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Effects of valence-valence, core-valence, and core-core correlations on the fine-structure
energy levels in Al-like ions
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This paper reports on multiconfiguration Dirac-Hartree-Fock calculations for both allowed and intercombina-
tion transitions and fine structure referring to the levels of a term in highly charged aluminum like ions. Results for
fine-structure energy levels, the term splitting, the wavelengths, transition rates, and thereby the branching ratios
and lifetimes for the Al-like 3s23p-3s3p2 transitions in the ions Fe XIV–Au LXVII are reported and compared
with other theories and experiments, using the codes GRASP2K. Our calculated fine-structure energy levels
are in excellent agreement with the experimental results and the experimentally compiled energy values of the
National Institute for Standards and Technology wherever available. The calculated values including core–valence
correlation are found to be similar and to compare very well with other theoretical and experimental values for
medium-Z ions. For higher Z the inclusion of the valence correlation gives results in excellent agreement
with those from many-body perturbation theory. We believe that our extensive calculated values can guide
experimentalists in identifying the fine-structure levels in their future work. From our radiative decay rates we
have also calculated radiative lifetimes of some fine-structure levels. In this calculation we also predict new data
for several fine-structure levels where no other theoretical and/or experimental results are available.
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I. INTRODUCTION

Ions of the aluminum isoelectronic sequence have three
valence electrons outside a closed n = 2 core and provide a
model for studying the effects of strong correlations on closely
spaced levels in heavy atoms. There are many examples in
the Al sequence of level crossings of states having the same
parity and angular momentum; such examples occur for both
low and high values of the nuclear charge Z. Notably, the
3s3p2 and 3s23p levels become relatively more tightly bound
as the nuclear charge Z increases. Such crossings provide
stringent tests of atomic structure calculations. Comparisons
with measurements of fine-structure splitting energies, tran-
sition rates, line strengths, and fine-structure intervals also
provide useful tests of the quality of different theoretical
models. Many experimental energy levels and fine-structure
intervals are now available up to very high nuclear charge
(Z = 40) for 3s3p2 and 3s23p levels; additionally, theoret-
ical rates and line strengths for some transitions between
these levels are available. The objective of this paper is to
present a comprehensive set of calculations for 3s3p2 and
3s23p energies to compare with previous calculations and
experiments for the entire Al isoelectronic sequence. Most
earlier measurements and calculations focused on 3s23p states
and low-lying 3s3p2 levels. Experimental measurements of a
large number of energy levels are available (e.g., Kr XXIV and
Mo XXX [1], Ca VIII–Zn XVIII [2], P III–Mo XXX [3], Ge XXX,
Se XXII, Sr XXVI, Y XXVII, and Zr XXVII [4], Fe XIV [5,6],
and Cu XVII–Mo XXX [7]). Experimental verifications should
become simpler and more reliable using this more accurate set
of calculations.

Two decades ago the theoretical situation for the Al-like
3s23p-3s3p2 transitions lines was quite confusing. Many ab
initio calculations using a wide range of different methods
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have also been done for calculating fine-structure energy levels
and lifetimes. To mention just a few, fine-structure energy
levels in Si II [8] and Al I–Fe XIV [9] have been calculated
using the multiconfiguration Hartree–Fock (MCHF) approach,
Cl V [10], Mn XIII [11], Co xv [12], Fe XIV, and Ni XVI [13]
using CIV3, S IV [14] and Ar VI [15] using configuration-
interaction (CI) expansions, P III–Mo XXX [16], Xe XXXXII

[17], and Au LXVII [18] using the many-body perturbation
theory (MBPT) approach, Ca VIII [19] using the R-matrix ap-
proximation, K VII [20] using the multiconfiguration Hartree-
Dirac-Fock method (MCDHF) method, and Si II [21] using
the relativistic quantum defect orbital (RQDO) method. Both
experiment and theory have been used to investigate the fine
structure for medium- to low-Z ions. Our calculations are
motivated by the need for accurate fine-structure data in a
variety of scientific applications, for improved understanding
of the origin of these effects and for explanation of the existing
results and making further predictions.

