dependence enters only in the form of $\ln (Z \alpha)$. This is not at all obvious a priori since $\ln (Z \alpha)$ appears naturally only in contributions induced by the electron-nucleus interaction. The effects of the electronelectron interaction usually yield logarithms of α, whereas logarithms of Z are implicitly present in matrix elements of singular operators. The fact that logarithms of α and logarithms of Z have coefficients that match each other comes "accidentally" from the derivation.

The complete result for the corrections of order $m \alpha^{7}$ for the helium Lamb shift is not presently available (but it is known for the fine-structure splitting [15,18]). One can, however, easily generalize some of the hydrogenic results, namely those that are proportional to the electron density at the nucleus. These are (i) the one-loop radiative correction of order $m \alpha(Z \alpha)^{6} \ln ^{2}(Z \alpha)^{-2}$, (ii) the two-loop radiative correction of order $m \alpha^{2}(Z \alpha)^{5}$, and (iii) the nonrelativistic correction due to the finite nuclear size. The first two effects yield the main contribution to the higher order remainder function of S states in light hydrogen-like ions. We expect that they dominate for light helium-like ions as well.

Following Ref. [5], we approximate the higher order radiative ("rad") and the finite-nuclear-size ("fs") correction to the energies of helium-like ions by

$$
\begin{align*}
\mathcal{E}_{\mathrm{rad}}^{(7+)} & =\mathcal{E}_{\mathrm{rad}, \mathrm{H}}^{(7+)} \frac{\left\langle\sum_{i} \delta^{3}\left(r_{i}\right)\right\rangle}{\left\langle\sum_{i} \delta^{3}\left(r_{i}\right)\right\rangle_{\mathrm{H}}}, \tag{25}\\
E_{\mathrm{fs}} & =E_{\mathrm{fs}, \mathrm{H}} \frac{\left\langle\sum_{i} \delta^{3}\left(r_{i}\right)\right\rangle}{\left\langle\sum_{i} \delta^{3}\left(r_{i}\right)\right\rangle_{\mathrm{H}}}, \tag{26}
\end{align*}
$$

where the subscript H corresponds to the "hydrogenic" limit, that is, the limit of the noninteracting electrons and

$$
\begin{equation*}
\left\langle\sum_{i} \delta^{3}\left(r_{i}\right)\right\rangle_{\mathrm{H}}=\frac{Z^{3}}{\pi}\left(1+\frac{\delta_{l, 0}}{n^{3}}\right) . \tag{27}
\end{equation*}
$$

The approximation of Eqs. (25) and (26) is exact for the aforementioned corrections proportional to the electron density
at the nucleus. It is expected also to provide a meaningful estimate for contributions that weakly depend on n [such as the nonlogarithmic radiative correction of order $\left.m \alpha(Z \alpha)^{6}\right]$. Moreover, this approximation is exact to the leading order in the $1 / Z$ expansion, thus providing a meaningful estimate for high- Z helium-like ions as well.

For all the states under consideration except $2{ }^{1} P_{1}$ and $2{ }^{3} P_{1}$, the "hydrogenic" remainder function is just the sum of the corresponding remainders for the two electrons in the configuration:

$$
\begin{equation*}
\mathcal{E}_{\mathrm{rad}, \mathrm{H}}^{(7+)}=\mathcal{E}_{\mathrm{rad}}^{(7+)}(1 s)+\mathcal{E}_{\mathrm{rad}}^{(7+)}(n l j) \tag{28}
\end{equation*}
$$

For the $2{ }^{1} P_{1}$ and $2{ }^{3} P_{1}$ states, the Dirac levels need to be first transformed from the $j j$ to the $L S$ coupling and thus [5]

$$
\begin{align*}
& \mathcal{E}_{\mathrm{rad}, \mathrm{H}}^{(7+)}\left(2^{1} P_{1}\right)=\mathcal{E}_{\mathrm{rad}}^{(7+)}(1 s)+\frac{2}{3} \mathcal{E}_{\mathrm{rad}}^{(7+)}\left(2 p_{3 / 2}\right)+\frac{1}{3} \mathcal{E}_{\mathrm{rad}}^{(7+)}\left(2 p_{1 / 2}\right), \\
& \mathcal{E}_{\mathrm{rad}, \mathrm{H}}^{(7+)}\left(2^{3} P_{1}\right)=\mathcal{E}_{\mathrm{rad}}^{(7+)}(1 s)+\frac{1}{3} \mathcal{E}_{\mathrm{rad}}^{(7+)}\left(2 p_{3 / 2}\right)+\frac{2}{3} \mathcal{E}_{\mathrm{rad}}^{(7+)}\left(2 p_{1 / 2}\right) . \tag{29}
\end{align*}
$$

In our calculation, the one-electron remainder function $\mathcal{E}_{\text {rad }}^{(7+)}(n l j)$ includes all known contributions of order $m \alpha^{7}$ and higher coming from (i) the one-loop radiative correction, (ii) the two-loop radiative correction, (iii) the three-loop radiative correction. (See the reviews in Refs. [19,20] for an update on the two-loop remainder function.)

Besides the finite-nuclear-size and radiative corrections, there are also nonradiative effects, denoted as $\mathcal{E}_{\text {nrad }}^{(7+)}$ and estimated within the $1 / Z$ expansion. More specifically, we include the higher order remainder due to the one-electron Dirac energy and due to the one-photon exchange correction. They enter at the order $m \alpha^{8}$ only but are enhanced by factors of Z^{8} and Z^{7}, respectively. Despite this enhancement, numerical contributions of these effects are rather small for the ions considered in the present work.

III. RESULTS AND DISCUSSION

A. Numerical results

The nonrelativistic energies and wave functions are obtained by minimizing the energy functional with the basis set constructed with the fully correlated exponential functions. The choice of the basis set and the general strategy of optimization of the nonlinear parameters follow the main lines of the approach developed by Korobov [21,22]. The calculational scheme is described in previous publications $[6,7,15]$ and will not be repeated here. Numerical values of the nonrelativistic energies of helium-like ions with the nuclear charge $Z=3, \ldots, 12$ are presented in Table I. The results were obtained with $N=2000$ basis functions and are accurate to about 18 decimals (more than shown in the table). The energy levels of the helium atom traditionally attract special attention, so we present the corresponding results in full length. Our numerical values of the upper variational limit of the nonrelativistic energies of helium are

$$
\begin{align*}
& \mathcal{E}_{\infty}^{(2)}\left(1^{1} S\right)=-2.903724377034119598310_{-2}^{+0}, \tag{30}\\
& \mathcal{E}_{\infty}^{(2)}\left(2^{1} S\right)=-2.145974046054417415799_{-8}^{+0}, \tag{31}
\end{align*}
$$

TABLE I. Nonrelativistic energies of helium-like ions $\mathcal{E}_{\infty}^{(2)}, \mathcal{E}_{M}^{(2)}$, and $\mathcal{E}_{M^{2}}^{(2)}$. For the helium atom, the nonrelativistic energy $\mathcal{E}_{\infty}^{(2)}$ is given in the text [see Eqs. (30)-(34)]. For $\mathcal{E}_{\infty}^{(2)}$ and $\mathcal{E}_{M}^{(2)}$, the results of fitting the numerical data to the form $\mathcal{E}=\sum_{i} c_{i} / Z^{i}$ are also presented. The $1 / Z$ expansion of the second-order recoil correction $\mathcal{E}_{M^{2}}^{(2)}$ was not studied since this correction is relevant for the light atoms only. Atomic units are used.

