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A rigorous quantum electrodynamical calculation is presented for energy levels of the 1 1S, 2 1S, 2 3S, 2 1P 1, and
2 3P 0,1,2 states of helium-like ions with the nuclear charge Z = 3, . . . , 12. The calculational approach accounts
for all relativistic, quantum electrodynamical, and recoil effects up to orders mα6 and m2/Mα5, thus advancing
the previously reported theory of light helium-like ions by one order in α.
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I. INTRODUCTION

Atomic helium and light helium-like ions have long been
attractive subjects of theoretical and experimental inves-
tigations. From the theoretical point of view, helium-like
atoms are the simplest few-body systems. As such, they are
traditionally used as a testing ground for different methods
of the description of atomic structure. On the experimental
side, small natural line widths of transitions between the
metastable 3P and 3S states of helium-like ions permit
spectroscopic measurements of high precision. For atomic
helium, experimental investigations are nowadays carried out
with the relative accuracy up to 7 × 10−12 [1]. An advantage of
the helium-like ions as compared to, for example, hydrogen-
like ones, is that the transition frequency increases slowly with
the nuclear charge number Z (∼Z). This feature ensures that
wavelengths of a significant part of the helium isoelectronic
sequence fall in the region suitable for accurate experimental
determination.

There are presently two main theoretical approaches that al-
low one to systematically account for the electron-correlation,
relativistic, and quantum electrodynamical (QED) effects
in few-electron systems. The first one, traditionally used
for light systems, relies on an expansion of the relativistic
and QED effects in terms of α and Zα (where α is the
fine-structure constant) and treats the nonrelativistic electron-
electron interaction nonperturbatively. This approach started
with the pioneering works of Araki [2] and Sucher [3], who
derived the expression for the Lamb shift in many-electron
systems complete through the order mα5. The other approach
aims primarily at high-Z ions. It does not use any expansion
in the binding-strength parameter Zα (and thus is often
referred to as the all-order approach) but treats the electron-
electron interaction within the perturbative expansion with the
parameter 1/Z. A systematic formulation of this method is
presented in Ref. [4].

These two approaches can be considered as complementary,
the first being clearly preferable for light atoms and the second
for heavy ions. The intermediate region of nuclear charges
around Z = 12 is the most difficult one for theory, as contribu-
tions not (yet) accounted by either of these methods have their
maximal value there. In order to provide accurate predictions
for the whole isoelectronic sequence, it is necessary to combine
these two approaches.

For the first time a combination of the complementary
approaches was made by Drake [5]. His results for energies
of helium-like ions comprise all effects up to order mα5 in
the low-Z region, whereas in the high-Z region, they are
complete up to the next-to-the-leading order in 1/Z for
nonradiative effects and to the leading order for radiative
effects. Since then, significant progress was achieved in
theoretical understanding of energy levels of atomic helium,
whose description is now complete through order mα6 [6,7].
Also in the high-Z region, theoretical energies have recently
been significantly improved by a rigorous treatment of the two-
electron QED corrections [8], which completed the O(1/Z)
part of the radiative effects.

In the present investigation we aim to improve theoretical
predictions of the n = 1 and n = 2 energy levels of light
helium-like ions. To this end, we perform a calculation that
includes all QED and recoil effects up to orders mα6 and
m2/Mα5 (where M is the nuclear mass). In order to establish
a basis for merging the current approach with the all-order
calculations, we perform an extensive analysis of the 1/Z ex-
pansion of individual corrections. This analysis also provides
an effective test of consistency of our calculational results and
of the 1/Z-expansion data available in the literature.

II. THEORY OF THE ENERGY LEVELS

In this section, we present a summary of contributions to
the energy levels of two-electron atoms complete up to orders
mα6 and m2/Mα5.

According to QED theory, energy levels of atoms are
represented by an expansion in powers of α of the form

E(α) = E(2) + E(4) + E(5) + E(6) + E(7) + · · · , (1)

where E(n) ≡ mαnE (n) is a contribution of order αn and may
include powers of ln α. Each of E (n) is in turn expanded in
powers of the electron-to-nucleus mass ratio m/M:

E (n) = E (n)
∞ + E (n)

M + E (n)
M2 + · · · , (2)

where E (n)
M denotes the correction of first order in m/M

and E (n)
M2 is the second-order correction. Note that, for the

nonrelativistic energy, it is more natural to expand in mr/M

(where mr is the reduced mass) rather than in m/M , since
such expansion has smaller coefficients. For the relativistic
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corrections, however, the natural recoil expansion parameter
is m/M , so for consistency we use it for the nonrelativistic
energy as well.

The terms of the double perturbation expansion (1) and (2)
are expressed as expectation values of some effective Hamil-
tonians (in some cases, of nonlocal operators) and as second-
and higher order perturbation corrections induced by these
Hamiltonians (operators). It is noteworthy that the expan-
sion (1) is employed also for the states that are mixed by the
relativistic effects, namely 2 1P 1 and 2 3P 1. The mixing effects
are treated perturbatively. (So, the leading effect due to the
2 1P 1–2 3P 1 mixing appears naturally as the second-order mα6

correction, together with contributions from other intermediate
states.) This differs from the approach used, for example,
in Ref. [5], where a two-by-two matrix was constructed
for this pair of states and the energies were obtained by a
diagonalization.

The leading contribution to the energy E (2)
∞ ≡ E0 is the

eigenvalue of the nonrelativistic Hamiltonian,

H (2) ≡ H0 =
∑

a

( �p2
a

2
− Z

ra

)
+

∑
a<b

1

rab

. (3)

The first- and second-order recoil corrections to the nonrela-
tivistic energy are given by

E (2)
M = − m

M
E (2)

∞ + 〈
H (2)

rec

〉
, (4)

E (2)
M2 =

( m

M

)2
E (2)

∞ − 2
m

M

〈
H (2)

rec

〉
+

〈
H (2)

rec
1

(E0 − H0)′
H (2)

rec

〉
, (5)

where

H (2)
rec = m

M

∑
a<b

�pa · �pb (6)

is the mass polarization operator.
The leading relativistic correction E (4)

∞ is given by the
expectation value of the Breit-Pauli Hamiltonian H (4) [9],

H (4) =
∑

a

[
− �p4

a

8
+ πZ

2
δ3(ra) + Z

4
�σa · �ra

r3
a

× �pa

]

+
∑
a<b

{
−πδ3(rab) − 1

2
pi

a

(
δij

rab

+ ri
abr

j

ab

r3
ab

)
p

j

b

− 2π

3
�σa · �σbδ

3(rab) + σ i
aσ

j

b

4r3
ab

(
δij − 3

ri
abr

j

ab

r2
ab

)

+ 1

4r3
ab

[2(�σa · �rab × �pb − �σb · �rab × �pa)

+ (�σb · �rab × �pb − �σa · �rab × �pa)]

}
. (7)

The finite-nuclear-mass correction to the Breit contribution
E (4)

M is conveniently separated into the mass scaling, the mass
polarization, and the operator parts. The mass scaling prefactor
is (mr/m)4 for the first term in Eq. (7) and (mr/m)3, for all
the others. The mass polarization part represents the first-order

perturbation of E (4)
∞ by the mass-polarization operator (6). The

operator part is given by the expectation value of the recoil
addition to the Breit-Pauli Hamiltonian,

H (4)
rec = Zm

2M

∑
ab

[
�ra

r3
a

× �pb · �σa − pi
a

(
δij

ra

+ ri
ar

j
a

r3
a

)
p

j

b

]
.

(8)

E (5)
∞ is the leading QED correction [2,3]. We divide it

into logarithmic and nonlogarithmic parts, E (5)
∞ = E (5)

∞ (log) +
E (5)

∞ (nlog), which are given by

E (5)
∞ (log) = 14

3
ln(Zα)

∑
a<b

〈δ3(rab)〉

+ 4Z

3
ln[(Zα)−2]

∑
a

〈δ3(ra)〉 (9)

and

E (5)
∞ (nlog) = 164

15

∑
a<b

〈δ3(rab)〉 − 14

3

∑
a<b

Q̃ab

+
[

19

30
− ln

(
k0

Z2

)]
4Z

3

∑
a

〈δ3(ra)〉 + 〈
H

(5)
fs

〉
,

(10)

where

Q̃ab =
〈

1

4πr3
ab

+ δ3(rab) ln Z

〉
(11)

and the singular operator r−3 is defined by〈
1

r3

〉
≡ lim

a→0

∫
d3rφ∗(�r)φ(�r)

×
[

1

r3
�(r − a) + 4πδ3(r)(γ + ln a)

]
, (12)

where γ is the Euler constant. The Bethe logarithm is defined
as

ln(k0) =
〈∑

a �pa(H0 − E0) ln[2(H0 − E0)]
∑

b �pb

〉
2πZ

〈∑
c δ3(rc)

〉 . (13)

The operator H
(5)
fs is the anomalous magnetic moment correc-

tion to the spin-dependent part of the Breit-Pauli Hamiltonian.
H

(5)
fs does not contribute to the energies of the singlet states

nor to the spin-orbit averaged levels but it yields the mα5

contribution to the fine-structure splitting. It is given by

H
(5)
fs = Z

4π

∑
a

�σa · �ra

r3
a

× �pa

+
∑
a<b

{
1

4π

σ i
aσ

j

b

r3
ab

(
δij − 3

ri
abr

j

ab

r2
ab

)

+ 1

4πr3
ab

[2(�σa · �rab × �pb − �σb · �rab × �pa)

+ (�σb · �rab × �pb − �σa · �rab × �pa)]

}
. (14)

We note that despite the presence of terms with ln Z in Eq. (10),
the correction E (5)

∞ (nlog) does not have logarithmic terms in its
1/Z expansion.
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The recoil correction E (5)
M consists of four parts [10]:

E (5)
M = m

M
(E1 + E2 + E3) + 〈

H
(5)
fs,rec

〉
, (15)

where

E1 = −3E (5)
∞ + 4Z

3

∑
a

〈δ3(ra)〉 − 14

3

∑
a<b

〈δ3(rab)〉, (16)

E2 = Z2

[
−2

3
ln(Zα) + 62

9
− 8

3
ln

(
k0

Z2

)] ∑
a

〈δ3(ra)〉

− 14Z2

3

∑
a

Q̃a, (17)

with Q̃a defined analogously to Eq. (11), and (m/M)E3 is the
first-order perturbation of E (5)

∞ due to the mass-polarization
operator (6). The operator H

(5)
fs,rec yields a nonvanishing

contribution to the fine-structure splitting only. It is given by

H
(5)
fs,rec = m

M

Z

4π

∑
ab

�ra

r3
a

× �pb · �σa. (18)

We note that the last term in Eq. (16) was omitted in the original
derivation of Ref. [10].