On the basis of our previous work [22,23], in this paper,
besides the well-known problems arising from the necessity
of considering some of the core electrons within the atom and
the effects of electron correlation, relativity has to be taken
into account in accurate calculations. The calculation methods
used are based on the MCDHF method [24], as represented
by the GRASP2K codes originating in Oxford [25] and further
developed by Jönsson et al. [26]. It is a modification and
extension of the GRASP92 codes by Parpia et al. [27]. As
will be shown in the current work, the MCDHF (OL) mode,
which has been applied successfully to a number of atomic
systems and spectroscopic properties, is used to investigate
the convergence of fine structure, transition rates, wavelengths,
and line strengths in aluminum like ions (26 � Z � 79). The
quality of the variational wave functions and the reliability of
the calculated expectation values are assessed from the analysis
of the convergence patterns as the approximate wave function
is systematically improved, and from the comparison with the
available theoretical and experimental data.

1050-2947/2010/81(2)/022502(14) 022502-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.81.022502


LIANG-HUAN HAO, GANG JIANG, AND HAI-JUN HOU PHYSICAL REVIEW A 81, 022502 (2010)

The aim of the present paper is to extend our systematic
approach to include new effects and to mainly concentrate
on the low end of the sequence, where correlation effects
are most important. We will investigate the importance of the
core-valence correlation, which so far has rarely been included
explicitly in any of the calculations for Al-like isoelectronic
sequence. An important part of our approach is an attempt
to define a method to estimate uncertainties in ab initio
calculations and apply them to our calculations and, when
possible, those of others.

II. THEORETICAL METHOD

The extended optimal level (EOL) version of the MCDHF
method is used to calculate the transitions. The theoretical
basis of our present computational approach has been widely
discussed elsewhere [26–28]. In this paper, we give a brief
overview of the salient features of the MCDHF model with
configuration interaction.

In the MCDHF method, a configuration state function
φ(�Jp) of a certain J and parity are formed by taking a
linear combination of Slater determinants of the Dirac orbitals.
A linear combination of these configuration state functions
(CSFs) is then used in the construction of atomic state
functions (ASFs) with the same J and parity:

�i(J
p) =

ncsf∑
α=i

ciαφ(�αJp), (1)

where ciα are the mixing coefficients for the state i and
ncsf is the number of CSFs included in the evaluation of
the ASFs. The ASFs thus constructed are used in solving
the Dirac–Hratree–Fock equation, and the Dirac–Coulomb
Hamiltonian is

Ĥ DC =
N∑

i=1

ĤD(i) +
N−1∑
i=1

N∑
j=i+1

|∧
ri − ∧

rj |−1, (2)

where the first term, in JJ coupling, is the one-body contribu-
tion for an electron due to the kinetic energy and interaction
with the nucleus. The two-body Coulomb interactions between
the electrons comprise the second term. In the relativistic
self-consistent field procedure both the radial parts of the Dirac
orbitals and the expansion coefficients ciα were optimized to
self-consistency [29]. The contributions from the Breit interac-
tion, vacuum polarization, self-energy, and finite nuclear mass
corrections are not included in Eq. (2) and are generally added
as a first-order perturbation correction after self-consistency is
obtained. The transverse Breit interaction

Bij = − 1

2rij

[
αi · αj + (αi · rij )(αj · rij )

r2
ij

]
(3)

was included in subsequent CI calculations [30].

III. GENERATION OF CONFIGURATION EXPANSIONS

In this work, we included different correlations into the
calculation in a systematic approach. The correlation energy
is defined as the energy difference between the exact solution
to the Dirac equation and the Dirac-Fock (DF) solution.
The contribution from different types of correlation can then

be defined as the energy difference between the solution
including the particular correlation under investigation and the
DF solution. To classify the correlation, the atomic electrons
can be divided into two parts: valence electrons and core
electrons. As a result, the correlation between the valence
electrons is defined as the valence correlation (VV), and the
correlation between the valence electrons and core electrons is
defined as the core-valence correlation (CV). The remaining
correlation is the core-core correlation (CC), which describes
the correlation between the core electrons. In the MCDHF
approach, the correlation is represented by different constraints
on the generation of the CSFs included in Eq. (1). If we only
include the VV correlation, the core electrons are kept fixed
in all the CSFs generated. To include the CV correlation, we
allow one of the core electrons to be excited to generate the
CSFs. Finally, the CC correlation can be taken into account by
allowing more than one core electron to be excited.