Z	$1{ }^{1} S$	$2{ }^{1} S$	$2{ }^{3} S$	$2{ }^{1} P$	$2{ }^{3} P$
$\mathcal{E}_{\infty}^{(2)}+Z^{2}\left(1+1 / n^{2}\right) / 2$					
3	1.720086587330694	0.584123254404560	0.514272627429260	0.631648922219983	0.597284318602632
4	2.344433761576413	0.815126104651679	0.702833410222385	0.889228377083556	0.825026856929027
5	2.969028419757218	1.046471967118562	0.891102651185767	1.147716734692201	1.051862307786520
6	3.593753398101470	1.277982298711029	1.079244097692043	1.406667686611591	1.278289303511949
7	4.218554851227295	1.509584284500004	1.267318262508963	1.665883599383315	1.504498255070109
8	4.843404877242074	1.741242692371423	1.455352679914990	1.925264764124369	1.730577283616668
9	5.468287636040509	1.972938360878370	1.643361670481692	2.184755723292205	1.956572706521290
10	6.093193484962451	2.204659953768328	1.831353415926627	2.444323260421919	2.182511179215097
11	6.718116223927278	2.436400325538931	2.019332929131276	2.703946297095311	2.408409121058957
12	7.343051687353070	2.668154743908730	2.207303452397112	2.963610824902483	2.634277196002167
$1 / Z$-expansion coefficients					
c_{-1}	5/8	169/729	137/729	1705/6561	1481/6561
c_{0}	-0.157 66643	-0.114 51014	-0.047 40930	-0.157 02866	-0.072 99898
c_{1}	0.00869903	0.00932761	-0.004 87228	0.02610626	-0.016 58530
	-0.000 88869	-0.001 28499	-0.003 45775	0.00578246	-0.010 35367
	-0.001 03659	0.00619473	-0.002 03070	-0.005 03312	-0.005 42743
c_{4}	-0.000 61067	-0.001 47194	-0.001 27808	-0.007 09902	-0.002 00175
c_{5}	-0.000 38813	-0.003 77551	-0.000 93477	-0.001 10332	0.00010074
$\mathcal{E}_{M}^{(2)} /\left(Z^{2} m / M\right)$					
2	0.76569846	0.53886948	0.54566788	0.54247190	0.51714794
3	0.84098769	0.56250901	0.56981061	0.58272590	0.52473209
4	0.87975541	0.57617876	0.58283044	0.60826818	0.52929961
5	0.90334897	0.58499029	0.59090914	0.62520360	0.53234914
6	0.91921060	0.59112383	0.59639930	0.63711706	0.53451627
7	0.93060334	0.59563360	0.60037003	0.64591388	0.53613048
8	0.93918163	0.59908696	0.60337429	0.65266102	0.53737739
9	0.94587329	0.60181529	0.60572619	0.65799392	0.53836863
10	0.95123885	0.60402479	0.60761717	0.66231212	0.53917509
11	0.95563686	0.60585039	0.60917053	0.66587855	0.53984379
12	0.95930733	0.60738402	0.61046921	0.66887298	0.54040711
1/Z-expansion coefficients					
c_{0}	1	5/8	5/8	$5 / 8+2^{9} / 3^{8}$	$5 / 8-2^{9} / 3^{8}$
c_{1}	-0.4917065	-0.2196812	-0.1769924	-0.422 2328	-0.0825631
c_{2}	0.0396517	0.1003376	0.0306844	0.1337270	0.0459236
c_{3}	0.0129725	-0.009 8744	0.0091545	0.1623107	0.0099837
c_{4}	-0.000 0226	-0.006 7446	0.0038963	-0.000 4453	-0.0079454
c_{5}	0.0030374	0.0089491	0.0018358	-0.099 0485	-0.0113262
$\mathcal{E}_{M^{2}}^{(2)} /\left(Z^{2} m^{2} / M^{2}\right)$					
2	-0.923 06775	-0.575 06528	-0.561 90254	-0.596 05662	-0.552 23802
3	-1.015 02787	-0.623 26322	-0.591803 40	-0.687 74668	-0.574 15642
4	-1.061 76241	-0.651 48997	-0.607 62664	-0.74238592	-0.583 33575
5	-1.090 05134	-0.669 68217	-0.617364 45	-0.776 89285	-0.588 42534
6	-1.109 01461	-0.682 31257	-0.623 95164	-0.800 35477	-0.591 68777
7	-1.122 61079	-0.69157288	-0.628 70172	-0.817 26102	-0.593 96708
8	-1.132835 81	-0.698 64559	-0.632 28826	-0.829 99471	-0.595 65331
9	-1.140 80512	-0.704 22080	-0.635 09175	-0.839 91981	-0.596 95297
10	-1.147 19096	-0.708 72706	-0.637 34321	-0.847 86827	-0.597986 12
11	-1.15242261	-0.712 44412	-0.639 19098	-0.854 37466	-0.598 82753
12	-1.15678703	-0.715 56217	-0.640 73467	-0.859 79749	-0.599 52627

TABLE II. The leading relativistic corrections $\mathcal{E}_{\infty}^{(4)}$ and $\mathcal{E}_{M}^{(4)}$ for helium-like atoms and their $1 / Z$-expansion coefficients. The analytical results for the coefficient c_{1} for $\mathcal{E}_{\infty}^{(4)}$ were taken from Ref. [29] for the $1{ }^{1} S, 2{ }^{3} S, 2{ }^{3} P_{0}$, and $2{ }^{3} P_{2}$ states. For the other states, this coefficient was evaluated numerically to high accuracy in this work by the same method as in Ref. [29]. The c_{0} coefficient of $\mathcal{E}_{M}^{(4)}$ for the S states originates from the one-electron recoil effect and is well known from the hydrogen theory. For the P states, it contains also the two-electron contribution, which was derived in Ref. [36]. The remaining $1 / Z$-expansion coefficients were obtained by fitting the numerical data for $\mathcal{E}_{\infty}^{(4)}$ and $\mathcal{E}_{M}^{(4)}$. Atomic units are used.

Z	$1{ }^{1} S$	$2{ }^{1} S$	$2{ }^{3} S$	$2{ }^{1} P_{1}$	$2{ }^{3} P_{0}$	$2{ }^{3} P_{1}$	$2{ }^{3} P_{2}$
$\mathcal{E}_{\infty}^{(4)} / Z^{4}$							
2	-0.121984 67	-0.127 13546	-0.135 27987	-0.127 50160	-0.118 04252	-0.123 31623	-0.123 72958
3	-0.145 79473	-0.131 88123	-0.142 84030	-0.130 95391	-0.121 12829	-0.126 60186	-0.124 41072
4	-0.163 26353	-0.136 29775	-0.147 35668	-0.133 22953	-0.126 66774	-0.130 51205	-0.125 56923
5	-0.176 04864	-0.139 88298	-0.150 31008	-0.134 78660	-0.131 52271	-0.133 70851	-0.126 55782
6	-0.185 67419	-0.142 73756	-0.152 38324	-0.135 91790	-0.135 44497	-0.136 21654	-0.127 34275
7	-0.193 13821	-0.145 02897	-0.153 91610	-0.136778 46	-0.138 59636	-0.138 19925	-0.127 96582
8	-0.199 07787	-0.146 89544	-0.155 09463	-0.137 45597	-0.141 15638	-0.139 79329	-0.128 46748
9	-0.203 90905	-0.148 43923	-0.156 02856	-0.138 00371	-0.143 26617	-0.141 09757	-0.128 87810
10	-0.20791170	-0.149 73447	-0.15678671	-0.138 45596	-0.145 02986	-0.142 18211	-0.129 21951
11	-0.211280 06	-0.150 83516	-0.157 41435	-0.138835 82	-0.146 52358	-0.143 09691	-0.129 50741
12	-0.214 15265	-0.15178123	-0.157942 44	-0.139 15946	-0.147803 54	-0.143 87826	-0.129 75321
1/Z-expansion coefficients							
c_{0}	$-1 / 4$	-21/128	-21/128	-55/384	-21/128	-59/384	-17/128
c_{1}	0.48013961	0.16947818	0.07693523	0.05540303	0.21976822	0.13042876	0.04063872
c_{2}	-0.636 50686	-0.281858 62	-0.042 77547	-0.090 63215	-0.303 52335	-0.162 12941	-0.047 31568
c_{3}	0.45631423	0.20291921	0.01047395	0.15641239	0.09174625	0.04246890	0.00224438
c_{4}	-0.171 17961	-0.042 54210	-0.004 46083	-0.178 04253	-0.008 84433	-0.004 31944	-0.000 23651
c_{5}	0.01858749	0.01886171	-0.001 56673	0.05906831	0.01555282	0.00769846	0.00369105
$\mathcal{E}_{M}^{(4)} /\left(Z^{4} m / M\right)$							
2	-0.134 9607	-0.004 3516	0.0055741	-0.003 6553	0.0155968	0.0166771	0.0127607
3	-0.123 7592	-0.001 6161	0.0114269	-0.008 5744	0.0261482	0.0268552	0.0192485
4	-0.107 6271	0.0023039	0.0152883	-0.012 1396	0.0326665	0.0321855	0.0216508
5	-0.093 7841	0.0057924	0.0179334	-0.014 4516	0.0375802	0.0357681	0.0229265
6	-0.082 6257	0.0086722	0.0198408	-0.015 9704	0.0414077	0.0383887	0.0237369
7	-0.073 6470	0.0110269	0.0212763	-0.017 0051	0.0444505	0.0403953	0.0243047
8	-0.066 3370	0.0129659	0.0223938	-0.017 7366	0.0469152	0.0419814	0.0247276
9	-0.060 2991	0.0145811	0.0232876	-0.018 2710	0.0489462	0.0432663	0.0250561
10	-0.055 2416	0.0159430	0.0240184	-0.018 6728	0.0506455	0.0443280	0.0253193
11	-0.050 9505	0.0171045	0.0246268	-0.018 9822	0.0520864	0.0452197	0.0255351
12	-0.047 2678	0.0181055	0.0251411	-0.019 2256	0.0533228	0.0459791	0.0257155
1/Z-expansion coefficients							
c_{0}	0	1/32	1/32	-0.020 7447	0.0692059	0.0553920	0.0277642
c_{1}	-0.645 0402	-0.182 6434	-0.078 4124	0.0025830	-0.217 1136	-0.125 3972	-0.025 6050
c_{2}	0.9723728	0.3148003	0.0628343	0.2201046	0.3323021	0.1576070	0.0154532
c_{3}	-0.460 0919	-0.188 4436	-0.018 8669	-0.387 4951	-0.152 0388	-0.096 2265	-0.036 6639
c_{4}	-0.040 3680	-0.048 2282	0.0004138	-0.046 2824	-0.2528784	-0.030 1604	-0.017 6425

$$
\begin{gather*}
\mathcal{E}_{\infty}^{(2)}\left(2^{3} S\right)=-2.175229378236791305738977_{-2}^{+0} \tag{32}\\
\mathcal{E}_{\infty}^{(2)}\left(2^{1} P\right)=-2.123843086498101359246_{-2}^{+0} \tag{33}\\
\mathcal{E}_{\infty}^{(2)}\left(2^{3} P\right)=-2.13316419077928320514696_{-10}^{+0} \tag{34}
\end{gather*}
$$

The value for the ground state is given only for completeness, since much more accurate numerical results are available in the literature [22,23]. The numerical results for the leading relativistic correction $\mathcal{E}^{(4)}$ are summarized in Table II.