The complete result for the mα6 correctionE (6)
∞ to the energy

levels was derived by one of the authors (K.P.) in a series of
papers [6,7,11,12] as

E (6)
∞ = − ln(Zα)π

∑
a<b

〈δ3(rab)〉 + Esec

+ 〈
H

(6)
nrad + H

(6)
R1 + H

(6)
R2 + H

(6)
fs + H

(6)
fs,amm

〉
. (19)

The first term in this expression contains the complete
logarithmic dependence of the mα6 correction. The part of
it proportional to ln α was first obtained in Ref. [13]. The
remaining logarithmic part proportional to ln Z was implicitly
present in formulas reported in Ref. [6,7]. (It originates from
the expectation value of the operator 1/r3

ab.) In Eq. (19), we
group all logarithmic terms together so that the remaining part
does not have any logarithms in its 1/Z expansion.

The term Esec in Eq. (19) is the second-order perturbation
correction induced by the Breit-Pauli Hamiltonian. (More
specifically, it is the finite residual after separating divergent
contributions that cancel out in the sum with the expectation
value of the effective mα6 Hamiltonian.) The first part of the
effective Hamiltonian, H

(6)
nrad, originates from the nonradiative

part of the electron-nucleus and the electron-electron interac-
tion. The next two terms, H (6)

R1 and H
(6)
R2 , are due to the one-loop

and two-loop radiative effects, respectively. The last two parts,
H

(6)
fs and H

(6)
fs,amm, are the spin-dependent operators first derived

by Douglas and Kroll [14]. They do not contribute to the
energies of the singlet states nor to the spin-orbit averaged
levels. Expressions for these operators are well known and
are given, for example, by Eqs. (3) and (7) of Ref. [15]. The
nonradiative part of the mα6 effective Hamiltonian is rather
complicated. For simplicity, we present it specifically for a
two-electron atom. The corresponding expression reads [6,7]

H
(6)
nrad = −E3

0

2
+

[(
−E0 + 3

2
�p2

2 + 1 − 2Z

r2

)
Zπ

4
δ3(r1)

+ (1 ↔ 2)

]
+

�P 2

6
πδ3(r) − (3 + �σ1 · �σ2)

24
π �pδ3(r) �p

−
(

Z

r1
+ Z

r2

)
π

2
δ3(r) +

(
13

12
+ 8

π2
− 3

2
ln(2)

− 39ζ (3)

4π2

)
πδ3(r) + E2

0 + 2E (4)

4r
− E0

r2

(31 + 5�σ1 · �σ2)

32

− E0

2r

(
Z

r1
+ Z

r2

)
+ E0

4

(
Z

r1
+ Z

r2

)2

− 1

r2

(
Z

r1
+ Z

r2
− 1

r

)
(23 + 5�σ1 · �σ2)

32

− 1

4r

(
Z

r1
+ Z

r2

)2

+ Z2

2r1r2

(
E0 + Z

r1
+ Z

r2
− 1

r

)
−Z

( �r1

r3
1

− �r2

r3
2

)
· �r
r3

(13 + 5�σ1 · �σ2)

64

+ Z

4

( �r1

r3
1

− �r2

r3
2

)
· �r
r2

− Z2

8

ri
1

r3
1

(rirj − 3δij r2)

r

r
j

2

r3
2

+
[
Z2

8

1

r2
1

�p2
2 + Z2

8
�p1

1

r2
1

�p1 + �p1
1

r2
�p1

(47 + 5�σ1 · �σ2)

64

+ (1 ↔ 2)

]
+ 1

4
pi

1

(
Z

r1
+ Z

r2

)
(rirj + δij r2)

r3
p

j

2

+P i (3rirj − δij r2)

r5
P j (−3 + �σ1 · �σ2)

192

−
[
Z

8
pk

2
ri

1

r3
1

(
δjk ri

r
− δik rj

r
− δij rk

r
− rirj rk

r3

)
p

j

2

+ (1 ↔ 2)

]
− E0

8
p2

1p
2
2 − 1

4
p2

1

(
Z

r1
+ Z

r2

)
p2

2

+ 1

4
�p1 × �p2

1

r
�p1 × �p2 + 1

8
pk

1p
l
2

×
(

−δjl r
irk

r3
− δik rj rl

r3
+ 3

rirj rkrl

r5

)
pi

1p
j

2

+ ln(Z) πδ3(r), (20)

where �P = �p1 + �p2, �p = ( �p1 − �p2)/2, and �r = �r1 − �r2. We
note that the operator H

(6)
nrad is defined in such a way that

its expectation values does not contain any logarithmic terms
in the 1/Z expansion, as the last term of Eq. (20) is
compensated by the corresponding contribution from the 1/r3

operator.
The effective Hamiltonians induced by the radiative effects

are [6,16,17]

H
(6)
R1 = Z2

[
427

96
− 2 ln(2)

]
π [δ3(r1) + δ3(r2)]

+
[

6ζ (3)

π2
− 697

27π2
− 8 ln(2) + 1099

72

]
πδ3(r) (21)

and

H
(6)
R2 = Z

[
−9ζ (3)

4π2
− 2179

648π2
+ 3 ln(2)

2
− 10

27

]
π

× [δ3(r1) + δ3(r2)] +
[

15ζ (3)

2π2
+ 631

54π2

− 5 ln(2) + 29

27

]
πδ3(r). (22)
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The second-order correction can be represented as

Esec =
〈
H

(4)′
nfs

1

(E0 − H0)′
H

(4)′
nfs

〉
+ 2

〈
H

(4)
nfs

1

(E0 − H0)′
H

(4)
fs

〉
+

〈
H

(4)
fs

1

(E0 − H0)′
H

(4)
fs

〉
, (23)

where H
(4)
nfs and H

(4)
fs are the spin-independent and

spin-dependent parts of the Breit-Pauli Hamiltonian (7),
respectively. The operator H

(4)′
nfs is obtained from H

(4)
nfs by a

transformation that eliminates divergences in the second-order
matrix elements [6]. The transformed operator is given by

H
(4)′
nfs = −1

2
(E0 − V )2 − pi

1
1

2r

(
δij + rirj

r2

)
p

j

2

+ 1

4
�∇2

1
�∇2

2 − Z

4

�r1

r3
1

· �∇1 − Z

4

�r2

r3
2

· �∇2, (24)

where �∇2
1
�∇2

2 is understood as a differentiation of the wave
function on the right-hand side as a function [omitting δ3(r)]
and V = −Z/r1 − Z/r2 + 1/r .

An intriguing feature of the formulas presented in this
section is that their logarithmic dependence enters only in
the form of ln(Zα). This is not at all obvious a priori since
ln(Zα) appears naturally only in contributions induced by
the electron-nucleus interaction. The effects of the electron-
electron interaction usually yield logarithms of α, whereas
logarithms of Z are implicitly present in matrix elements
of singular operators. The fact that logarithms of α and
logarithms of Z have coefficients that match each other comes
“accidentally” from the derivation.

The complete result for the corrections of order mα7

for the helium Lamb shift is not presently available (but it
is known for the fine-structure splitting [15,18]). One can,
however, easily generalize some of the hydrogenic results,
namely those that are proportional to the electron density at the
nucleus. These are (i) the one-loop radiative correction of order
mα(Zα)6 ln2(Zα)−2, (ii) the two-loop radiative correction of
order mα2(Zα)5, and (iii) the nonrelativistic correction due
to the finite nuclear size. The first two effects yield the main
contribution to the higher order remainder function of S states
in light hydrogen-like ions. We expect that they dominate for
light helium-like ions as well.

Following Ref. [5], we approximate the higher order
radiative (“rad”) and the finite-nuclear-size (“fs”) correction
to the energies of helium-like ions by

E (7+)
rad = E (7+)

rad,H

〈∑
i δ

3(ri)
〉〈 ∑

i δ
3(ri)

〉
H

, (25)

Efs = Efs,H

〈 ∑
i δ

3(ri)
〉〈∑

i δ
3(ri)

〉
H

, (26)

where the subscript H corresponds to the “hydrogenic” limit,
that is, the limit of the noninteracting electrons and〈∑

i

δ3(ri)

〉
H

= Z3

π

(
1 + δl,0

n3

)
. (27)

The approximation of Eqs. (25) and (26) is exact for the afore-
mentioned corrections proportional to the electron density

at the nucleus. It is expected also to provide a meaningful
estimate for contributions that weakly depend on n [such as
the nonlogarithmic radiative correction of order mα(Zα)6].
Moreover, this approximation is exact to the leading order in
the 1/Z expansion, thus providing a meaningful estimate for
high-Z helium-like ions as well.