It is, from some perspectives, desirable to perform sep-
arate calculations for each of the studied atomic states.
This approach, however, is impractical and time consuming.
Instead the atomic state functions for a number of closely
spaced levels were determined together in the so-called EOL
procedure. To account for the close degeneracy between
3s3p2 and 3s23p, the atomic state functions for 3s3p2 2S1/2,
3s3p2 4P1/2,3/2,5/2, 3s3p2 2D3/2,5/2, and 3s23p 2P1/2,3/2, were
determined simultaneously. In the remaining cases atomic state
functions for levels belonging to the same configuration were
grouped together.

In our calculations, we generate the CSFs using the active
space approach. We do this by exciting electrons from the
spectroscopic reference configurations to a set of orbitals
called the active set (AS). The active set is a set of orbitals
which are all orbitals except those common to all CSFs, and
it defines the CSFs included in the ASF. We increase the AS
in a systematic way to ensure the convergence of the atomic
parameters under consideration.

IV. COMPUTATIONAL DETAILS

As a starting point, MCDHF calculations in the EOL
scheme were performed for each group of atomic states using
configuration expansions including all lower states of the
same J symmetry and parity, and we use a Dirac-Coulomb
version, for the optimization of the orbitals, and include Breit
corrections in a final configuration interaction calculation.
To build a CSF expansion, restrictive active space methods
were used. The idea of active space methods is to consider
only electrons from the active space and to excite them from
the occupied orbitals to unoccupied ones. The orbital was
increased systematically in order to monitor the convergence
of the calculation. Since the orbitals with the same principal
quantum number n often have similar energies, the active set
is usually enlarged in steps of orbital layers. It is convenient
to refer to the {1s, 2s, 2p, 3s, 3p, 3d} set of orbitals as the
n = 3 orbital layer, {1s, 2s, 2p, . . . , 4s, 4p, 4d, 4f } as the
n = 4 layer, etc. Larger orbital sets can result in a considerable
increase of computational time required for the problem, and
appropriate restrictions may be necessary. We divided the
calculations into two parts, one where we optimized a set of
orbitals for the even states and one for the odd states (i.e., the
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upper and lower states were described by two independently
optimized sets of orbitals). Because of this we had to use a
biorthogonal transformation [28] of the atomic state functions
to calculate the transition parameters.

A model including only the valence correlation will follow
the constraint of closed-core subshells for all CSFs; that is,
they will have the form

1s22s22p6n1l1n2l2n3l3 (VV model).

To extend the model also to include the core-valence correla-
tion, we relax the constraint to be

1s22s22p5n1l1n2l2n3l3n4l4 (CV model).

To treat the core-core correlation in aluminum-like ions, we
include all CSFs of the form

1s22s22p4n1l1n2l2n3l3n4l4n5l5 (CC model).

An approach with no further constraints would represent
the restricted active space for core-valence correlation with
the 2p subshell (CV2p). This kind of approach is feasible for
simple systems, such as helium-like copper ions [31], with
few valence electrons, But for the more complex aluminum
like ions we need to use further constraints, defined by using
a distribution strings of the type

{n1, n2, . . .}q .
This represents all possible distributions of q electrons among
the shells specified by their principal quantum numbers
(n1, n2, . . .) This VV model could be written as

1s22s22p6{3}1{3, 4, 5, 6}2 (4)

if we include orbitals with n � 6.
The EOL scheme used in this work includes several levels in

the energy functional that takes into account the weights for the
levels under consideration. In this method, the radial orbitals
and the mixing coefficients are determined by optimizing the
energy functional which is the weighted sum of the energy
values corresponding to a set of eigenstates. The succeeding
terms were then obtained by configuration mixing using an
active space approximation. In the active space method, the
jj-coupled CSFs of a given parity P and symmetry J are
generated by excitations from the reference configuration to
the active set of orbitals. Because the angular correlation is
known to play an important role in relativistic calculations, in
this work, the active set comprised all the orbitals up to n = 6
and l = 3. Single and double (SD) excitations of electrons were
used to compute the correlation corrections to the energies
and dipole rates. The virtual set was varied in a systematic
way by increasing the principal quantum number n by one
without imposing restrictions on the orbital quantum number.
Our earlier calculations [23] indicate that the set that could
be handled without any difficulty was up to n = 6. Also, for
configurations with more than ten electrons, the number of
CSFs generated was very large for double excitation and we
could not carry out our relativistic configuration interaction
(RCI) calculations due to storage limitations. In such cases,
we restricted our calculations to single excitation but increased
our active set up to n = 7. The initial and final orbital wave
functions were generated by simultaneously optimizing them.
Though this procedure was followed in this work to reduce

the computational effort, it is found to yield quite accurate
results. The optimized zero-order wave functions obtained
using the reference configurations were used as a starting point
for further MCDHF calculations. Once the convergence of the
energy eigenvalues was obtained, the orbital basis from the
MCDHF procedure was used to carry out the configuration
interaction calculations.