The leading QED correction $\mathcal{E}^{(5)}$ is given by Eqs. (9), (10), and (15). Computationally the most problematic part of it is represented by the Bethe logarithm $\ln \left(k_{0}\right)$ and its masspolarization correction $\ln \left(k_{0}\right)_{M}$. Accurate calculations of $\ln \left(k_{0}\right)$
were performed by Drake and Goldman [24] for helium-like like atoms with $Z \leqslant 6$ and by Korobov [25] for $Z=2$. Calculations of the recoil correction to the Bethe logarithm were reported by Pachucki and Sapirstein [10] for $Z=2$ and by Drake and Goldman [24] for $Z \leqslant 6$. In the present investigation, we perform accurate evaluations of the Bethe logarithm $\ln \left(k_{0}\right)$ and its recoil correction $\ln \left(k_{0}\right)_{M}$ for heliumlike ions with $Z \leqslant 12$. The calculational approach is described in Appendix A.

Table III summarizes the numerical results obtained and gives a comparison with the previous calculations. Numerical values for the Bethe logarithm are presented for the difference $\ln \left(k_{0}\right)-\ln \left(Z^{2}\right)$ since this difference has a weak Z dependence

TABLE III. Bethe logarithm for helium-like atoms with infinite nuclear mass, $\ln \left(k_{0} / Z^{2}\right)$, and its first-order perturbation by the mass polarization operator, $\ln \left(k_{0}\right)_{M}$. Coefficients of the $1 / Z$ expansion of $\ln \left(k_{0} / Z^{2}\right)$ are also presented. The leading term c_{0} is known with a high accuracy from the hydrogen theory. The higher order coefficients are obtained by fitting the numerical data.

Z	$1{ }^{1} S$	$2{ }^{1} S$	$2{ }^{3} S$	$2{ }^{1} P$	$2{ }^{3} P$	Ref.
$\ln \left(k_{0} / Z^{2}\right)$						
2	$2.9838658618(1)$	2.9801183651 (1)	2.977742459 29(2)	2.983803382 4(1)	2.983691003 3(2)	
	$2.9838658609(1)$	2.980118364 8(1)	2.977742459 2(1)	2.983803 377(1)	$2.983690995(1)$	[25]
	$2.983865857(3)$	$2.98011836(7)$	2.977742 46(1)	2.98380346 (3)	2.983690 84(2)	[24]
3	2.9826245630 (2)	2.9763630630 (2)	2.973851709 92(4)	2.983186013 6(2)	2.982958798 2(2)	
4	2.9825030991 (3)	2.973976911 2(3)	2.971735578 90(7)	2.982698213 8(4)	2.9824435984 (3)	
5	2.9825913761 (4)	2.972388098 8(4)	2.970424964 90(8)	2.9823401149 (8)	2.9820896049 (4)	
6	2.982716 948(1)	$2.9712662464(5)$	2.9695370719 (3)	$2.982072719(2)$	$2.9818359385(6)$	
	2.982716 948(4)	$2.97126624(4)$	$2.96953707(1)$	$2.98207276(2)$	$2.98183592(3)$	[24]
7	$2.982839085(3)$	2.970435 367(1)	2.968896 814(1)	2.981867 337(7)	$2.981646451(2)$	
8	2.982948 318(4)	$2.969796528(3)$	$2.968413645(2)$	$2.98170533(1)$	2.981499 939(4)	
9	2.983043 667(8)	2.969290 586(5)	2.968036 227(5)	$2.98157456(3)$	2.981383 443(7)	
10	$2.98312646(2)$	2.968880 24(1)	2.967733 341(9)	2.981466 92(5)	2.981288 68(1)	
11	2.983198 50(3)	$2.96854085(2)$	2.967484 93(2)	$2.9813769(1)$	2.981210 12(2)	
12	$2.98326147(5)$	$2.96825557(4)$	2.967277 54(3)	$2.9813004(2)$	2.981143 96(3)	
Coefficients of the $1 / Z$ expansion						
c_{0}	2.98412856	2.96497759	2.96497759	2.98037647	2.98037647	
c_{1}	-0.012 29928	0.04078809	0.02775943	0.01200383	0.00962797	
c_{2}	0.02244974	-0.016 43935	-0.001 42395	-0.010 98208	-0.004 81060	
c_{3}	0.00358619	-0.012 35503	-0.005 96856	-0.000 48219	-0.002 45788	
c_{4}	-0.002 50370	0.00581330	0.00011995	0.00376432	-0.000 23670	
$\ln \left(k_{0}\right)_{M} /(m / M)$						
2	0.094389 4(1)	0.017734 4(1)	0.004785 54(1)	-0.003 553 4(2)	$0.0087095(1)$	
	0.094 38(1)	0.017 734(1)	0.004784 (3)	-0.003 538(6)	0.008701 (4)	[24]
3	$0.1095397(1)$	0.0342103 (1)	$0.00785251(1)$	-0.006 6023 (2)	0.0163283 (1)	
4	$0.1169197(1)$	0.044876 8(1)	$0.00961661(1)$	-0.007 $9512(2)$	0.020199 2(1)	
5	$0.1213045(2)$	0.052012 4(2)	0.010754 20(1)	-0.008 $6295(2)$	0.022479 0(1)	
6	0.1242129 (3)	0.057053 0(3)	0.011547 92(1)	-0.009 015 3(2)	0.023973 6(1)	
	0.124 21(1)	0.057 051(1)	0.011 541(1)	-0.008 98(1)	0.023 98(1)	[24]
7	0.1262831 (4)	0.0607830 (9)	0.012133 20(1)	-0.009 255 6(2)	0.025027 3(1)	
8	0.127833 6(5)	0.063647 0(7)	0.012582 68(1)	-0.009 416 0(2)	$0.0258095(2)$	
9	0.129037 1(2)	0.065 912(1)	$0.01293876(1)$	-0.009 $5287(2)$	0.026412 8(3)	
10	$0.1299989(2)$	0.067 746(1)	$0.01322787(1)$	-0.009 $6112(2)$	0.026892 2(4)	
11	$0.1307851(2)$	0.069 261(1)	0.013467 30(1)	-0.009673 6(2)	0.027282 2(4)	
12	$0.1314397(2)$	0.070 534(2)	0.013668 86(1)	-0.009 722 2(3)	$0.0276057(4)$	

and does not contain any logarithms in its $1 / Z$ expansion. The table also lists the coefficients of the $1 / Z$ expansion of $\ln \left(k_{0} / Z^{2}\right)$. The leading coefficient c_{0} is known from the hydrogen theory; accurate numerical values can be found in Ref. [26]. The higher order coefficients were obtained by fitting our numerical data. It is interesting to compare them with the analogous results reported previously by Drake and Goldman [24]. For the next-to-the-leading coefficient c_{1}, the results agree up to about four to five digits for S states and to about three to four digits for P states. For the higher order coefficients, the agreement gradually deteriorates. However, the results for the sum of the two expansions agree very well with each other. More specifically, the maximal absolute deviation between the values of the Bethe logarithms for $Z>12$ obtained with our $1 / Z$-expansion coefficients and with those by Drake and Goldman is 1×10^{-8} for the $1^{1} S$ state, 3×10^{-8} for the $2{ }^{1} S$ state, 6×10^{-9} for the $2^{3} S$ state,
1×10^{-7} for the $2^{1} P$ state, and 6×10^{-8} for the $2^{3} P$ state. So, the accuracy of these expansions is sufficient for most practical purposes.

Another part of the calculation of $\mathcal{E}^{(5)}$ that needs a separate discussion is the evaluation of the expectation value of the singular operator $1 / r^{3}$, which is defined by Eq. (12). The calculational approach is described in Appendix B. Total results for the logarithmic and the nonlogarithmic part of the leading QED correction are summarized in Tables IV and V , respectively. The results are in good agreement with the previous calculations [5].