For all the states under consideration except 2 1P 1 and
2 3P 1, the “hydrogenic” remainder function is just the sum
of the corresponding remainders for the two electrons in the
configuration:

E (7+)
rad,H = E (7+)

rad (1s) + E (7+)
rad (nlj ). (28)

For the 2 1P 1 and 2 3P 1 states, the Dirac levels need to
be first transformed from the jj to the LS coupling and
thus [5]

E (7+)
rad,H(2 1P1) = E (7+)

rad (1s) + 2
3E

(7+)
rad (2p3/2) + 1

3E
(7+)
rad (2p1/2),

E (7+)
rad,H(2 3P1) = E (7+)

rad (1s) + 1
3E

(7+)
rad (2p3/2) + 2

3E
(7+)
rad (2p1/2).

(29)

In our calculation, the one-electron remainder function
E (7+)

rad (nlj ) includes all known contributions of order mα7 and
higher coming from (i) the one-loop radiative correction, (ii)
the two-loop radiative correction, (iii) the three-loop radiative
correction. (See the reviews in Refs. [19,20] for an update on
the two-loop remainder function.)

Besides the finite-nuclear-size and radiative corrections,
there are also nonradiative effects, denoted as E (7+)

nrad and
estimated within the 1/Z expansion. More specifically, we
include the higher order remainder due to the one-electron
Dirac energy and due to the one-photon exchange cor-
rection. They enter at the order mα8 only but are en-
hanced by factors of Z8 and Z7, respectively. Despite
this enhancement, numerical contributions of these effects
are rather small for the ions considered in the present
work.

III. RESULTS AND DISCUSSION

A. Numerical results

The nonrelativistic energies and wave functions are ob-
tained by minimizing the energy functional with the basis set
constructed with the fully correlated exponential functions.
The choice of the basis set and the general strategy of
optimization of the nonlinear parameters follow the main
lines of the approach developed by Korobov [21,22]. The
calculational scheme is described in previous publications
[6,7,15] and will not be repeated here. Numerical values of the
nonrelativistic energies of helium-like ions with the nuclear
charge Z = 3, . . . , 12 are presented in Table I. The results
were obtained with N = 2000 basis functions and are accurate
to about 18 decimals (more than shown in the table). The
energy levels of the helium atom traditionally attract special
attention, so we present the corresponding results in full length.
Our numerical values of the upper variational limit of the
nonrelativistic energies of helium are

E (2)
∞ (11S) = −2.903 724 377 034 119 598 310+0

−2, (30)

E (2)
∞ (21S) = −2.145 974 046 054 417 415 799+0

−8, (31)
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TABLE I. Nonrelativistic energies of helium-like ions E (2)
∞ , E (2)

M , and E (2)
M2 . For the helium atom, the nonrelativistic energy E (2)

∞ is given

in the text [see Eqs. (30)–(34)]. For E (2)
∞ and E (2)

M , the results of fitting the numerical data to the form E = ∑
i ci/Z

i are also presented. The
1/Z expansion of the second-order recoil correction E (2)

M2 was not studied since this correction is relevant for the light atoms only. Atomic units
are used.

Z 1 1S 2 1S 2 3S 2 1P 2 3P

E (2)
∞ + Z2(1 + 1/n2)/2

3 1.720 086 587 330 694 0.584 123 254 404 560 0.514 272 627 429 260 0.631 648 922 219 983 0.597 284 318 602 632
4 2.344 433 761 576 413 0.815 126 104 651 679 0.702 833 410 222 385 0.889 228 377 083 556 0.825 026 856 929 027
5 2.969 028 419 757 218 1.046 471 967 118 562 0.891 102 651 185 767 1.147 716 734 692 201 1.051 862 307 786 520
6 3.593 753 398 101 470 1.277 982 298 711 029 1.079 244 097 692 043 1.406 667 686 611 591 1.278 289 303 511 949
7 4.218 554 851 227 295 1.509 584 284 500 004 1.267 318 262 508 963 1.665 883 599 383 315 1.504 498 255 070 109
8 4.843 404 877 242 074 1.741 242 692 371 423 1.455 352 679 914 990 1.925 264 764 124 369 1.730 577 283 616 668
9 5.468 287 636 040 509 1.972 938 360 878 370 1.643 361 670 481 692 2.184 755 723 292 205 1.956 572 706 521 290
10 6.093 193 484 962 451 2.204 659 953 768 328 1.831 353 415 926 627 2.444 323 260 421 919 2.182 511 179 215 097
11 6.718 116 223 927 278 2.436 400 325 538 931 2.019 332 929 131 276 2.703 946 297 095 311 2.408 409 121 058 957
12 7.343 051 687 353 070 2.668 154 743 908 730 2.207 303 452 397 112 2.963 610 824 902 483 2.634 277 196 002 167

1/Z-expansion coefficients
c−1 5/8 169/729 137/729 1705/6561 1481/6561
c0 −0.157 666 43 −0.114 510 14 −0.047 409 30 −0.157 028 66 −0.072 998 98
c1 0.008 699 03 0.009 327 61 −0.004 872 28 0.026 106 26 −0.016 585 30
c2 −0.000 888 69 −0.001 284 99 −0.003 457 75 0.005 782 46 −0.010 353 67
c3 −0.001 036 59 0.006 194 73 −0.002 030 70 −0.005 033 12 −0.005 427 43
c4 −0.000 610 67 −0.001 471 94 −0.001 278 08 −0.007 099 02 −0.002 001 75
c5 −0.000 388 13 −0.003 775 51 −0.000 934 77 −0.001 103 32 0.000 100 74

E (2)
M /(Z2m/M)

2 0.765 698 46 0.538 869 48 0.545 667 88 0.542 471 90 0.517 147 94
3 0.840 987 69 0.562 509 01 0.569 810 61 0.582 725 90 0.524 732 09
4 0.879 755 41 0.576 178 76 0.582 830 44 0.608 268 18 0.529 299 61
5 0.903 348 97 0.584 990 29 0.590 909 14 0.625 203 60 0.532 349 14
6 0.919 210 60 0.591 123 83 0.596 399 30 0.637 117 06 0.534 516 27
7 0.930 603 34 0.595 633 60 0.600 370 03 0.645 913 88 0.536 130 48
8 0.939 181 63 0.599 086 96 0.603 374 29 0.652 661 02 0.537 377 39
9 0.945 873 29 0.601 815 29 0.605 726 19 0.657 993 92 0.538 368 63
10 0.951 238 85 0.604 024 79 0.607 617 17 0.662 312 12 0.539 175 09
11 0.955 636 86 0.605 850 39 0.609 170 53 0.665 878 55 0.539 843 79
12 0.959 307 33 0.607 384 02 0.610 469 21 0.668 872 98 0.540 407 11

1/Z-expansion coefficients
c0 1 5/8 5/8 5/8 + 29/38 5/8 − 29/38

c1 −0.491 706 5 −0.219 681 2 −0.176 992 4 −0.422 232 8 −0.082 563 1
c2 0.039 651 7 0.100 337 6 0.030 684 4 0.133 727 0 0.045 923 6
c3 0.012 972 5 −0.009 874 4 0.009 154 5 0.162 310 7 0.009 983 7
c4 −0.000 022 6 −0.006 744 6 0.003 896 3 −0.000 445 3 −0.007 945 4
c5 0.003 037 4 0.008 949 1 0.001 835 8 −0.099 048 5 −0.011 326 2

E (2)
M2/(Z2m2/M2)

2 −0.923 067 75 −0.575 065 28 −0.561 902 54 −0.596 056 62 −0.552 238 02
3 −1.015 027 87 −0.623 263 22 −0.591 803 40 −0.687 746 68 −0.574 156 42
4 −1.061 762 41 −0.651 489 97 −0.607 626 64 −0.742 385 92 −0.583 335 75
5 −1.090 051 34 −0.669 682 17 −0.617 364 45 −0.776 892 85 −0.588 425 34
6 −1.109 014 61 −0.682 312 57 −0.623 951 64 −0.800 354 77 −0.591 687 77
7 −1.122 610 79 −0.691 572 88 −0.628 701 72 −0.817 261 02 −0.593 967 08
8 −1.132 835 81 −0.698 645 59 −0.632 288 26 −0.829 994 71 −0.595 653 31
9 −1.140 805 12 −0.704 220 80 −0.635 091 75 −0.839 919 81 −0.596 952 97
10 −1.147 190 96 −0.708 727 06 −0.637 343 21 −0.847 868 27 −0.597 986 12
11 −1.152 422 61 −0.712 444 12 −0.639 190 98 −0.854 374 66 −0.598 827 53
12 −1.156 787 03 −0.715 562 17 −0.640 734 67 −0.859 797 49 −0.599 526 27
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TABLE II. The leading relativistic corrections E (4)
∞ and E (4)

M for helium-like atoms and their 1/Z-expansion coefficients. The analytical
results for the coefficient c1 for E (4)

∞ were taken from Ref. [29] for the 1 1S, 2 3S, 2 3P0, and 2 3P 2 states. For the other states, this coefficient was
evaluated numerically to high accuracy in this work by the same method as in Ref. [29]. The c0 coefficient of E (4)

M for the S states originates
from the one-electron recoil effect and is well known from the hydrogen theory. For the P states, it contains also the two-electron contribution,
which was derived in Ref. [36]. The remaining 1/Z-expansion coefficients were obtained by fitting the numerical data for E (4)

∞ and E (4)
M . Atomic

units are used.