A. Computational procedure

We perform a number of different sets of MCDHF cal-
culations to investigate the importance of different effects.
However, larger orbital sets can result in a considerable
increase the of computational time required for the problem,
and appropriate restrictions may be necessary.

In the first set of calculations, we only included valence
correlations, by keeping the core 1s22s22p6 closed and
common to all calculations. We start by optimizing all orbitals
on the full active space of valence correlation CSFs:

2p6{3}3, J π ∈ {0o, 1o, 1e, 2o}. (5)

When deriving the specific form of MCDHF equations to
solve, we start by applying the variational principle to a
functional of energies. It is common to use an EOL technique,
where a linear combination of the most important energy levels
is used. However, it is important to remember that, especially
for lower Z, the two configurations 3s3p4s and 3s3p3d are
also important. This justifies our choice of optimization for
n = 4:

2p6{3}1{3, 4}2, J π ∈ {0o, 1o, 1e, 2o}. (6)

For the n = 4 orbitals, we again use a complete VV space
approach. First we add 4s and 4p to our active set and optimize
these two orbitals on 3s3p4s 2P . Then we also add 4d and 4f

and optimize these two orbitals on the 3s3p3d 2P term.
This crosswise optimization technique gives a very flexible

basis set, able to represent the quite large difference in 3s and
3p orbitals in the CSFs with only one 3s (3s3p2) and the ones
with a closed 3s subshell (3s23p and 3s2nl).

In two final calculations we add n = 5 and 6 (with l �
3) orbitals to the active set. To generate CSFs we used single
and double replacements from the multireference set 3s23p,
3s3p3d, 3s3p4s for the odds and only 3s3p2 for the evens.
The new orbitals were optimized on the lowest 2P o and 2P e

terms separately. Where we generated all CSFs of the form

2p6{3}1{3, 4, 5}2, J π ∈ {0o, 1o, 1e, 2o}, (7)

and

2p6{3}1{3, 4, 5, 6}2, J π ∈ {0o, 1o, 1e, 2o}. (8)

To investigate the convergence we found it necessary to
add another layer in a slightly different way. We generated a
configuration list from

2p6{3}1{3, 4, 5, 6, 7s, 7p, 7d}2, J π ∈ {0o, 1o, 1e, 2o}, (9)

but kept only those CSFs which could interact with the
reference configurations in first order and added these to the
CSFs from the last step. This was then followed by a CI
calculation where all configurations were included.
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TABLE I. Aluminum-like isoelectronic sequence: excitation energies (in cm−1) from MCDHF calculations and experiment.

MCDHF

VV CV CC

Level n � 4 n � 5 n � 6 n � 7 n � 5 n � 6 n � 3 n � 4 Expt. [34]

Z = 26 Fe XIV

3s23p 2P1/2 0 0 0 0 0 0 0 0 0
2P3/2 18 778 18 773 18 773 18 773 18 866 18 834 18 845 18 858 18 852.5

3s3p2 4P1/2 223 599 223 868 223 908 223 923 224 482 224 452 223 384 222 155 225 114
4P3/2 231 228 231 498 231 539 231 555 232 153 232 112 231 009 229 780 232 789
4P5/2 240 837 241 099 241 139 241 155 241 794 241 732 240 669 239 465 242 387
2D3/2 299 648 299 718 299 695 299 689 300 662 300 636 301 031 301 694 299 242
2D5/2 301 828 301 898 301 875 301 870 302 903 302 866 303 413 303 826 301 469
2S1/2 367 870 367 531 367 458 367 439 367 156 366 529 370 108 369 992 364 693
2P1/2 393 121 392 893 392 859 392 842 390 792 390 262 391 106 391 959 388 510
2P3/2 401 586 401 387 401 363 401 347 398 717 398 239 402 150 402 082 396 512