Table VI presents the numerical values of the $m \alpha^{6}$ correction, the main result of this investigation. The corresponding calculations for atomic helium were reported in Refs. [6,7]; our present numerical values agree with the ones obtained previously. Calculations performed in this work for heliumlike ions were accomplished along the lines described in

TABLE IV. The leading logarithmic QED corrections $\mathcal{E}_{\infty}^{(5)}(\log)$ and $\mathcal{E}_{M}^{(5)}(\log)$. For the nonrecoil correction, we present the coefficients of the $1 / Z$ expansion obtained by fitting the numerical data (except for c_{0}, which is known analytically). The recoil correction is very small for ions with $Z>12$, so its $1 / Z$ expansion was not studied. Atomic units are used.

Z	$1{ }^{1} S$	$2{ }^{1} S$	$2{ }^{3} S$	$2{ }^{1} P$	$2^{3} P$
$\mathcal{E}_{\infty}^{(5)}(\log) /\left[Z^{4} \ln (Z \alpha)^{-2}\right]$					
2	0.587967740	0.435225697	0.440118361	0.424690417	0.419620202
3	0.661366949	0.444453845	0.450745298	0.425056974	0.418277856
4	0.702709966	0.450600513	0.456788812	0.425087644	0.418654616
5	0.729153414	0.454883655	0.460628756	0.425031723	0.419253068
6	0.747506286	0.458013834	0.463274004	0.424963548	0.419808283
7	0.760984320	0.460392952	0.465204144	0.424901229	0.420280937
8	0.771300325	0.462259020	0.466673600	0.424848038	0.420676712
9	0.779449465	0.463760328	0.467829292	0.424803420	0.421008829
10	0.786049205	0.464993553	0.468761819	0.424766013	0.421289730
11	0.791502875	0.466024214	0.469530027	0.424734472	0.421529561
12	0.796085045	0.466898202	0.470173774	0.424707664	0.421736263
1/Z-expansion coefficients					
c_{0}	8/(3 π)	3/(2 π)	3/(2 π)	4/(3 \quad)	4/(3 π)
c_{1}	-0.659 55048	-0.137 74461	-0.089 75644	0.00315846	-0.036 47876
c_{2}	0.33058616	0.13645203	0.02669363	0.00911722	0.05136286
c_{3}	-0.132 76816	-0.061 29750	0.00548816	-0.061 23169	0.01113217
c_{4}	0.04855042	-0.000 48558	0.00197936	0.07036756	-0.001 92441
c_{5}	-0.005 83476	-0.000 41968	0.00108209	0.00299402	-0.014 22578
$\mathcal{E}_{M}^{(5)}(\log) /\left[(m / M) Z^{4} \ln (Z \alpha)^{-2}\right]$					
2	-1.490 7878	-1.087 8273	-1.0995716	-1.048 0334	-1.072942 1
3	-1.5030007	-0.999 8200	-1.013 5256	-0.931 0877	-0.972929 1
4	-1.414 8151	-0.900 7682	-0.913 0235	-0.820 3695	-0.869 5494
5	-1.281 0385	-0.795 2958	-0.805 6243	-0.712 3589	-0.765 2223
6	-1.122 8525	-0.685 9536	-0.694 4957	-0.605 5099	-0.660 4148
7	-0.950 1011	-0.574 1357	-0.581 1375	-0.499 1858	-0.555 3058
8	-0.7679688	-0.460 6488	-0.466 3441	-0.393 1081	-0.449 9907
9	-0.579 4430	-0.345 9870	-0.350 5736	-0.287 1469	-0.344 5275
10	-0.386 3652	-0.230 4684	-0.234 1084	-0.181 2384	-0.2389542
11	-0.189932 1	-0.114 3064	-0.1171318	-0.075 3503	-0.133 2967
12	0.0090452	0.0023507	0.0002321	0.0305341	-0.0275736

Refs. [6,7]. Here we only note that calculations for higher values of Z often exhibit a slower numerical convergence (and numerical stability) than for helium, especially so for the second-order corrections involving singular operators. The variational optimization of nonlinear parameters for the symmetric second-order corrections was performed in several steps with increasing the number of basis functions on each step up to $N=1000$ or 1200 . The final values were obtained by merging several basis sets and enlarging the number of functions up to $N=5000-7000$. The nonsymmetric secondorder corrections were evaluated as described in Ref. [15]. The calculations were performed in the quadruple, sixtuple, and octuple arithmetics implemented in FORTRAN 95 by V. Korobov [27].

Table VII presents the results for the finite-nuclear-size correction and approximate values of the higher order ($m \alpha^{7}$ and higher) correction to the ionization energy. The uncertainty of the total theoretical prediction originates from the higher order radiative effects; it was estimated by dividing the absolute value of this correction by Z. The values for the root-mean-square radius of nuclei were taken from Ref. [28].

B. Comparison with the all-order approach

In this section we discuss the calculational results obtained for the $m \alpha^{6}$ correction in more detail and make a comparison with the results obtained previously within the all-order, $1 / Z$-expansion approach. The logarithmic part of the correction, $\mathcal{E}^{(6)}(\log)$, behaves as $m \alpha^{3}(Z \alpha)^{3}$ for large Z and thus corresponds to diagrams with three photon exchanges that have not yet been addressed within the all-order approach. The nonlogarithmic part $\mathcal{E}^{(6)}($ nlog $)$, however, contains some pieces that are known and identified in the following.

For all states except $2{ }^{1} P_{1}$ and $2{ }^{3} P_{1}$, the leading term of the $1 / Z$ expansion of $\mathcal{E}^{(6)}(\mathrm{nlog})$ is of order $m(Z \alpha)^{6}$ and comes from the $Z \alpha$ expansion of the one-electron Dirac energy. For the $2{ }^{1} P_{1}$ and $2{ }^{3} P_{1}$ states, the leading term is of the previous order in $1 / Z, m(Z \alpha)^{6} Z$, and is due to the mixing of these levels. More specifically, the mixing contribution is $\left.\delta E_{\text {mix }}=\left|\left\langle 2^{1} P_{1}\right| H^{(4)}\right| 2{ }^{3} P_{1}\right\rangle\left.\right|^{2} /\left[E_{0}\left(2{ }^{1} P_{1}\right)-E_{0}\left(2^{3} P_{1}\right)\right]$ for the $2{ }^{1} P_{1}$ state and that with the opposite sign for $2{ }^{3} P_{1}$. The contribution of order $m(Z \alpha)^{6}$ for the mixing states comes from the expansion of the one-electron Dirac energy and from the expansion of $\delta E_{\text {mix }}$.

TABLE V. The leading nonlogarithmic QED corrections $\mathcal{E}_{\infty}^{(5)}(\mathrm{nlog})$ and $\mathcal{E}_{M}^{(5)}(\mathrm{nlog})$. For the nonrecoil part, we present the coefficients of the $1 / Z$ expansion. The coefficient c_{0} is known with a very good accuracy from the hydrogen theory. The remaining coefficients were obtained by numerical fitting. The radiative recoil correction is very small for ions with $Z>12$, so its $1 / Z$ expansion was not studied. Atomic units are used.

Z	$1{ }^{1} S$	$2{ }^{1} S$	$2{ }^{3} S$	$2{ }^{1} P_{1}$	$2{ }^{3} P_{0}$	$2{ }^{3} P_{1}$	$2{ }^{3} P_{2}$
$\mathcal{E}_{\infty}^{(5)}(\mathrm{nlog}) / Z^{4}$							
2	-1.3902824	-1.0217567	-1.032 7195	-0.999 1046	-0.986 4875	-0.987824 8	-0.987 2736
3	-1.5524234	-1.040733 9	-1.0558743	-1.0000288	-0.984 0145	-0.9852856	-0.983 6457
4	-1.6458291	-1.0534943	-1.068 9514	-0.9998389	-0.985 5575	-0.986 3178	-0.983 8177
5	-1.7066684	-1.0625513	-1.0772303	-0.9994275	-0.987 4803	-0.9877485	-0.984 6170
6	-1.7494645	-1.0692748	-1.0829206	-0.999 0285	-0.989 1847	-0.989 0409	-0.985 4376
7	-1.7812119	-1.0744484	-1.0870662	-0.9986875	-0.990 6094	-0.9901284	-0.986 1621
8	-1.8057010	-1.0785460	-1.090 2187	-0.998 4047	-0.9917910	-0.9910330	-0.9867797
9	-1.8251658	-1.0818684	-1.0926959	-0.998 1707	-0.992 7768	-0.9917888	-0.9873036
10	-1.8410087	-1.084 6148	-1.094 6934	-0.997975 9	-0.993 6076	-0.9924260	-0.987 7496
11	-1.8541545	-1.0869222	-1.096 3380	-0.9978122	-0.994 3150	-0.9929688	-0.988 1323
12	-1.8652378	-1.088 8875	-1.097 7156	-0.9976733	-0.994 9235	-0.9934358	-0.9884632
1/Z-expansion coefficients							
c_{0}	-1.9954170	-1.1132781	-1.1132781	-0.9961160	-1.0027475	-0.9994318	-0.992 8003
c_{1}	1.6588160	0.3255170	0.1911475	-0.017 5598	0.1062102	0.0811929	0.0594525
c_{2}	-1.2262714	-0.4204560	-0.051 6033	-0.0318538	-0.1465372	-0.108 5003	-0.085 8934
c_{3}	0.8258435	0.3273250	-0.013 1945	0.2472567	-0.016 6285	-0.029 5276	-0.036 7739
c_{4}	-0.3730623	-0.1146272	-0.008 9491	-0.334 9535	0.0068462	0.0082013	0.0094312
c_{5}	0.0881600	0.0375752	0.0109846	0.0852990	0.0182050	0.0161412	0.0155024
$\mathcal{E}_{M}^{(5)}(\mathrm{nlog}) /\left[(m / M) Z^{5}\right]$							
2	3.292520	2.455583	2.489805	2.385181	2.393644	2.393984	2.393698
3	2.816621	1.914328	1.949969	1.811294	1.817918	1.818182	1.817751
4	2.527383	1.642421	1.673220	1.526466	1.531293	1.531426	1.530930
5	2.334128	1.478228	1.504411	1.356337	1.359930	1.359969	1.359460
6	2.196193	1.368117	1.390605	1.243181	1.245918	1.245898	1.245400
7	2.092908	1.289066	1.308659	1.162444	1.164573	1.164516	1.164039
8	2.012719	1.229525	1.246828	1.101918	1.103606	1.103526	1.103074
9	1.948679	1.183048	1.198512	1.054847	1.056206	1.056113	1.055685
10	1.896366	1.145753	1.159714	1.017186	1.018295	1.018194	1.017790
11	1.852835	1.115160	1.127873	0.986367	0.987283	0.987177	0.986794
12	1.816049	1.089607	1.101272	0.960678	0.961441	0.961334	0.960971