Z 1 1S 2 1S 2 3S 2 1P 1 2 3P 0 2 3P 1 2 3P 2

E (4)
∞ /Z4

2 −0.121 984 67 −0.127 135 46 −0.135 279 87 −0.127 501 60 −0.118 042 52 −0.123 316 23 −0.123 729 58
3 −0.145 794 73 −0.131 881 23 −0.142 840 30 −0.130 953 91 −0.121 128 29 −0.126 601 86 −0.124 410 72
4 −0.163 263 53 −0.136 297 75 −0.147 356 68 −0.133 229 53 −0.126 667 74 −0.130 512 05 −0.125 569 23
5 −0.176 048 64 −0.139 882 98 −0.150 310 08 −0.134 786 60 −0.131 522 71 −0.133 708 51 −0.126 557 82
6 −0.185 674 19 −0.142 737 56 −0.152 383 24 −0.135 917 90 −0.135 444 97 −0.136 216 54 −0.127 342 75
7 −0.193 138 21 −0.145 028 97 −0.153 916 10 −0.136 778 46 −0.138 596 36 −0.138 199 25 −0.127 965 82
8 −0.199 077 87 −0.146 895 44 −0.155 094 63 −0.137 455 97 −0.141 156 38 −0.139 793 29 −0.128 467 48
9 −0.203 909 05 −0.148 439 23 −0.156 028 56 −0.138 003 71 −0.143 266 17 −0.141 097 57 −0.128 878 10
10 −0.207 911 70 −0.149 734 47 −0.156 786 71 −0.138 455 96 −0.145 029 86 −0.142 182 11 −0.129 219 51
11 −0.211 280 06 −0.150 835 16 −0.157 414 35 −0.138 835 82 −0.146 523 58 −0.143 096 91 −0.129 507 41
12 −0.214 152 65 −0.151 781 23 −0.157 942 44 −0.139 159 46 −0.147 803 54 −0.143 878 26 −0.129 753 21

1/Z-expansion coefficients
c0 −1/4 −21/128 −21/128 −55/384 −21/128 −59/384 −17/128
c1 0.480 139 61 0.169 478 18 0.076 935 23 0.055 403 03 0.219 768 22 0.130 428 76 0.040 638 72
c2 −0.636 506 86 −0.281 858 62 −0.042 775 47 −0.090 632 15 −0.303 523 35 −0.162 129 41 −0.047 315 68
c3 0.456 314 23 0.202 919 21 0.010 473 95 0.156 412 39 0.091 746 25 0.042 468 90 0.002 244 38
c4 −0.171 179 61 −0.042 542 10 −0.004 460 83 −0.178 042 53 −0.008 844 33 −0.004 319 44 −0.000 236 51
c5 0.018 587 49 0.018 861 71 −0.001 566 73 0.059 068 31 0.015 552 82 0.007 698 46 0.003 691 05

E (4)
M /(Z4m/M)

2 −0.134 960 7 −0.004 351 6 0.005 574 1 −0.003 655 3 0.015 596 8 0.016 677 1 0.012 760 7
3 −0.123 759 2 −0.001 616 1 0.011 426 9 −0.008 574 4 0.026 148 2 0.026 855 2 0.019 248 5
4 −0.107 627 1 0.002 303 9 0.015 288 3 −0.012 139 6 0.032 666 5 0.032 185 5 0.021 650 8
5 −0.093 784 1 0.005 792 4 0.017 933 4 −0.014 451 6 0.037 580 2 0.035 768 1 0.022 926 5
6 −0.082 625 7 0.008 672 2 0.019 840 8 −0.015 970 4 0.041 407 7 0.038 388 7 0.023 736 9
7 −0.073 647 0 0.011 026 9 0.021 276 3 −0.017 005 1 0.044 450 5 0.040 395 3 0.024 304 7
8 −0.066 337 0 0.012 965 9 0.022 393 8 −0.017 736 6 0.046 915 2 0.041 981 4 0.024 727 6
9 −0.060 299 1 0.014 581 1 0.023 287 6 −0.018 271 0 0.048 946 2 0.043 266 3 0.025 056 1
10 −0.055 241 6 0.015 943 0 0.024 018 4 −0.018 672 8 0.050 645 5 0.044 328 0 0.025 319 3
11 −0.050 950 5 0.017 104 5 0.024 626 8 −0.018 982 2 0.052 086 4 0.045 219 7 0.025 535 1
12 −0.047 267 8 0.018 105 5 0.025 141 1 −0.019 225 6 0.053 322 8 0.045 979 1 0.025 715 5

1/Z-expansion coefficients
c0 0 1/32 1/32 −0.020 744 7 0.069 205 9 0.055 392 0 0.027 764 2
c1 −0.645 040 2 −0.182 643 4 −0.078 412 4 0.002 583 0 −0.217 113 6 −0.125 397 2 −0.025 605 0
c2 0.972 372 8 0.314 800 3 0.062 834 3 0.220 104 6 0.332 302 1 0.157 607 0 0.015 453 2
c3 −0.460 091 9 −0.188 443 6 −0.018 866 9 −0.387 495 1 −0.152 038 8 −0.096 226 5 −0.036 663 9
c4 −0.040 368 0 −0.048 228 2 0.000 413 8 −0.046 282 4 −0.252 878 4 −0.030 160 4 −0.017 642 5

E (2)
∞ (23S) = −2.175 229 378 236 791 305 738 977+0

−2, (32)

E (2)
∞ (21P ) = −2.123 843 086 498 101 359 246+0

−2, (33)

E (2)
∞ (23P ) = −2.133 164 190 779 283 205 146 96+0

−10. (34)

The value for the ground state is given only for completeness,
since much more accurate numerical results are available in
the literature [22,23]. The numerical results for the leading
relativistic correction E (4) are summarized in Table II.

The leading QED correction E (5) is given by Eqs. (9), (10),
and (15). Computationally the most problematic part of it
is represented by the Bethe logarithm ln(k0) and its mass-
polarization correction ln(k0)M . Accurate calculations of ln(k0)

were performed by Drake and Goldman [24] for helium-like
like atoms with Z � 6 and by Korobov [25] for Z = 2.
Calculations of the recoil correction to the Bethe logarithm
were reported by Pachucki and Sapirstein [10] for Z = 2
and by Drake and Goldman [24] for Z � 6. In the present
investigation, we perform accurate evaluations of the Bethe
logarithm ln(k0) and its recoil correction ln(k0)M for helium-
like ions with Z � 12. The calculational approach is described
in Appendix A.

Table III summarizes the numerical results obtained and
gives a comparison with the previous calculations. Numerical
values for the Bethe logarithm are presented for the difference
ln(k0) − ln(Z2) since this difference has a weak Z dependence

022507-6



THEORETICAL ENERGIES OF LOW-LYING STATES OF . . . PHYSICAL REVIEW A 81, 022507 (2010)

TABLE III. Bethe logarithm for helium-like atoms with infinite nuclear mass, ln(k0/Z
2), and its first-order perturbation by the mass

polarization operator, ln(k0)M . Coefficients of the 1/Z expansion of ln(k0/Z
2) are also presented. The leading term c0 is known with a high

accuracy from the hydrogen theory. The higher order coefficients are obtained by fitting the numerical data.

Z 1 1S 2 1S 2 3S 2 1P 2 3P Ref.

ln(k0/Z
2)

2 2.983 865 861 8(1) 2.980 118 365 1(1) 2.977 742 459 29(2) 2.983 803 382 4(1) 2.983 691 003 3(2)
2.983 865 860 9(1) 2.980 118 364 8(1) 2.977 742 459 2(1) 2.983 803 377(1) 2.983 690 995(1) [25]
2.983 865 857(3) 2.980 118 36(7) 2.977 742 46(1) 2.983 803 46(3) 2.983 690 84(2) [24]

3 2.982 624 563 0(2) 2.976 363 063 0(2) 2.973 851 709 92(4) 2.983 186 013 6(2) 2.982 958 798 2(2)
4 2.982 503 099 1(3) 2.973 976 911 2(3) 2.971 735 578 90(7) 2.982 698 213 8(4) 2.982 443 598 4(3)
5 2.982 591 376 1(4) 2.972 388 098 8(4) 2.970 424 964 90(8) 2.982 340 114 9(8) 2.982 089 604 9(4)
6 2.982 716 948(1) 2.971 266 246 4(5) 2.969 537 071 9(3) 2.982 072 719(2) 2.981 835 938 5(6)

2.982 716 948(4) 2.971 266 24(4) 2.969 537 07(1) 2.982 072 76(2) 2.981 835 92(3) [24]
7 2.982 839 085(3) 2.970 435 367(1) 2.968 896 814(1) 2.981 867 337(7) 2.981 646 451(2)
8 2.982 948 318(4) 2.969 796 528(3) 2.968 413 645(2) 2.981 705 33(1) 2.981 499 939(4)
9 2.983 043 667(8) 2.969 290 586(5) 2.968 036 227(5) 2.981 574 56(3) 2.981 383 443(7)
10 2.983 126 46(2) 2.968 880 24(1) 2.967 733 341(9) 2.981 466 92(5) 2.981 288 68(1)
11 2.983 198 50(3) 2.968 540 85(2) 2.967 484 93(2) 2.981 376 9(1) 2.981 210 12(2)
12 2.983 261 47(5) 2.968 255 57(4) 2.967 277 54(3) 2.981 300 4(2) 2.981 143 96(3)

Coefficients of the 1/Z expansion
c0 2.984 128 56 2.964 977 59 2.964 977 59 2.980 376 47 2.980 376 47
c1 −0.012 299 28 0.040 788 09 0.027 759 43 0.012 003 83 0.009 627 97
c2 0.022 449 74 −0.016 439 35 −0.001 423 95 −0.010 982 08 −0.004 810 60
c3 0.003 586 19 −0.012 355 03 −0.005 968 56 −0.000 482 19 −0.002 457 88
c4 −0.002 503 70 0.005 813 30 0.000 119 95 0.003 764 32 −0.000 236 70

ln(k0)M/(m/M)
2 0.094 389 4(1) 0.017 734 4(1) 0.004 785 54(1) −0.003 553 4(2) 0.008 709 5(1)

0.094 38(1) 0.017 734(1) 0.004 784(3) −0.003 538(6) 0.008 701(4) [24]
3 0.109 539 7(1) 0.034 210 3(1) 0.007 852 51(1) −0.006 602 3(2) 0.016 328 3(1)
4 0.116 919 7(1) 0.044 876 8(1) 0.009 616 61(1) −0.007 951 2(2) 0.020 199 2(1)
5 0.121 304 5(2) 0.052 012 4(2) 0.010 754 20(1) −0.008 629 5(2) 0.022 479 0(1)
6 0.124 212 9(3) 0.057 053 0(3) 0.011 547 92(1) −0.009 015 3(2) 0.023 973 6(1)