Z = 36 Kr XXIV

3s23p 2P1/2 0 0 0 0 0 0 0 0 0
2P3/2 97 160 97 173 97 175 97 176 97 353 97 337 97 240 97 383 97 312

3s3p2 4P1/2 410 788 411 046 411 084 411 101 411 569 411 668 410 944 409 767 411 750
4P3/2 462 535 462 844 462 894 462 914 463 526 463 662 462 547 461 513 464 204
4P5/2 499 288 499 555 499 595 499 611 500 242 500 343 499 574 498 988 500 424
2D3/2 580 654 580 749 580 725 580 723 581 511 581 641 582 018 583 361 579 808
2D5/2 611 809 611 956 611 941 611 943 613 044 613 202 613 143 614 144 611 662
2P1/2 662 731 662 518 662 466 662 450 660 389 659 952 663 791 661 265 657 825
2S1/2 759 024 758 769 758 700 758 680 757 560 757 024 760 784 758 454 754 727
2P3/2 770 940 770 794 770 753 770 740 767 964 767 697 771 470 771 076 765 062

Z = 42 Mo XXX

3s23p 2P1/2 0 0 0 0 0 0 0 0 0
2P3/2 203 816 203 837 203 844 203 845 204 094 204 106 203 877 204 145 204 020

3s3p2 4P1/2 539 341 539 547 539 667 539 590 539 961 540 083 539 744 538 502 538 435
4P3/2 667 097 667 406 667 525 667 489 668 162 668 428 667 182 666 309
4P5/2 723 405 723 636 723 755 723 690 724 346 724 546 723 987 723 968
2D3/2 818 064 818 139 818 259 818 134 818 815 819 074 819 456 820 177 816 860
2D5/2 914 023 914 220 914 339 914 235 915 629 916 047 915 152 916 377 914 330
2P1/2 896 434 896 280 896 399 896 222 893 745 893 363 894 133 894 467 891 280
2S1/2 11 00 264 11 00 021 11 00 140 10 99 923 10 99 216 10 98 614 11 02 239 11 02 101 10 95 240
2P3/2 11 17 839 11 18 056 11 18 184 11 18 080 11 16 922 11 17 153 11 18 229 11 18 153 11 50 820

After this the results seemed to have converged, and these
results are still a satisfactory representation of the valence
correlation.

In spite of the fact that the valence correlation approach
seemed to converge, there were signs of significant uncertain-
ties. For Fe XIV, the computed (392 842 cm−1) fine structure
of the excitation term deviated clearly from the experimental
value (388 510 cm−1) (see Table I). The same was true for the
term splitting between 4P and 2P , which was off by about
0.5%–1.2%. Comparison with known energy differences is
one of our most important tools for determining uncertainties
in the calculations, so we concluded that our VV calculations
were associated with large uncertainties (up to 2.8%, as we
will see in the following). The reason was interpreted as a
systematic error, resulting from a left-out correlation.

To include more correlations, we define a core–valence
approach. For the core–valence correlations, we instead used
all CSFs from the second step and added all CSFs of the form

2p5{2, 3}2{3, 4}1{3, 4, 5}1, J π ∈ {0o, 1o, 1e, 2o}, (10)

with l � 3, and optimized the n = 5 orbitals to account for
the effect of polarization of the 2p core. In this way, the core–
valence correlation between the 2p shell and the valence shell
was included. In the final calculation, we included all CSFs
from the last step and added all CSFs

2p6{3, 4}2{3, 4, 5, 6s, 6p, 6d}1, J π ∈ {0o, 1o, 1e, 2o},
(11)

with l � 3, and optimized the orbitals n = 5f , 6s, 6p, and 6d.
Our RCI expansions include up to 45 239 CSFs for the ground
state and 59 513 CSFs for the excited states based on SD
excitations from the reference configurations. Contributions
from higher partial waves with l > 3 are small and are obtained
by extrapolations.