The next term of the $1 / Z$ expansion is of order $m \alpha(Z \alpha)^{5}$ and comes from the one-electron one-loop radiative correction and from the one-photon exchange correction. The radiative part is well known [19]. The part due to the one-photon exchange was obtained for the $1{ }^{1} S, 2{ }^{3} S, 2{ }^{3} P_{0}$, and $2{ }^{3} P_{2}$ states analytically in Ref. [29] and for the other states numerically in this work. For the $2{ }^{1} P_{1}$ and $2{ }^{3} P_{1}$ states, there is a small additional mixing contribution, which we were unable to determine unambiguously.

The exact results for the first two coefficients of the $1 / Z$ expansion of $\mathcal{E}^{(6)}(\mathrm{nlog})$ are listed in Table VI. A fit of our numerical data agrees well with these coefficients. The agreement observed shows consistency of our numerical results with independent calculations at the level of the one-photon effects. We now turn to the contribution of order $m \alpha^{2}(Z \alpha)^{4}$. This contribution is induced by nontrivial two-photon effects, so that a comparison drawn for this part will yield a much more stringent test of consistency of different approaches.

The part of $\mathcal{E}^{(6)}(\mathrm{nlog})$ that is of order $m \alpha^{2}(Z \alpha)^{4}$ is implicitly present in the two-electron QED contribution calculated numerically in Ref. [8] to all orders in $Z \alpha$. This contribution
can be represented as (see Eq. (72) of Ref. [8])

$$
\begin{equation*}
\Delta E_{2 \mathrm{el}}^{\mathrm{QED}}=m \alpha^{2}(Z \alpha)^{3}\left[a_{31} \ln (Z \alpha)^{-2}+a_{30}+(Z \alpha) G(Z)\right] \tag{35}
\end{equation*}
$$

where the remainder function $G(Z)$ incorporates all higher orders in $Z \alpha$. The two-electron QED correction comprises the so-called screened self-energy and vacuum-polarization contributions and the part of the two-photon exchange correction that is beyond the Breit approximation.

The coefficients a_{31} and a_{30} in Eq. (35) correspond to the second term of the $1 / Z$ expansion of the leading QED correction $\mathcal{E}_{\infty}^{(5)}$. More specifically, a_{31} corresponds to the coefficient c_{1} from Table IV and a_{30}, to that from Table V. The $Z=0$ limit of the higher order remainder function $G(Z)$ corresponds to the third coefficient of the $1 / Z$ expansion of the correction $\mathcal{E}^{(6)}(\mathrm{nlog}), G(0)=c_{2}$, for all states except $2{ }^{1} P_{1}$ and $2^{3} P_{1}$. The values of c_{2} obtained by fitting our numerical data are listed in Table VI. For the $2{ }^{1} P_{1}$ and $2^{3} P_{1}$ states, the coefficient c_{2} is not directly comparable with the all-order results because of the mixing effects.

TABLE VI. The $m \alpha^{6}$ corrections $\mathcal{E}_{\infty}^{(6)}(\log)$ and $\mathcal{E}_{\infty}^{(6)}($ nlog $)$ and their $1 / Z$-expansion coefficients. Atomic units are used.

Z	$1{ }^{1} S$	$2{ }^{1} S$	$2{ }^{3} S$	$2^{1} P_{1}$	$2{ }^{3} P_{0}$	$2{ }^{3} P_{1}$	$2{ }^{3} P_{2}$
$\mathcal{E}_{\infty}^{(6)}(\log) /\left[Z^{3} \ln (Z \alpha)^{-2}\right]$							
2	0.020880865	0.001698116	0	0.000144350	0	0	0
3	0.031050719	0.003738928	0	0.000572351	0	0	0
4	0.037377475	0.005250650	0	0.001013004	0	0	0
5	0.041625375	0.006344104	0	0.001386910	0	0	0
6	0.044658932	0.007157223	0	0.001692317	0	0	0
7	0.046928852	0.007781230	0	0.001941610	0	0	0
8	0.048689367	0.008273618	0	0.002147092	0	0	0
9	0.050093825	0.008671365	0	0.002318555	0	0	0
10	0.051239918	0.008999033	0	0.002463398	0	0	0
11	0.052192721	0.009273471	0	0.002587159	0	0	0
12	0.052997208	0.009506579	0	0.002694007	0	0	0
1/Z-expansion coefficients							
c_{0}	1/16	1/81	0	1/243	0	0	0
c_{1}	-0.121468 0	-0.037 1977	0	-0.019 9971	0	0	0
c_{2}	0.0919637	0.0387114	0	0.0379957	0	0	0
c_{3}	-0.033 4009	-0.014 2832	0	-0.032 9951	0	0	0
c_{4}	0.0048044	0.0036000	0	0.0088653	0	0	0
c_{5}	-0.000 4874	-0.006 2726	0	0.0028677	0	0	0
$\mathcal{E}_{\infty}^{(6)}(\mathrm{nlog}) / Z^{6}$							
2	2.181233 3(1)	1.528 981(2)	1.536593 1(1)	1.489 195(1)	1.459 456(1)	1.460 802(1)	1.466 251(1)
3	$1.5824717(1)$	1.016 337(1)	$1.0204405(1)$	0.977 073(1)	0.945 154(1)	0.937 827(1)	0.950 303(1)
4	1.2244519 (8)	0.753 467(1)	0.754660 8(1)	0.723 937(1)	0.691 625(1)	0.676 327(1)	0.696 280(1)
5	0.9891850 (1)	0.592 746(1)	$0.5922385(1)$	0.574 526(1)	0.539 381(1)	0.517 140(1)	0.544 513(1)
6	0.823348 1(1)	0.484 094(1)	0.482626 2(4)	0.477 044(1)	0.437 493(1)	0.408 810(1)	0.443 440(1)
7	0.700317 8(1)	0.405 658(1)	$0.4036503(1)$	0.409 248(1)	0.364 415(1)	0.329 514(1)	0.371 247(1)
8	0.605469 6(1)	0.346 341(1)	0.344035 2(1)	$0.360008(1)$	0.309 399(1)	0.268 374(1)	0.317 082(1)
9	0.5301381 (1)	0.299 896(1)	$0.2974360(1)$	0.323 136(1)	0.266 468(1)	0.219 353(1)	0.274 935(1)
10	0.468871 6(1)	$0.262537(1)$	0.260008 6(1)	0.294 919(1)	0.232 024(1)	0.178 826(1)	0.241 202(1)
11	0.418072 5(6)	0.231831 (1)	0.229287 1(1)	0.272 996(1)	0.203 772(2)	0.144 482(4)	0.213 589(1)
12	0.3752721 (1)	0.206144 (1)	$0.2036170(4)$	0.255791 (1)	$0.180178(2)$	0.114 783(4)	0.190 568(1)
$1 / Z$-expansion coefficients							
c_{-1}	0	0	0	729/114688	0	-729/114688	0
c_{0}	-1/8	-85/1024	-85/1024	-0.079 2398	-85/1024	-0.067 2446	-65/1024
c_{1}	6.3428979	3.5496121	3.4875483	3.09980	3.2045132	3.11905	3.0597402
c_{2}	-4.2619	-1.0426	-0.590 0	0.0686	-0.623 6	-0.260 9	-0.157 8
c_{3}	2.4241	1.0870	0.1557	-0.039 0	0.8334	0.3289	0.2714
c_{4}	-2.408 8	-0.8157	0.0539	-0.4013	-0.210 5	0.0717	0.1010

The higher order remainder function $G(Z)$ inferred from the numerical results of Ref. [8] is plotted in Fig. 1, together with its limiting value at $Z=0$ obtained by a fit of our numerical data. It should be stressed that the identification of the remainder implies a great deal of numerical cancellations, especially for the all-order results. The comparison drawn in Fig. 1 provides a stringent cross-check of the two complementary approaches. The visual agreement between the results is very good for the S states, whereas for the P states a slight disagreement seems to be present.