0.124 21(1) 0.057 051(1) 0.011 541(1) −0.008 98(1) 0.023 98(1) [24]
7 0.126 283 1(4) 0.060 783 0(9) 0.012 133 20(1) −0.009 255 6(2) 0.025 027 3(1)
8 0.127 833 6(5) 0.063 647 0(7) 0.012 582 68(1) −0.009 416 0(2) 0.025 809 5(2)
9 0.129 037 1(2) 0.065 912(1) 0.012 938 76(1) −0.009 528 7(2) 0.026 412 8(3)
10 0.129 998 9(2) 0.067 746(1) 0.013 227 87(1) −0.009 611 2(2) 0.026 892 2(4)
11 0.130 785 1(2) 0.069 261(1) 0.013 467 30(1) −0.009 673 6(2) 0.027 282 2(4)
12 0.131 439 7(2) 0.070 534(2) 0.013 668 86(1) −0.009 722 2(3) 0.027 605 7(4)

and does not contain any logarithms in its 1/Z expansion.
The table also lists the coefficients of the 1/Z expansion
of ln(k0/Z

2). The leading coefficient c0 is known from the
hydrogen theory; accurate numerical values can be found
in Ref. [26]. The higher order coefficients were obtained by
fitting our numerical data. It is interesting to compare them
with the analogous results reported previously by Drake and
Goldman [24]. For the next-to-the-leading coefficient c1, the
results agree up to about four to five digits for S states and
to about three to four digits for P states. For the higher order
coefficients, the agreement gradually deteriorates. However,
the results for the sum of the two expansions agree very
well with each other. More specifically, the maximal absolute
deviation between the values of the Bethe logarithms for
Z > 12 obtained with our 1/Z-expansion coefficients and
with those by Drake and Goldman is 1 × 10−8 for the 1 1S

state, 3 × 10−8 for the 2 1S state, 6 × 10−9 for the 2 3S state,

1 × 10−7 for the 2 1P state, and 6 × 10−8 for the 2 3P state. So,
the accuracy of these expansions is sufficient for most practical
purposes.

Another part of the calculation of E (5) that needs a separate
discussion is the evaluation of the expectation value of the
singular operator 1/r3, which is defined by Eq. (12). The
calculational approach is described in Appendix B. Total
results for the logarithmic and the nonlogarithmic part of
the leading QED correction are summarized in Tables IV
and V, respectively. The results are in good agreement with
the previous calculations [5].

Table VI presents the numerical values of the mα6 correc-
tion, the main result of this investigation. The corresponding
calculations for atomic helium were reported in Refs. [6,7];
our present numerical values agree with the ones obtained
previously. Calculations performed in this work for helium-
like ions were accomplished along the lines described in
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TABLE IV. The leading logarithmic QED corrections E (5)
∞ (log) and E (5)

M (log). For the nonrecoil correction, we present the coefficients of
the 1/Z expansion obtained by fitting the numerical data (except for c0, which is known analytically). The recoil correction is very small for
ions with Z > 12, so its 1/Z expansion was not studied. Atomic units are used.

Z 1 1S 2 1S 2 3S 2 1P 2 3P

E (5)
∞ (log)/[Z4 ln(Zα)−2]

2 0.587 967 740 0.435 225 697 0.440 118 361 0.424 690 417 0.419 620 202
3 0.661 366 949 0.444 453 845 0.450 745 298 0.425 056 974 0.418 277 856
4 0.702 709 966 0.450 600 513 0.456 788 812 0.425 087 644 0.418 654 616
5 0.729 153 414 0.454 883 655 0.460 628 756 0.425 031 723 0.419 253 068
6 0.747 506 286 0.458 013 834 0.463 274 004 0.424 963 548 0.419 808 283
7 0.760 984 320 0.460 392 952 0.465 204 144 0.424 901 229 0.420 280 937
8 0.771 300 325 0.462 259 020 0.466 673 600 0.424 848 038 0.420 676 712
9 0.779 449 465 0.463 760 328 0.467 829 292 0.424 803 420 0.421 008 829
10 0.786 049 205 0.464 993 553 0.468 761 819 0.424 766 013 0.421 289 730
11 0.791 502 875 0.466 024 214 0.469 530 027 0.424 734 472 0.421 529 561
12 0.796 085 045 0.466 898 202 0.470 173 774 0.424 707 664 0.421 736 263

1/Z-expansion coefficients
c0 8/(3 π ) 3/(2 π ) 3/(2 π ) 4/(3 π ) 4/(3 π )
c1 −0.659 550 48 −0.137 744 61 −0.089 756 44 0.003 158 46 −0.036 478 76
c2 0.330 586 16 0.136 452 03 0.026 693 63 0.009 117 22 0.051 362 86
c3 −0.132 768 16 −0.061 297 50 0.005 488 16 −0.061 231 69 0.011 132 17
c4 0.048 550 42 −0.000 485 58 0.001 979 36 0.070 367 56 −0.001 924 41
c5 −0.005 834 76 −0.000 419 68 0.001 082 09 0.002 994 02 −0.014 225 78

E (5)
M (log)/[(m/M)Z4 ln(Zα)−2]

2 −1.490 787 8 −1.087 827 3 −1.099 571 6 −1.048 033 4 −1.072 942 1
3 −1.503 000 7 −0.999 820 0 −1.013 525 6 −0.931 087 7 −0.972 929 1
4 −1.414 815 1 −0.900 768 2 −0.913 023 5 −0.820 369 5 −0.869 549 4
5 −1.281 038 5 −0.795 295 8 −0.805 624 3 −0.712 358 9 −0.765 222 3
6 −1.122 852 5 −0.685 953 6 −0.694 495 7 −0.605 509 9 −0.660 414 8
7 −0.950 101 1 −0.574 135 7 −0.581 137 5 −0.499 185 8 −0.555 305 8
8 −0.767 968 8 −0.460 648 8 −0.466 344 1 −0.393 108 1 −0.449 990 7
9 −0.579 443 0 −0.345 987 0 −0.350 573 6 −0.287 146 9 −0.344 527 5
10 −0.386 365 2 −0.230 468 4 −0.234 108 4 −0.181 238 4 −0.238 954 2
11 −0.189 932 1 −0.114 306 4 −0.117 131 8 −0.075 350 3 −0.133 296 7
12 0.009 045 2 0.002 350 7 0.000 232 1 0.030 534 1 −0.027 573 6

Refs. [6,7]. Here we only note that calculations for higher
values of Z often exhibit a slower numerical convergence
(and numerical stability) than for helium, especially so for
the second-order corrections involving singular operators.
The variational optimization of nonlinear parameters for the
symmetric second-order corrections was performed in several
steps with increasing the number of basis functions on each
step up to N = 1000 or 1200. The final values were obtained
by merging several basis sets and enlarging the number of
functions up to N = 5000–7000. The nonsymmetric second-
order corrections were evaluated as described in Ref. [15].
The calculations were performed in the quadruple, sixtuple,
and octuple arithmetics implemented in FORTRAN 95 by
V. Korobov [27].

Table VII presents the results for the finite-nuclear-size
correction and approximate values of the higher order (mα7

and higher) correction to the ionization energy. The uncertainty
of the total theoretical prediction originates from the higher
order radiative effects; it was estimated by dividing the
absolute value of this correction by Z. The values for the
root-mean-square radius of nuclei were taken from Ref. [28].

B. Comparison with the all-order approach

In this section we discuss the calculational results ob-
tained for the mα6 correction in more detail and make a
comparison with the results obtained previously within the
all-order, 1/Z-expansion approach. The logarithmic part of
the correction, E (6)(log), behaves as mα3(Zα)3 for large Z and
thus corresponds to diagrams with three photon exchanges that
have not yet been addressed within the all-order approach. The
nonlogarithmic part E (6)(nlog), however, contains some pieces
that are known and identified in the following.

For all states except 2 1P 1 and 2 3P 1, the leading term of the
1/Z expansion of E (6)(nlog) is of order m(Zα)6 and comes
from the Zα expansion of the one-electron Dirac energy.
For the 2 1P 1 and 2 3P 1 states, the leading term is of the
previous order in 1/Z, m(Zα)6Z, and is due to the mixing
of these levels. More specifically, the mixing contribution is
δEmix = |〈2 1P 1|H (4)|2 3P 1〉|2/[E0(2 1P 1) − E0(2 3P 1)] for
the 2 1P 1 state and that with the opposite sign for 2 3P 1. The
contribution of order m(Zα)6 for the mixing states comes from
the expansion of the one-electron Dirac energy and from the
expansion of δEmix.
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TABLE V. The leading nonlogarithmic QED corrections E (5)
∞ (nlog) and E (5)

M (nlog). For the nonrecoil part, we present the coefficients of the
1/Z expansion. The coefficient c0 is known with a very good accuracy from the hydrogen theory. The remaining coefficients were obtained by
numerical fitting. The radiative recoil correction is very small for ions with Z > 12, so its 1/Z expansion was not studied. Atomic units are
used.