To investigate the effect of the core–core correlation, we
opened the 2s2p shell for double substitutions to the n = 3
layer and added these new configurations to the final core-
valence expansion. Then, we opened the 1s shell for double
substitutions to the n = 4 layer and we found that this shell
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contributed less than 0.8% to the energies value. In order to
reduce the amount of numerical calculation, our final core-
core correlation of the aluminum isoelectronic sequence only
included the substitution from the core 2s2p to the n = 3 layer.
For the aluminum isoelectronic sequence, the final core-core
correlation is based on the calculation of expansions over the
set of configuration states

{1}2{2}6{3}5, J π ∈ {0o, 1o, 1e, 2o}. (12)

In these three models, the energy contributions from the Breit
interaction, quantum electrodynamics (QED) corrections, and
the specific mass shift (SMS) were included. The mixing
coefficients obtained using MCDHF and RCI orbital wave
functions in the block structure format were then converted
into nonblock format and the orbital wave functions of the
initial and final states were transformed to a new representation
in which the two orbitals are biorthonormal [28,32]. These
biorthonormal wave functions were used in the evaluation
of the dipole transition rates. In this implementation of
the RCI program an iterative Davidson method was used
together with a spare matrix representation allowing for large
expansions.

B. Uncertainty estimates

We consider it important to not only present results for the
intercombination lines but also to make an attempt to estimate
the uncertainties of these results. As we proceed through our
calculations we try to follow a set of quality criteria which
highlight the accuracy of the results and aid in determining
uncertainty estimates. We look at the following:

(i) Convergence of systematic calculations—the process of
systematic calculations includes the optimization of orbitals,
their inclusion in the orbital set, and the manner in which we
generate CSFs. As the calculations evolve these systematics
emphasize the convergence of results.

(ii) Results for known properties—experimental energy
spectra give us a set of known properties, which are useful
as an accuracy gauge as the calculations proceed.

(iii) Theoretical tests—agreement between the length and
velocity forms of transition line strengths for allowed lines
also provides a means of gauging the accuracy of a calculation
and contributes to the uncertainty of the calculation. We
note that exact agreement between length and velocity is a
necessary but not a sufficient condition.

Our approach is not aimed at being based on a strong
theoretical argument, but rather on a reasonable first-order
model. If we assume that the intercombination line is induced
by mixing with a 2P o, then perturbation theory gives

Ssf ≈
( 〈2P o

1/2|H |2S1/2〉
ET

)2

SA, (13)

where Ssf is the “spin-forbidden” line strength, SA is
the line strength for the allowed 2P o–2P o transition, and
〈2P o

1/2|H |2S1/2〉 is the off-diagonal matrix element between
3s3p2 2P o

1/2 and 2S1/2. ET is the term splitting:

ET = E(3s3p2 2P1/2) − E(3s3p2 2S1/2). (14)

Because the electric dipole operator H does not involve spin
coordinates, the matrix element calculation is simplest in LS-
coupled bases. The only contribution to 〈2P o

1/2|H |2S1/2〉 comes
from operators that are not diagonal in the total spin, which
are spin-dependent operators. The same operators also give the
fine structures of different terms. Therefore, it is fair to assume
that the uncertainty in the off-diagonal element is equal to the
uncertainty in the fine structure of a given term:

δ〈2P o|H |2S〉 ≈ δEfs. (15)

Taking note of the delta factor in (15) and of the triangle
relations that must be satisfied for the 6-j symbol to be
nonzero. This, together with Eq. (13), supplies us with a means
of estimating the uncertainty in Ssf according to

δSsf ≈ 2δEfs + 2δET + δSA, (16)

where δ denotes the uncertainty. The last term, the uncertainty
in the allowed line strength, is usually negligible compared to
the two other contributions. The uncertainty in the computed
transition rate, Asf , or lifetime, τ , is the same as in the line
strength, if we use experimental transition energies.

We now define the uncertainty in a computed energy
property as

δEx = |�x − 1|, where �x = Ex(experiment)

Ex(theory)
(17)

(x = fs or T). Also, the line strength contribution is given by

δSA = |�A − 1|, where �A = Sl

Sv

. (18)

For the fine-structure splitting we chose the 3s23p 2P o

ground term over the 3s3p2 2P term because the splitting of
the latter is zero in first order.

Not only are the aluminum-like 3s3p2 2S1/2–3s23p2P o
1/2,3/2

[E1] lines, in combination with other transitions, important in
electron temperature and density diagnostics but the relative
intensity of these two transitions provides a good indication of
the optical depth of the source, since they originate from the
same upper level. Since both the lifetime and the branching
ratio are directly measurable, with very few assumptions for
the observed plasma, they are also excellent test cases for
atomic theoretical models and experimental methods.