It is tempting to merge the all-order and the $Z \alpha$-expansion results by fitting the all-order data for $G(Z)$ toward lower values of Z. However, we do not attempt to do this in the present work because 1. the numerical accuracy of the all-order results is apparently not high enough and 2. the expansion of the remainder function $G(Z)$ contains terms $(Z \alpha) \ln ^{2}(Z \alpha)$ and $(Z \alpha) \ln (Z \alpha)$, which cannot be reasonably fitted with numerical data available in the high- Z region only.

C. Total energies

Our total results for the ionization energy of the $n=1$ and $n=2$ states of helium-like atoms with the nuclear charge $Z=2, \ldots, 12$ are listed in Table VIII. The following values of fundamental constants were employed [19]: $R_{\infty}=10973731.568527(73) \mathrm{m}^{-1}$ and $\alpha^{-1}=$ $137.0359999679(94)$. The atomic masses were taken from Ref. [30].

The results for atomic helium presented in Table VIII differ from those reported previously only because of the different approximate treatment of the higher order ($m \alpha^{7}$ and higher) contribution employed in this work. For the S states of helium, the present values are practically equivalent to those of Refs. [6,7]. (The difference is that now we include some contributions of order $m \alpha^{8}$ and higher, which are negligible for helium but become noticeable for higher Z ions.) However, for the helium P states, our present estimate of the higher

TABLE VII. The finite-nuclear-size correction E_{fs} (with the used values of the root-mean-square nuclear charge radii being listed in Table VIII) and the higher order correction $\mathcal{E}^{(7+)} \equiv \mathcal{E}_{\text {rad }}^{(7+)}+\mathcal{E}_{\text {nrad }}^{(7+)}$. Contributions to the ionization energy are presented. Numerical values of the finite-nuclear-size correction are scaled by the same factor as for the higher order correction, in order to simplify the comparison between them.

Z	$1^{1} \mathrm{~S}$	$2{ }^{1} S$	$2{ }^{3} \mathrm{~S}$	$2^{1} P_{1}$	$2^{3} P_{0}$	$2^{3} P_{1}$	$2{ }^{3} P_{2}$
$E_{\text {fs }} /\left[m \alpha^{7} Z^{6}\right]$							
2	3.41(1)	0.2346 (5)	0.3039(7)	0.00735(2)	-0.0914(3)	-0.0914(3)	-0.0914(3)
3	4.5(1)	0.393(8)	0.47(1)	0.0166(4)	-0.110(3)	-0.110(3)	-0.110(3)
4	3.16(3)	0.305(3)	0.351(3)	0.0114(1)	-0.0623(6)	-0.0622(6)	-0.0623(6)
5	2.01(5)	0.206(5)	0.230(6)	0.0066(2)	-0.0327(8)	-0.0327(8)	-0.0327(8)
6	1.560(4)	$0.1655(5)$	0.1818(5)	0.00455(1)	-0.02150(6)	-0.02144(6)	-0.02150(6)
7	1.281(8)	0.1396 (8)	0.1512(9)	0.00336(2)	-0.01528(9)	-0.01521(9)	-0.01528(9)
8	1.130(6)	0.1256 (7)	0.1347 (7)	0.00268(1)	-0.01187(6)	-0.01180(6)	-0.01187(6)
9	1.056(5)	0.1191(6)	0.1268(6)	0.00229(1)	-0.00990(5)	-0.00981(5)	-0.00990(5)
10	0.942(5)	0.1076(6)	0.1138(6)	0.00188(1)	-0.00797(4)	-0.00788(4)	-0.00797(4)
11	0.789(5)	0.0911(6)	0.0958(6)	0.00146(1)	-0.00608(4)	-0.00599(4)	-0.00608(4)
12	0.705(5)	0.0821(6)	0.0860(7)	0.001219(9)	-0.00499(4)	-0.00490(4)	-0.00499(4)
$\mathcal{E}^{(7+)} / Z^{6}$							
2	-8.2(4.1)	-0.43(22)	-0.59(30)	0.093(46)	0.37(18)	0.35(17)	0.31(15)
3	-9.5(3.2)	-0.72(24)	-0.89(30)	0.063(21)	0.37(12)	0.35(12)	0.31(10)
4	-9.6(2.4)	-0.83(21)	-0.97(24)	0.055(14)	$0.312(78)$	0.294(73)	$0.261(65)$
5	-9.4(1.9)	-0.86(17)	-0.98(20)	0.052(10)	0.266(53)	0.249(50)	0.219(44)
6	-9.0(1.5)	-0.87(14)	-0.96(16)	0.0510 (85)	0.230(38)	0.214(36)	0.187(31)
7	-8.7(1.2)	-0.86(12)	-0.94(13)	0.0500(72)	0.202(29)	0.188(27)	0.162(23)
8	-8.3(1.0)	-0.84(11)	-0.91(11)	0.0490(62)	0.181(23)	0.167(21)	0.144(18)
9	-8.00(89)	-0.825(91)	-0.886(98)	0.0477(54)	0.163(18)	0.150(17)	0.129(14)
10	-7.70(77)	-0.806(80)	-0.859(85)	0.0463(48)	0.148(15)	0.136(14)	0.116(12)
11	-7.43(67)	-0.786 (71)	-0.834(75)	0.0450(43)	0.135(13)	0.124(12)	$0.1066(97)$
12	-7.18(60)	-0.768(63)	-0.811(67)	0.0435(39)	0.124(11)	0.1132(99)	0.0984(82)

order contribution is about 1 MHz higher than that of Ref. [7]. The reason is that the one-electron radiative correction of the p electron state was previously not included in the approxima-
tion (25). It is included now [see Eq. (29)] in order to recover the correct asymptotic behavior of the radiative correction in the high- Z limit.

FIG. 1. The higher order remainder function $G(Z)$ from Eq. (35) inferred from the all-order numerical results of Ref. [8] for the two-electron QED correction, in comparison with the $Z=0$ limit obtained by fitting the $1 / Z$ expansion of the $m \alpha^{6}$ correction calculated in this work (denoted by the cross on the y axis). The all-order results for Z smaller than 30 (in some cases, 20) were left out since their numerical accuracy turns out to be not high enough.

TABLE VIII. Total theoretical ionization energies of $n=1$ and $n=2$ states in light helium-like ions, in $\mathrm{cm}^{-1} . A$ is the nuclear mass number and R_{ch} is the root-mean-square nuclear charge radius.

TABLE IX. Comparison of theoretical and experimental transition energies. Units are MHz for $\mathrm{He}^{\text {and } \mathrm{Li}^{+} \text {and } \mathrm{cm}^{-1} \text { for other ions. Results }}$ by Drake are from 2005 for He [31], from 1994 for Li^{+}[37], and from 1988 for other ions [5].

Z	This work	Drake	Experiment	Reference
$2^{3} P_{0}-2{ }^{3} S_{1}$ transition:				
2	$276764094.7(3.0)$	276764 099(17)	276764094.678 8(21)	[1]
3	546560 686(32)	546560627	546560 683.07(42)	[37]
4	26 864.6114(47)	26 864.64(3)	26864.612 0(4)	[38]
5	$35393.628(14)$	35 393.70(8)	35 393.627(13)	[39]
8	60978.85 (14)	60979.6 (5)	60978.44 (52)	[40]
10	78 263.98(39)	78 265.9(1.2)	78 265.0(1.2)	[40]
$2^{3} P_{1}-2{ }^{3} S_{1}$ transition:				
2	276734 477.7(3.0)	276734 476(17)	276764477.724 2(20)	[1]
3	546404 980(31)	546404885	546404 978.80(51)	[37]
4	26 853.0534(47)	26 852.04(3)	26853.053 4(3)	[38]
5	35 377.429(14)	35 377.40(8)	35 377.424(13)	[39]
8	61037.65 (14)	61 037.7(5)	61037.62 (93)	[40]
$2^{3} P_{2}-2{ }^{3} S_{1}$ transition:				
2	276732 186.1(2.9)	276732 183(17)	276732 186.593(15)	[1]
3	546467 655(31)	546467553	546467 657.21(44)	[37]
4	26867.9450 (47)	26 867.92(3)	26867.948 4(3)	[38]
5	35 430.088(14)	35 430.02(8)	35 430.084(9)	[39]
8	61589.21 (14)	61 589.0(5)	61 589.70(53)	[40]
10	80 122.3(4)	80 121.6(1.2)	80121.53 (64)	[41]
$2^{1} P_{1}-2{ }^{1} S_{0}$ transition:				
4	$16276.775(4)$	16276.77(3)	16 276.774(9)	[42]
$2^{3} P_{1}-2{ }^{1} S_{0}$ transition:				
7	986.36(7)	986.6(3)	986.3180(7)	[43]

A selection of our theoretical results for transition energies is compared with the theory by Drake [5,31] and with experimental data in Table IX. Agreement between theory and experiment is excellent in all cases studied. We observe a distinct improvement in theoretical accuracy as compared to the previous results by Drake. This improvement is due to the complete treatment of the corrections of order $m \alpha^{6}$ and $m^{2} / M \alpha^{5}$ accomplished in this work.