Z 1 1S 2 1S 2 3S 2 1P 1 2 3P 0 2 3P 1 2 3P 2

E (5)
∞ (nlog)/Z4

2 −1.390 282 4 −1.021 756 7 −1.032 719 5 −0.999 104 6 −0.986 487 5 −0.987 824 8 −0.987 273 6
3 −1.552 423 4 −1.040 733 9 −1.055 874 3 −1.000 028 8 −0.984 014 5 −0.985 285 6 −0.983 645 7
4 −1.645 829 1 −1.053 494 3 −1.068 951 4 −0.999 838 9 −0.985 557 5 −0.986 317 8 −0.983 817 7
5 −1.706 668 4 −1.062 551 3 −1.077 230 3 −0.999 427 5 −0.987 480 3 −0.987 748 5 −0.984 617 0
6 −1.749 464 5 −1.069 274 8 −1.082 920 6 −0.999 028 5 −0.989 184 7 −0.989 040 9 −0.985 437 6
7 −1.781 211 9 −1.074 448 4 −1.087 066 2 −0.998 687 5 −0.990 609 4 −0.990 128 4 −0.986 162 1
8 −1.805 701 0 −1.078 546 0 −1.090 218 7 −0.998 404 7 −0.991 791 0 −0.991 033 0 −0.986 779 7
9 −1.825 165 8 −1.081 868 4 −1.092 695 9 −0.998 170 7 −0.992 776 8 −0.991 788 8 −0.987 303 6
10 −1.841 008 7 −1.084 614 8 −1.094 693 4 −0.997 975 9 −0.993 607 6 −0.992 426 0 −0.987 749 6
11 −1.854 154 5 −1.086 922 2 −1.096 338 0 −0.997 812 2 −0.994 315 0 −0.992 968 8 −0.988 132 3
12 −1.865 237 8 −1.088 887 5 −1.097 715 6 −0.997 673 3 −0.994 923 5 −0.993 435 8 −0.988 463 2

1/Z-expansion coefficients
c0 −1.995 417 0 −1.113 278 1 −1.113 278 1 −0.996 116 0 −1.002 747 5 −0.999 431 8 −0.992 800 3
c1 1.658 816 0 0.325 517 0 0.191 147 5 −0.017 559 8 0.106 210 2 0.081 192 9 0.059 452 5
c2 −1.226 271 4 −0.420 456 0 −0.051 603 3 −0.031 853 8 −0.146 537 2 −0.108 500 3 −0.085 893 4
c3 0.825 843 5 0.327 325 0 −0.013 194 5 0.247 256 7 −0.016 628 5 −0.029 527 6 −0.036 773 9
c4 −0.373 062 3 −0.114 627 2 −0.008 949 1 −0.334 953 5 0.006 846 2 0.008 201 3 0.009 431 2
c5 0.088 160 0 0.037 575 2 0.010 984 6 0.085 299 0 0.018 205 0 0.016 141 2 0.015 502 4

E (5)
M (nlog)/[(m/M)Z5]

2 3.292 520 2.455 583 2.489 805 2.385 181 2.393 644 2.393 984 2.393 698
3 2.816 621 1.914 328 1.949 969 1.811 294 1.817 918 1.818 182 1.817 751
4 2.527 383 1.642 421 1.673 220 1.526 466 1.531 293 1.531 426 1.530 930
5 2.334 128 1.478 228 1.504 411 1.356 337 1.359 930 1.359 969 1.359 460
6 2.196 193 1.368 117 1.390 605 1.243 181 1.245 918 1.245 898 1.245 400
7 2.092 908 1.289 066 1.308 659 1.162 444 1.164 573 1.164 516 1.164 039
8 2.012 719 1.229 525 1.246 828 1.101 918 1.103 606 1.103 526 1.103 074
9 1.948 679 1.183 048 1.198 512 1.054 847 1.056 206 1.056 113 1.055 685
10 1.896 366 1.145 753 1.159 714 1.017 186 1.018 295 1.018 194 1.017 790
11 1.852 835 1.115 160 1.127 873 0.986 367 0.987 283 0.987 177 0.986 794
12 1.816 049 1.089 607 1.101 272 0.960 678 0.961 441 0.961 334 0.960 971

The next term of the 1/Z expansion is of order mα(Zα)5

and comes from the one-electron one-loop radiative correction
and from the one-photon exchange correction. The radiative
part is well known [19]. The part due to the one-photon
exchange was obtained for the 1 1S, 2 3S, 2 3P 0, and 2 3P 2 states
analytically in Ref. [29] and for the other states numerically in
this work. For the 2 1P 1 and 2 3P 1 states, there is a small
additional mixing contribution, which we were unable to
determine unambiguously.

The exact results for the first two coefficients of the 1/Z

expansion of E (6)(nlog) are listed in Table VI. A fit of our
numerical data agrees well with these coefficients. The agree-
ment observed shows consistency of our numerical results
with independent calculations at the level of the one-photon
effects. We now turn to the contribution of order mα2(Zα)4.
This contribution is induced by nontrivial two-photon effects,
so that a comparison drawn for this part will yield a much
more stringent test of consistency of different approaches.

The part of E (6)(nlog) that is of order mα2(Zα)4 is implicitly
present in the two-electron QED contribution calculated
numerically in Ref. [8] to all orders in Zα. This contribution

can be represented as (see Eq. (72) of Ref. [8])

	E
QED
2el = mα2(Zα)3[a31 ln(Zα)−2 + a30 + (Zα)G(Z)],

(35)

where the remainder function G(Z) incorporates all higher
orders in Zα. The two-electron QED correction comprises
the so-called screened self-energy and vacuum-polarization
contributions and the part of the two-photon exchange correc-
tion that is beyond the Breit approximation.

The coefficients a31 and a30 in Eq. (35) correspond to
the second term of the 1/Z expansion of the leading QED
correction E (5)

∞ . More specifically, a31 corresponds to the
coefficient c1 from Table IV and a30, to that from Table V.
The Z = 0 limit of the higher order remainder function G(Z)
corresponds to the third coefficient of the 1/Z expansion of
the correction E (6)(nlog), G(0) = c2, for all states except 2 1P 1

and 2 3P 1. The values of c2 obtained by fitting our numerical
data are listed in Table VI. For the 2 1P 1 and 2 3P 1 states,
the coefficient c2 is not directly comparable with the all-order
results because of the mixing effects.
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TABLE VI. The mα6 corrections E (6)
∞ (log) and E (6)

∞ (nlog) and their 1/Z-expansion coefficients. Atomic units are used.

Z 1 1S 2 1S 2 3S 2 1P 1 2 3P 0 2 3P 1 2 3P 2

E (6)
∞ (log)/[Z3 ln(Zα)−2]

2 0.020 880 865 0.001 698 116 0 0.000 144 350 0 0 0
3 0.031 050 719 0.003 738 928 0 0.000 572 351 0 0 0
4 0.037 377 475 0.005 250 650 0 0.001 013 004 0 0 0
5 0.041 625 375 0.006 344 104 0 0.001 386 910 0 0 0
6 0.044 658 932 0.007 157 223 0 0.001 692 317 0 0 0
7 0.046 928 852 0.007 781 230 0 0.001 941 610 0 0 0
8 0.048 689 367 0.008 273 618 0 0.002 147 092 0 0 0
9 0.050 093 825 0.008 671 365 0 0.002 318 555 0 0 0
10 0.051 239 918 0.008 999 033 0 0.002 463 398 0 0 0
11 0.052 192 721 0.009 273 471 0 0.002 587 159 0 0 0
12 0.052 997 208 0.009 506 579 0 0.002 694 007 0 0 0

1/Z-expansion coefficients
c0 1/16 1/81 0 1/243 0 0 0
c1 −0.121 468 0 −0.037 197 7 0 −0.019 997 1 0 0 0
c2 0.091 963 7 0.038 711 4 0 0.037 995 7 0 0 0
c3 −0.033 400 9 −0.014 283 2 0 −0.032 995 1 0 0 0
c4 0.004 804 4 0.003 600 0 0 0.008 865 3 0 0 0
c5 −0.000 487 4 −0.006 272 6 0 0.002 867 7 0 0 0

E (6)
∞ (nlog)/Z6

2 2.181 233 3(1) 1.528 981(2) 1.536 593 1(1) 1.489 195(1) 1.459 456(1) 1.460 802(1) 1.466 251(1)
3 1.582 471 7(1) 1.016 337(1) 1.020 440 5(1) 0.977 073(1) 0.945 154(1) 0.937 827(1) 0.950 303(1)
4 1.224 451 9(8) 0.753 467(1) 0.754 660 8(1) 0.723 937(1) 0.691 625(1) 0.676 327(1) 0.696 280(1)
5 0.989 185 0(1) 0.592 746(1) 0.592 238 5(1) 0.574 526(1) 0.539 381(1) 0.517 140(1) 0.544 513(1)
6 0.823 348 1(1) 0.484 094(1) 0.482 626 2(4) 0.477 044(1) 0.437 493(1) 0.408 810(1) 0.443 440(1)
7 0.700 317 8(1) 0.405 658(1) 0.403 650 3(1) 0.409 248(1) 0.364 415(1) 0.329 514(1) 0.371 247(1)
8 0.605 469 6(1) 0.346 341(1) 0.344 035 2(1) 0.360 008(1) 0.309 399(1) 0.268 374(1) 0.317 082(1)
9 0.530 138 1(1) 0.299 896(1) 0.297 436 0(1) 0.323 136(1) 0.266 468(1) 0.219 353(1) 0.274 935(1)
10 0.468 871 6(1) 0.262 537(1) 0.260 008 6(1) 0.294 919(1) 0.232 024(1) 0.178 826(1) 0.241 202(1)
11 0.418 072 5(6) 0.231 831(1) 0.229 287 1(1) 0.272 996(1) 0.203 772(2) 0.144 482(4) 0.213 589(1)
12 0.375 272 1(1) 0.206 144(1) 0.203 617 0(4) 0.255 791(1) 0.180 178(2) 0.114 783(4) 0.190 568(1)

1/Z-expansion coefficients
c−1 0 0 0 729/114688 0 −729/114688 0
c0 −1/8 −85/1024 −85/1024 −0.079 2398 −85/1024 −0.067 2446 −65/1024
c1 6.342 8979 3.549 6121 3.487 5483 3.099 80 3.204 5132 3.119 05 3.059 7402
c2 −4.261 9 −1.042 6 −0.590 0 0.068 6 −0.623 6 −0.260 9 −0.157 8
c3 2.424 1 1.087 0 0.155 7 −0.039 0 0.833 4 0.328 9 0.271 4
c4 −2.408 8 −0.815 7 0.053 9 −0.401 3 −0.210 5 0.071 7 0.101 0

The higher order remainder function G(Z) inferred from
the numerical results of Ref. [8] is plotted in Fig. 1, together
with its limiting value at Z = 0 obtained by a fit of our
numerical data. It should be stressed that the identification of
the remainder implies a great deal of numerical cancellations,
especially for the all-order results. The comparison drawn in
Fig. 1 provides a stringent cross-check of the two complemen-
tary approaches. The visual agreement between the results is
very good for the S states, whereas for the P states a slight
disagreement seems to be present.