The theory provides us with computed transition rates

A1 = A(3s3p2 2S1/2 − 3s23p 2P o
1/2)

and

A2 = A(3s3p2 2S1/2 − 3s23p2P o
3/2), (19)

while the measurable and, for diagnostics, interesting proper-
ties are the branching ratio

Q = A2

A1
(20)

and the lifetime

τ = 1

A1 + A2
. (21)

In Table II we show the uncertainties we have outlined
here for the final valence correlation and core-valence and
core-core correlation calculations of MCDHF, compared with
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TABLE II. Derived uncertainties and contributions to ab initio [E1]A values. Numbers in square brackets denote powers of 10.

MCDHF (Z = 26) MCDHF (Z = 28)

Property VV n � 7 CV n � 6 CC n � 3 Expt.a VV n � 7 CV n � 6 CC n � 3 Expt.b

Sl/Sv 2.49[−1]/ 2.09[−1]/ 2.24[−1]/ 1.47[−1]/ 1.21[−1]/ 1.29[−1]/
2.54[−1] 2.00[−1] 2.25[−1] 1.50[−1] 1.15[−1] 1.30[−1]

δSA 1.97[−2] 4.50[−2] 4.44[−3] 1.80[−2] 5.22[−2] 7.69[−3]
ET 25404 23733 23998 23832 31731 30622 30826 30720
δET 6.19[−2] 4.17[−3] 6.92[−3] 3.19[−2] 3.20[−3] 3.44[−3]
Efs 18773 18835 18845 18852 27665 27744 27739 27760
δEfs 4.21[−3] 9.03[−4] 3.71[−4] 3.43[−3] 5.77[−4] 7.57[−4]

Percentage uncertainties
δSA 1.97% 4.50% 0.44% 1.80% 5.22% 0.77%
2 × δET 12.38% 0.83% 1.38% 6.38% 0.64% 0.69%
2 × δEfs 0.84% 0.18% 0.07% 0.69% 0.12% 0.15%
Total δAsf 15.19% 5.51% 1.89% 8.87% 5.98% 1.61%

MCDHF (Z = 34) MCDHF (Z = 36)

Property VV n � 7 CV n � 6 CC n � 3 Expt.c VV n � 7 CV n � 6 CC n � 3 Expt.d

Sl/Sv 2.82[−2]/ 2.37[−2]/ 2.52[−2]/ 1.68[−2]/ 1.44[−2]/ 1.52[−2]/
2.86[−2] 2.24[−2] 2.72[−2] 1.70[−2] 1.36[−2] 1.63[−2]

δSA 1.40[−2] 5.80[−2] 7.35[−2] 1.18[−2] 5.88[−2] 6.75[−2]
ET 72935 73381 73389 74308 96231 97072 96993 96902
δET 1.88[−2] 1.26[−2] 1.25[−2] 6.97[−3] 1.75[−3] 9.38[−4]
Efs 73485 73631 73556 73626 97176 97337 97241 97312
δEfs 1.92[−3] 6.79[−5] 9.52[−4] 1.40[−3] 2.57[−4] 7.30[−4]

Percentage uncertainties
δSA 1.40% 5.80% 7.35% 1.18% 5.88% 6.75%
2 × δET 3.76% 2.52% 2.50% 1.39% 0.35% 0.19%
2 × δEfs 0.39% 0.01% 0.19% 0.28% 0.05% 0.15%
Total δAsf 5.52% 8.33% 10.04% 2.85% 6.28% 7.09%

MCDHF (Z = 40) MCDHF (Z = 42)

Property VV n � 7 CV n � 6 CC n � 3 Expt.c VV n � 7 CV n � 6 CC n � 3 Expt.d

Sl/Sv 6.42[−3]/ 5.68[−3]/ 5.96[−3]/ 4.09[−3]/ 3.69[−3]/ 3.84[−3]/
6.48[−3] 5.89[−3] 6.47[−3] 4.11[−3] 3.46[−3] 4.26[−3]