Theoretical results for the fine-structure splitting intervals $2^{3} P_{0}-2^{3} P_{1}$ and $2{ }^{3} P_{1}-{ }^{3} P_{2}$ are not analyzed in the present work. This is because these intervals can nowdays be calculated more accurately (complete up to order $m \alpha^{7}$), as was recently done for helium [15]. We intend to perform such a calculation in a subsequent investigation.

Among the results listed in Table VIII for helium-like ions, the ground-state energy of the carbon ion is of particular importance, because it is used in the procedure of the adjustment of fundamental constants [32] for the determination of the mass of ${ }^{12} \mathrm{C}^{4+}$ and, consequently, of the proton mass from the Penning trap measurement by Van Dyck et al. [33]. Our result for the ground-state ionization energy of helium-like carbon is

$$
\begin{equation*}
E\left({ }^{12} \mathrm{C}^{4+}\right)=-3162423.60(32) \mathrm{cm}^{-1} \tag{36}
\end{equation*}
$$

which is in agreement with the previous result by Drake [5] of $-3162423.34(15) \mathrm{cm}^{-1}$. We note that, despite our calculation being an additional order of α more complete than that by Drake, our estimate of uncertainty is more conservative.

In summary, significant progress has been achieved during the past few decades in both experimental technique and theoretical calculations of helium-like atoms. In the present investigation, we performed a calculation of the energy levels of the $n=1$ and $n=2$ states of light helium-like atoms with the nuclear charge $Z=2, \ldots, 12$, within the approach complete up to orders $m \alpha^{6}$ and $m^{2} / M \alpha^{5}$. An extensive analysis of the $1 / Z$ expansion of individual corrections was carried out and comparison with results of the complementary approach was made whenever possible. Our general conclusion is that the results obtained within the approaches based on the $Z \alpha$ and the $1 / Z$ expansion are consistent with each other up to a high level of precision. However, further improvement of numerical accuracy of the all-order, $1 / Z$-expansion results and their extension into the lower Z region is needed in order to safely merge the two complementary approaches.

ACKNOWLEDGMENTS

We wish to thank Tomasz Komorek for participation in the beginning of the project. Computations reported in this work were performed on the computer clusters of St. Petersburg State Polytechnical University and of the Institute of Theoretical Physics, University of Warsaw. The research was supported by NIST through Precision Measurement Grant PMG 60NANB7D6153. V.A.Y. acknowledges additional support from the "Dynasty" foundation and from RFBR (Grant No. 10-02-00150-a).

APPENDIX A: BETHE LOGARITHM

Following the approach of Refs. [34,35], the Bethe logarithm (13) is expressed in terms of an integral over the
momentum of the virtual photon,

$$
\begin{equation*}
\ln \left(k_{0}\right)=\frac{1}{D} \lim _{K \rightarrow \infty}\left[\left\langle\vec{\nabla}^{2}\right\rangle K+D \ln (2 K)+\int_{0}^{K} d k k J(k)\right] \tag{A1}
\end{equation*}
$$

where $D=2 \pi Z\left\langle\delta^{3}\left(r_{1}\right)+\delta^{3}\left(r_{2}\right)\right\rangle, \vec{\nabla} \equiv \vec{\nabla}_{1}+\vec{\nabla}_{2}$, and

$$
\begin{equation*}
J(k)=\left\langle\vec{\nabla} \frac{1}{E_{0}-H_{0}-k} \vec{\nabla}\right\rangle \tag{A2}
\end{equation*}
$$

For the purpose of numerical evaluation, the integration over the photon momentum k is divided into two regions by introducing the auxiliar parameter κ,

$$
\begin{equation*}
\ln \left(k_{0}\right)=R(\kappa)+\frac{1}{D} \int_{0}^{\kappa} d k k J(k)+\int_{\kappa}^{\infty} d k \frac{w(k)}{k^{2}} \tag{A3}
\end{equation*}
$$

where the function $w(k)$ represents the residual obtained from $J(k)$ by removing all known terms of the large- k asymptotics,

$$
\begin{equation*}
w(k)=\frac{k^{3}}{D} J(k)+\frac{k^{2}}{D}\left\langle\vec{\nabla}^{2}\right\rangle+k-2 \sqrt{2} Z k^{1 / 2}+2 Z^{2} \ln k \tag{A4}
\end{equation*}
$$

and $R(\kappa)$ is a simple function obtained by integrating out the separated asymptotic expansion terms,

$$
\begin{equation*}
R(\kappa)=\kappa \frac{\left\langle\vec{\nabla}^{2}\right\rangle}{D}+\ln (2 \kappa)+\frac{4 \sqrt{2} Z}{\kappa^{1 / 2}}-\frac{2 Z^{2}(\ln \kappa+1)}{\kappa} \tag{A5}
\end{equation*}
$$

The calculational scheme employed for the evaluation of Eq. (A3) is similar to that previously used [15] for the relativistic corrections to the Bethe logarithm. At the first step, a careful optimization of nonlinear basis-set parameters was carried out for a sequence of scales of the photon momentum: $k_{i}=10^{i}$ and $i=1, \ldots, i_{\max }$, with $i_{\max }=5$ for the S states and $i_{\text {max }}=4$ for the P states. The optimization was performed with incrementing the size of the basis until the prescribed level of convergence is achieved for the function $w(k)$. At the second step, the integrations of the photon momentum k were performed. For a given value of k, the function $J(k)$ was calculated with a basis obtained by merging together the optimized bases for the two closest k_{i} points, thus essentially doubling the number of the basis functions. The function $w(k)$ was obtained from $J(k)$ according to Eq. (A4).

The integral over $k \in[0, \kappa]$ was calculated analytically, by diagonalizing the Hamiltonian matrix and using the spectral representation of the propagator. The value of the auxiliary parameter κ was set to $\kappa=100$. The integral over $k \in[\kappa, \infty)$ was separated into two parts, $k<10^{i_{\max }}$ and $k>10^{i_{\max }}$. The first part was evaluated numerically by using Gauss-Legendre quadratures, after the change of variables $t=1 / k^{2}$. The second part was obtained by integrating the asymptotic expansion of the function $w(k)$. The coefficients of this expansion were obtained by fitting the numerical data for $w(k)$ to the form

$$
\begin{equation*}
w(k)=\operatorname{pol}\left(\frac{1}{\sqrt{k}}\right)+\frac{\ln k}{k} \operatorname{pol}\left(\frac{1}{k}\right) \tag{A6}
\end{equation*}
$$

where $\operatorname{pol}(x)$ denotes a polynomial of x. The total number of fitting parameters was about $9-11$. The range of k to be fitted and the exact form of the fitting function were optimized so as to yield the best possible results for the known asymptotic expansion terms of $J(k)$.

The first-order perturbation of the Bethe logarithm by the mass-polarization operator can be represented as [10]
$\ln \left(k_{0}\right)_{M}=\frac{m}{M}\left[R_{M}(\kappa)+\frac{1}{D} \int_{0}^{\kappa} d k k J_{M}(k)+\int_{\kappa}^{\infty} d k \frac{w_{M}(k)}{k^{2}}\right]$,
(A7)
where

$$
\begin{align*}
& J_{M}(k)=2\langle\phi| \vec{\nabla} \frac{1}{E_{0}-H_{0}-k} \vec{\nabla}|\delta \phi\rangle \\
& \quad+\langle\phi| \vec{\nabla} \frac{1}{E_{0}-H_{0}-k}\left[\delta E-\vec{p}_{1} \cdot \vec{p}_{2}\right] \frac{1}{E_{0}-H_{0}-k} \vec{\nabla}|\phi\rangle \tag{A8}
\end{align*}
$$

and $\delta E=\left\langle\vec{p}_{1} \cdot \vec{p}_{2}\right\rangle$. The perturbed wave function $\delta \phi$ is defined by

$$
\begin{equation*}
|\delta \phi\rangle=\left|\delta_{M} \phi\right\rangle-|\phi\rangle \frac{\delta_{M} D}{D} \tag{A9}
\end{equation*}
$$

where δ_{M} stands for the first-order perturbation induced by the operator $\vec{p}_{1} \cdot \vec{p}_{2}$. The asymptotic expansion of $J_{M}(k)$ is much simpler than that of $J(k)$ and $w_{M}(k)$ is just

$$
\begin{equation*}
w_{M}(k)=\frac{k^{3}}{D} J_{M}(k)+\frac{k^{2}}{D} 2\langle\phi| \vec{\nabla}^{2}|\delta \phi\rangle . \tag{A10}
\end{equation*}
$$

Correspondingly, the function $R_{M}(\kappa)$ is

$$
\begin{equation*}
R_{M}(\kappa)=\frac{2 \kappa}{D}\langle\phi| \vec{\nabla}^{2}|\delta \phi\rangle \tag{A11}
\end{equation*}
$$

The numerical evaluation of Eq. (A7) was performed in a way similar to that for the plain Bethe logarithm. In particular, the same sets of optimized nonlinear parameters were used. Since a high accuracy is not needed for this correction, a somewhat simplified calculational scheme was used in this case. The high-energy part of the photon-momentum integral, $k \in[100, \infty)$, was evaluated by integrating the fitted asymptotic expansion for $w_{M}(k)$, which was taken to be of the form (A6) with 6-9 fitting parameters.