It is tempting to merge the all-order and the Zα-expansion
results by fitting the all-order data for G(Z) toward lower
values of Z. However, we do not attempt to do this in the
present work because 1. the numerical accuracy of the all-order
results is apparently not high enough and 2. the expansion of
the remainder function G(Z) contains terms (Zα) ln2(Zα) and
(Zα) ln(Zα), which cannot be reasonably fitted with numerical
data available in the high-Z region only.

C. Total energies

Our total results for the ionization energy of the
n = 1 and n = 2 states of helium-like atoms with the
nuclear charge Z = 2, . . . , 12 are listed in Table VIII.
The following values of fundamental constants were em-
ployed [19]: R∞ = 10 973 731.568 527(73) m−1 and α−1 =
137.0359 999 679(94). The atomic masses were taken from
Ref. [30].

The results for atomic helium presented in Table VIII
differ from those reported previously only because of the
different approximate treatment of the higher order (mα7 and
higher) contribution employed in this work. For the S states of
helium, the present values are practically equivalent to those
of Refs. [6,7]. (The difference is that now we include some
contributions of order mα8 and higher, which are negligible
for helium but become noticeable for higher Z ions.) However,
for the helium P states, our present estimate of the higher
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TABLE VII. The finite-nuclear-size correction Efs (with the used values of the root-mean-square nuclear charge radii being listed in
Table VIII) and the higher order correction E (7+) ≡ E (7+)

rad + E (7+)
nrad . Contributions to the ionization energy are presented. Numerical values of

the finite-nuclear-size correction are scaled by the same factor as for the higher order correction, in order to simplify the comparison between
them.

Z 1 1S 2 1S 2 3S 2 1P 1 2 3P 0 2 3P 1 2 3P 2

Efs/[mα7Z6]
2 3.41(1) 0.2346(5) 0.3039(7) 0.00735(2) −0.0914(3) −0.0914(3) −0.0914(3)
3 4.5(1) 0.393(8) 0.47(1) 0.0166(4) −0.110(3) −0.110(3) −0.110(3)
4 3.16(3) 0.305(3) 0.351(3) 0.0114(1) −0.0623(6) −0.0622(6) −0.0623(6)
5 2.01(5) 0.206(5) 0.230(6) 0.0066(2) −0.0327(8) −0.0327(8) −0.0327(8)
6 1.560(4) 0.1655(5) 0.1818(5) 0.00455(1) −0.02150(6) −0.02144(6) −0.02150(6)
7 1.281(8) 0.1396(8) 0.1512(9) 0.00336(2) −0.01528(9) −0.01521(9) −0.01528(9)
8 1.130(6) 0.1256(7) 0.1347(7) 0.00268(1) −0.01187(6) −0.01180(6) −0.01187(6)
9 1.056(5) 0.1191(6) 0.1268(6) 0.00229(1) −0.00990(5) −0.00981(5) −0.00990(5)
10 0.942(5) 0.1076(6) 0.1138(6) 0.00188(1) −0.00797(4) −0.00788(4) −0.00797(4)
11 0.789(5) 0.0911(6) 0.0958(6) 0.00146(1) −0.00608(4) −0.00599(4) −0.00608(4)
12 0.705(5) 0.0821(6) 0.0860(7) 0.001219(9) −0.00499(4) −0.00490(4) −0.00499(4)

E (7+)/Z6

2 −8.2(4.1) −0.43(22) −0.59(30) 0.093(46) 0.37(18) 0.35(17) 0.31(15)
3 −9.5(3.2) −0.72(24) −0.89(30) 0.063(21) 0.37(12) 0.35(12) 0.31(10)
4 −9.6(2.4) −0.83(21) −0.97(24) 0.055(14) 0.312(78) 0.294(73) 0.261(65)
5 −9.4(1.9) −0.86(17) −0.98(20) 0.052(10) 0.266(53) 0.249(50) 0.219(44)
6 −9.0(1.5) −0.87(14) −0.96(16) 0.0510(85) 0.230(38) 0.214(36) 0.187(31)
7 −8.7(1.2) −0.86(12) −0.94(13) 0.0500(72) 0.202(29) 0.188(27) 0.162(23)
8 −8.3(1.0) −0.84(11) −0.91(11) 0.0490(62) 0.181(23) 0.167(21) 0.144(18)
9 −8.00(89) −0.825(91) −0.886(98) 0.0477(54) 0.163(18) 0.150(17) 0.129(14)
10 −7.70(77) −0.806(80) −0.859(85) 0.0463(48) 0.148(15) 0.136(14) 0.116(12)
11 −7.43(67) −0.786(71) −0.834(75) 0.0450(43) 0.135(13) 0.124(12) 0.1066(97)
12 −7.18(60) −0.768(63) −0.811(67) 0.0435(39) 0.124(11) 0.1132(99) 0.0984(82)

order contribution is about 1 MHz higher than that of Ref. [7].
The reason is that the one-electron radiative correction of the
p electron state was previously not included in the approxima-

tion (25). It is included now [see Eq. (29)] in order to recover
the correct asymptotic behavior of the radiative correction in
the high-Z limit.
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FIG. 1. The higher order remainder function G(Z) from Eq. (35) inferred from the all-order numerical results of Ref. [8] for the two-electron
QED correction, in comparison with the Z = 0 limit obtained by fitting the 1/Z expansion of the mα6 correction calculated in this work (denoted
by the cross on the y axis). The all-order results for Z smaller than 30 (in some cases, 20) were left out since their numerical accuracy turns
out to be not high enough.
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TABLE VIII. Total theoretical ionization energies of n = 1 and n = 2 states in light helium-like ions, in cm−1. A is the nuclear mass
number and Rch is the root-mean-square nuclear charge radius.

Z A Rch[fm] 1 1S 2 1S 2 3S

2 4 1.676(3) −198 310.665 1(12) −32 033.228 734(63) −38 454.694 593(86)
3 7 2.43(3) −610 078.549(11) −118 704.799 71(79) −134 044.256 96(98)
4 9 2.52(1) −1 241 256.625(45) −260 064.342 7(38) −284 740.785 8(45)
5 11 2.41(3) −2 091 995.58(13) −456 261.994(12) −490 434.928(14)
6 12 2.470(2) −3 162 423.60(32) −707 370.691(31) −751 130.806(34)
7 14 2.558(7) −4 452 723.93(66) −1 013 458.475(66) −1 066 874.012(72)
8 16 2.701(6) −5 963 074.2(1.2) −1 374 588.68(13) −1 437 720.48(14)
9 19 2.898(2) −7 693 708.5(2.1) −1 790 837.48(22) −1 863 745.75(24)
10 20 3.005(2) −9 644 843.7(3.5) −2 262 278.68(36) −2 345 025.61(39)
11 23 2.994(2) −11 816 821.8(5.4) −2 789 016.99(57) −2 881 669.22(60)
12 24 3.057(2) −14 209 915.2(8.1) −3 371 143.82(86) −3 473 772.54(90)

Z 2 1P 1 2 3P 0 2 3P 1 2 3P 2

2 −27 175.771 929(13) −29 222.838 110(54) −29 223.826 028(51) −29 223.902 466(45)
3 −108 270.881 302(69) −115 812.954 89(40) −115 818.148 68(38) −115 816.058 08(34)
4 −243 787.567 65(25) −257 876.174 4(14) −257 887.732 4(14) −257 872.840 8(12)
5 −434 000.421 29(74) −455 041.300 3(37) −455 057.499 0(35) −455 004.840 0(31)
6 −679 022.761 7(18) −707 232.019 2(81) −707 244.528 3(76) −707 108.731 2(66)
7 −978 929.118 5(39) −1 014 453.504(15) −1 014 444.829(14) −1 014 153.830(12)
8 −1 333 765.988 7(74) −1 376 741.630(27) −1 376 682.831(25) −1 376 131.273(22)
9 −1 743 582.370(13) −1 794 154.597(44) −1 794 003.382(41) −1 793 045.585(35)
10 −2 208 407.741(22) −2 266 761.636(70) −2 266 460.989(65) −2 264 903.347(54)
11 −2 728 303.815(35) −2 794 653.26(11) −2 794 130.721(97) −2 791 723.350(82)
12 −3 303 295.620(52) −3 377 923.51(15) −3 377 091.31(14) −3 373 518.82(12)

TABLE IX. Comparison of theoretical and experimental transition energies. Units are MHz for He and Li+ and cm−1 for other ions. Results
by Drake are from 2005 for He [31], from 1994 for Li+ [37], and from 1988 for other ions [5].

Z This work Drake Experiment Reference

2 3P 0–2 3S1 transition:
2 276 764 094.7(3.0) 276 764 099(17) 276 764 094.678 8(21) [1]
3 546 560 686(32) 546 560 627 546 560 683.07(42) [37]
4 26 864.6114(47) 26 864.64(3) 26 864.612 0(4) [38]
5 35 393.628(14) 35 393.70(8) 35 393.627(13) [39]
8 60 978.85(14) 60 979.6(5) 60 978.44(52) [40]
10 78 263.98(39) 78 265.9(1.2) 78 265.0(1.2) [40]

2 3P 1–2 3S1 transition:
2 276 734 477.7(3.0) 276 734 476(17) 276 764 477.724 2(20) [1]
3 546 404 980(31) 546 404 885 546 404 978.80(51) [37]
4 26 853.0534(47) 26 852.04(3) 26 853.053 4(3) [38]
5 35 377.429(14) 35 377.40(8) 35 377.424(13) [39]
8 61 037.65(14) 61 037.7(5) 61 037.62(93) [40]

2 3P 2–2 3S1 transition:
2 276 732 186.1(2.9) 276 732 183(17) 276 732 186.593(15) [1]
3 546 467 655(31) 546 467 553 546 467 657.21(44) [37]
4 26 867.9450(47) 26 867.92(3) 26 867.948 4(3) [38]
5 35 430.088(14) 35 430.02(8) 35 430.084(9) [39]
8 61 589.21(14) 61 589.0(5) 61 589.70(53) [40]
10 80 122.3(4) 80 121.6(1.2) 80 121.53(64) [41]

2 1P 1–2 1S0 transition:
4 16 276.775(4) 16 276.77(3) 16 276.774(9) [42]

2 3P 1–2 1S0 transition:
7 986.36(7) 986.6(3) 986.3180(7) [43]
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A selection of our theoretical results for transition energies
is compared with the theory by Drake [5,31] and with
experimental data in Table IX. Agreement between theory
and experiment is excellent in all cases studied. We observe
a distinct improvement in theoretical accuracy as compared
to the previous results by Drake. This improvement is due to
the complete treatment of the corrections of order mα6 and
m2/Mα5 accomplished in this work.

Theoretical results for the fine-structure splitting intervals
2 3P0–2 3P 1 and 2 3P 1–2 3P 2 are not analyzed in the present
work. This is because these intervals can nowdays be calcu-
lated more accurately (complete up to order mα7), as was
recently done for helium [15]. We intend to perform such a
calculation in a subsequent investigation.

Among the results listed in Table VIII for helium-like ions,
the ground-state energy of the carbon ion is of particular im-
portance, because it is used in the procedure of the adjustment
of fundamental constants [32] for the determination of the
mass of 12C4+ and, consequently, of the proton mass from the
Penning trap measurement by Van Dyck et al. [33]. Our result
for the ground-state ionization energy of helium-like carbon is

E(12C4+) = −3 162 423.60(32) cm−1, (36)

which is in agreement with the previous result by Drake [5] of
−3 162 423.34(15) cm−1. We note that, despite our calculation
being an additional order of α more complete than that by
Drake, our estimate of uncertainty is more conservative.

In summary, significant progress has been achieved during
the past few decades in both experimental technique and
theoretical calculations of helium-like atoms. In the present
investigation, we performed a calculation of the energy levels
of the n = 1 and n = 2 states of light helium-like atoms
with the nuclear charge Z = 2, . . . , 12, within the approach
complete up to orders mα6 and m2/Mα5. An extensive analysis
of the 1/Z expansion of individual corrections was carried out
and comparison with results of the complementary approach
was made whenever possible. Our general conclusion is that
the results obtained within the approaches based on the Zα

and the 1/Z expansion are consistent with each other up to
a high level of precision. However, further improvement of
numerical accuracy of the all-order, 1/Z-expansion results
and their extension into the lower Z region is needed in order
to safely merge the two complementary approaches.
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APPENDIX A: BETHE LOGARITHM

Following the approach of Refs. [34,35], the Bethe log-
arithm (13) is expressed in terms of an integral over the

momentum of the virtual photon,

ln(k0) = 1

D
lim

K→∞

[
〈 �∇2〉K + D ln(2K) +

∫ K

0
dkkJ (k)

]
,

(A1)

where D = 2πZ〈δ3(r1) + δ3(r2)〉, �∇ ≡ �∇1 + �∇2, and

J (k) =
〈
�∇ 1

E0 − H0 − k
�∇
〉
. (A2)

For the purpose of numerical evaluation, the integration over
the photon momentum k is divided into two regions by
introducing the auxiliar parameter κ ,

ln(k0) = R(κ) + 1

D

∫ κ

0
dkkJ (k) +

∫ ∞

κ

dk
w(k)

k2
, (A3)

where the function w(k) represents the residual obtained from
J (k) by removing all known terms of the large-k asymptotics,

w(k) = k3

D
J (k) + k2

D
〈 �∇2〉 + k − 2

√
2Zk1/2 + 2Z2 ln k,

(A4)

and R(κ) is a simple function obtained by integrating out the
separated asymptotic expansion terms,

R(κ) = κ
〈 �∇2〉
D

+ ln(2κ) + 4
√

2Z

κ1/2
− 2Z2(ln κ + 1)

κ
. (A5)

The calculational scheme employed for the evaluation
of Eq. (A3) is similar to that previously used [15] for the
relativistic corrections to the Bethe logarithm. At the first step,
a careful optimization of nonlinear basis-set parameters was
carried out for a sequence of scales of the photon momentum:
ki = 10i and i = 1, . . . , imax, with imax = 5 for the S states and
imax = 4 for the P states. The optimization was performed
with incrementing the size of the basis until the prescribed
level of convergence is achieved for the function w(k). At
the second step, the integrations of the photon momentum k

were performed. For a given value of k, the function J (k)
was calculated with a basis obtained by merging together the
optimized bases for the two closest ki points, thus essentially
doubling the number of the basis functions. The function w(k)
was obtained from J (k) according to Eq. (A4).

The integral over k ∈ [0, κ] was calculated analytically, by
diagonalizing the Hamiltonian matrix and using the spectral
representation of the propagator. The value of the auxiliary
parameter κ was set to κ = 100. The integral over k ∈ [κ,∞)
was separated into two parts, k < 10imax and k > 10imax . The
first part was evaluated numerically by using Gauss-Legendre
quadratures, after the change of variables t = 1/k2. The sec-
ond part was obtained by integrating the asymptotic expansion
of the function w(k). The coefficients of this expansion were
obtained by fitting the numerical data for w(k) to the form

w(k) = pol

(
1√
k

)
+ ln k

k
pol

(
1

k

)
, (A6)

where pol(x) denotes a polynomial of x. The total number of
fitting parameters was about 9–11. The range of k to be fitted
and the exact form of the fitting function were optimized so
as to yield the best possible results for the known asymptotic
expansion terms of J (k).
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The first-order perturbation of the Bethe logarithm by the
mass-polarization operator can be represented as [10]

ln(k0)M = m

M

[
RM (κ) + 1

D

∫ κ

0
dkkJM (k) +

∫ ∞

κ

dk
wM (k)

k2

]
,

(A7)

where

JM (k) = 2〈φ| �∇ 1

E0 − H0 − k
�∇|δφ〉

+ 〈φ| �∇ 1

E0 − H0 − k
[δE − �p1 · �p2]

1

E0 − H0 − k
�∇|φ〉

(A8)

and δE = 〈 �p1 · �p2〉. The perturbed wave function δφ is defined
by

|δφ〉 = |δMφ〉 − |φ〉δMD

D
, (A9)

where δM stands for the first-order perturbation induced by the
operator �p1 · �p2. The asymptotic expansion of JM (k) is much
simpler than that of J (k) and wM (k) is just

wM (k) = k3

D
JM (k) + k2

D
2〈φ| �∇2|δφ〉. (A10)

Correspondingly, the function RM (κ) is

RM (κ) = 2κ

D
〈φ| �∇2|δφ〉. (A11)

The numerical evaluation of Eq. (A7) was performed in a way
similar to that for the plain Bethe logarithm. In particular,
the same sets of optimized nonlinear parameters were used.
Since a high accuracy is not needed for this correction,
a somewhat simplified calculational scheme was used in
this case. The high-energy part of the photon-momentum
integral, k ∈ [100,∞), was evaluated by integrating the fitted
asymptotic expansion for wM (k), which was taken to be of the
form (A6) with 6–9 fitting parameters.

APPENDIX B: EXPECTATION VALUE OF 1/r3

The definition of the expectation value of the regularized
operator 1/r3 is given by Eq. (12). With the basis-set
representation of the wave function employed in this work,

a typical singular integral to be calculated is

Iε = 1

16π2

∫
d3r1d

3r2
exp(−αr1 − βr2 − γ r)

r3
�(r − ε).

(B1)

The straightforward way is to evaluate this integral analytically
for a finite value of the regulator ε and then expand it in small ε.
This way is possible, but we prefer to use a simpler procedure,
which is also the closest to the method of evaluation of the
regular integrals.

We recall that all regular integrals are immediately obtained
from the master integral

1

16π2

∫
d3r1d

3r2
exp(−αr1 − βr2 − γ r)

r1r2r

= 1

(α + β)(β + γ )(α + γ )
(B2)

by formal differentiation or integration with respect to the
corresponding parameters. The differentiation over α and β

and an integration over γ delivers a result for the integral of
the type 1/r2. This integral is convergent, so the result is exact.
The second integration over γ (which would yield an integral
of the type 1/r3) is divergent. The simplest way to proceed is
as follows. We introduce a cutoff parameter for large values of
γ , evaluate the integral over γ , and drop all cutoff-dependent
terms. The expression obtained in this way differs from the
correct one by a γ -independent constant only, which can be
proved by differentiating with respect to γ .

The missing constant is most easily recovered by consider-
ing the behavior of the integral I when γ → ∞. For very large
γ , only the region of very small r contributes and we have

Iε = 2
∫ ∞

ε

drr

∫ ∞

0
dr1r1

∫ r1+r

|r1−r|
dr2r2

e−αr1−βr2−γ r

r3

≈ 2

(α + β)3

∫ ∞

ε

dr
e−γ r

r
. (B3)

Therefore,

Ireg ≡ lim
ε→0

[Iε + γ + ln ε]
γ→∞= − 2

(α + β)3
ln γ. (B4)

This equation yields the necessary condition for determining
the missing constant term in the general expression for the
regularized integral Ireg.
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