APPENDIX B: EXPECTATION VALUE OF $1 / r^{3}$

The definition of the expectation value of the regularized operator $1 / r^{3}$ is given by Eq. (12). With the basis-set representation of the wave function employed in this work,
a typical singular integral to be calculated is

$$
\begin{equation*}
I_{\epsilon}=\frac{1}{16 \pi^{2}} \int d^{3} r_{1} d^{3} r_{2} \frac{\exp \left(-\alpha r_{1}-\beta r_{2}-\gamma r\right)}{r^{3}} \Theta(r-\epsilon) . \tag{B1}
\end{equation*}
$$

The straightforward way is to evaluate this integral analytically for a finite value of the regulator ϵ and then expand it in small ϵ. This way is possible, but we prefer to use a simpler procedure, which is also the closest to the method of evaluation of the regular integrals.

We recall that all regular integrals are immediately obtained from the master integral

$$
\begin{align*}
& \frac{1}{16 \pi^{2}} \int d^{3} r_{1} d^{3} r_{2} \frac{\exp \left(-\alpha r_{1}-\beta r_{2}-\gamma r\right)}{r_{1} r_{2} r} \\
& \quad=\frac{1}{(\alpha+\beta)(\beta+\gamma)(\alpha+\gamma)} \tag{B2}
\end{align*}
$$

by formal differentiation or integration with respect to the corresponding parameters. The differentiation over α and β and an integration over γ delivers a result for the integral of the type $1 / r^{2}$. This integral is convergent, so the result is exact. The second integration over γ (which would yield an integral of the type $1 / r^{3}$) is divergent. The simplest way to proceed is as follows. We introduce a cutoff parameter for large values of γ, evaluate the integral over γ, and drop all cutoff-dependent terms. The expression obtained in this way differs from the correct one by a γ-independent constant only, which can be proved by differentiating with respect to γ.

The missing constant is most easily recovered by considering the behavior of the integral I when $\gamma \rightarrow \infty$. For very large γ, only the region of very small r contributes and we have

$$
\begin{align*}
I_{\epsilon} & =2 \int_{\epsilon}^{\infty} d r r \int_{0}^{\infty} d r_{1} r_{1} \int_{\left|r_{1}-r\right|}^{r_{1}+r} d r_{2} r_{2} \frac{e^{-\alpha r_{1}-\beta r_{2}-\gamma r}}{r^{3}} \\
& \approx \frac{2}{(\alpha+\beta)^{3}} \int_{\epsilon}^{\infty} d r \frac{e^{-\gamma r}}{r} . \tag{B3}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
I_{\mathrm{reg}} \equiv \lim _{\epsilon \rightarrow 0}\left[I_{\epsilon}+\gamma+\ln \epsilon\right] \stackrel{\gamma \rightarrow \infty}{=}-\frac{2}{(\alpha+\beta)^{3}} \ln \gamma \tag{B4}
\end{equation*}
$$

This equation yields the necessary condition for determining the missing constant term in the general expression for the regularized integral $I_{\text {reg }}$.
[1] P. C. Pastor, G. Giusfredi, P. DeNatale, G. Hagel, C. de Mauro, and M. Inguscio, Phys. Rev. Lett. 92, 023001 (2004).
[2] H. Araki, Prog. Theor. Phys. 17, 619 (1957).
[3] J. Sucher, Phys. Rev. 109, 1010 (1958).
[4] V. M. Shabaev, Phys. Rep. 356, 119 (2002).
[5] G. W. F. Drake, Can. J. Phys. 66, 586 (1988).
[6] K. Pachucki, Phys. Rev. A 74, 022512 (2006).
[7] K. Pachucki, Phys. Rev. A 74, 062510 (2006).
[8] A. N. Artemyev, V. M. Shabaev, V. A. Yerokhin, G. Plunien, and G. Soff, Phys. Rev. A 71, 062104 (2005).
[9] H. A. Bethe and E. E. Salpeter, Quantum Mechanics of Oneand Two-Electron Atoms (Springer, Berlin, 1957).
[10] K. Pachucki and J. Sapirstein, J. Phys. B 33, 455 (2000).
[11] K. Pachucki, Phys. Rev. Lett. 84, 4561 (2000).
[12] K. Pachucki, J. Phys. B 35, 3087 (2002).
[13] G. W. F. Drake, I. B. Khriplovich, A. I. Milstein, and A. S. Yelkhovsky, Phys. Rev. A 48, R15 (1993).
[14] M. Douglas and N. Kroll, Ann. Phys. (NY) 82, 89 (1974).
[15] K. Pachucki and V. A. Yerokhin, Phys. Rev. A 79, 062516 (2009); 80, 019902(E) (2009).
[16] V. Korobov and A. Yelkhovsky, Phys. Rev. Lett. 87, 193003 (2001).
[17] A. Yelkhovsky, Phys. Rev. A 64, 062104 (2001).
[18] K. Pachucki, Phys. Rev. Lett. 97, 013002 (2006).
[19] P. J. Mohr, B. N. Taylor, and D. B. Newell, Rev. Mod. Phys. 80, 633 (2008).
[20] V. A. Yerokhin, Phys. Rev. A 80, 040501(R) (2009).
[21] V. I. Korobov, Phys. Rev. A 61, 064503 (2000).
[22] V. I. Korobov, Phys. Rev. A 66, 024501 (2002).
[23] C. Schwartz, Int. J. Mod. Phys. E 15, 877 (2006).
[24] G. W. F. Drake and S. P. Goldman, Can. J. Phys. 77, 835 (1999).
[25] V. I. Korobov, Phys. Rev. A 69, 054501 (2004).
[26] G. W. F. Drake and R. A. Swainson, Phys. Rev. A 41, 1243 (1990).
[27] V. I. Korobov (private communication).
[28] I. Angeli, At. Data Nucl. Data Tables 87, 185 (2004).
[29] P. J. Mohr, Phys. Rev. A 32, 1949 (1985).
[30] G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. A729, 337 (2003).
[31] G. W. F. Drake, in Handbook of Atomic, Molecular, and Optical Physics, edited by G. W. F. Drake (Springer, NY, 2006).
[32] P. J. Mohr and B. N. Taylor, Rev. Mod. Phys. 77, 1 (2005).
[33] R. S. Van Dyck Jr., D. L. Farnham, S. L. Zafonte, and P. B. Schwinberg, AIP Conf. Proc. 457, 101 (1999).
[34] C. Schwartz, Phys. Rev. 123, 1700 (1961).
[35] V. I. Korobov and S. V. Korobov, Phys. Rev. A 59, 3394 (1999).
[36] V. M. Shabaev and A. N. Artemyev, J. Phys. B 27, 1307 (1994).
[37] E. Riis, A. G. Sinclair, O. Poulsen, G. W. F. Drake, W. R. C. Rowley, and A. P. Levick, Phys. Rev. A 49, 207 (1994).
[38] T. J. Scholl, R. Cameron, S. D. Rosner, L. Zhang, R. A. Holt, C. J. Sansonetti, and J. D. Gillaspy, Phys. Rev. Lett. 71, 2188 (1993).
[39] T. P. Dinneen, N. Berrah-Mansour, H. G. Berry, L. Young, and R. C. Pardo, Phys. Rev. Lett. 66, 2859 (1991).
[40] N. J. Peacock, M. F. Stamp, and J. D. Silver, Phys. Scr. T8, 10 (1984).
[41] W. A. Hallett, D. D. Dietrich, and J. D. Silver, Phys. Rev. A 47, 1130 (1993).
[42] T. J. Scholl, R. A. Holt, and S. D. Rosner, Phys. Rev. A 39, 1163 (1989).
[43] J. K. Thompson, D. J. H. Howie, and E. G. Myers, Phys. Rev. A 57, 180 (1998).