δSA 9.26[−3] 3.57[−2] 7.88[−2] 4.87[−3] 6.65[−2] 9.86[−2]
ET 160887 162299 162110 161617 205987 202635 205115 203960
δET 4.54[−3] 4.20[−3] 3.04[−3] 9.84[−4] 6.54[−3] 5.63[−3]
Efs 161511 161734 161654 161680 203845 204106 203877 204020
δEfs 1.05[−3] 3.34[−4] 1.61[−4] 8.58[−4] 4.21[−4] 7.01[−4]

Percentage uncertainties
δSA 0.93% 3.57% 7.88% 0.49% 6.65% 9.86%
2 × δET 0.91% 0.84% 0.61% 0.20% 1.31% 1.13%
2 × δEfs 0.21% 0.07% 0.03% 0.17% 0.08% 0.14%
Total δAsf 2.05% 4.48% 8.52% 0.86% 8.04% 11.13%

aRedfors and Litzen [5].
bBhatia and Doschek [33].
cEkberg and Redfors [4].
dSugar and Kaufman [7].

experimental results. We note that we use the 3s23p 2P1/2–
3s3p2 2P1/2 S values to estimate δSA in MCDHF calculations.

V. RESULTS AND DISCUSSION

While considering the convergence and accuracy of our
calculation and comparing the three interactions (i.e., VV, CV,
and CC), we monitored the VV, CV, and CC forms of the

MCDHF and RCI excitation energies in Fe XIV, Kr XXIV,
and Mo XXX for orbital sets of increasing size, denoted
by n. In Table I, It is obvious that, although the excitation
energy of the 3s3p2 2De level in the valence correlation n � 4
calculation agrees reasonably well with the experiment, this is
not true for the other levels. Many of the calculated levels
in the valence correlation n � 5 calculation appear to be
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TABLE III. LSJ line strengths [Sl/Sv]. Numbers in square brackets denote powers of 10.

Transition CV n � 3 CV n � 4 CV n � 5 CV n � 6

Z = 26 Fe XIV

3s3p2 4P3/2–3s23p 2P1/2 6.44[−5]/6.53[−5] 6.45[−5]/6.55[−5] 6.50[−5]/6.58[−5] 6.52[−5]/6.59[−5]
–3s23p 2P3/2 1.20[−3]/1.23[−3] 1.21[−3]/1.22[−3] 1.22[−3]/1.22[−3] 1.21[−3]/1.21[−3]
3s3p2 2P1/2−3s23p 2P1/2 2.52[−1]/2.42[−1] 2.53[−1]/2.46[−1] 2.54[−1]/2.48[−1] 2.54[−1]/2.49[−1]
–3s23p 2P3/2 4.22[−1]/4.10[−1] 4.23[−1]/4.11[−1] 4.24[−1]/4.13[−1] 4.24[−1]/4.13[−1]

Z = 36 Kr XXIV

3s3p2 4P3/2−3s23p 2P1/2 2.60[−4]/2.78[−4] 2.61[−4]/2.77[−4] 2.61[−4]/2.76[−4] 2.61[−4]/2.76[−4]
–3s23p 2P3/2 3.37[−3]/3.45[−3] 3.38[−3]/3.44[−3] 3.37[−3]/3.43[−3] 3.37[−3]/3.42[−3]
3s3p2 2P1/2−3s23p 2P1/2 1.73[−2]/1.66[−2] 1.70[−2]/1.68[−2] 1.70[−2]/1.68[−2] 1.70[−2]/1.68[−2]
–3s23p 2P3/2 1.86[−1]/1.76[−1] 1.87[−1]/1.78[−1] 1.88[−1]/1.79[−1] 1.88[−1]/1.80[−1]

Z = 42 Mo XXX

3s3p2 4P3/2−3s23p 2P1/2 3.63[−4]/3.75[−4] 3.64[−4]/3.79[−4] 3.64[−4]/3.80[−4] 3.64[−4]/3.80[−4]
–3s23p 2P3/2 4.33[−3]/4.42[−3] 4.35[−3]/4.42[−3] 4.36[−3]/4.41[−3] 4.36[−3]/4.40[−3]
3s3p2 2P1/2−3s23p 2P1/2 1.51[−1]/1.55[−1] 1.52[−1]/1.54[−1] 1.51[−1]/1.53[−1] 1.51[−1]/1.52[−1]
–3s23p 2P3/2 1.32[−2]/1.24[−2] 1.29[−2]/1.26[−2] 1.29[−2]/1.26[−2] 1.30[−2]/1.26[−2]

Z = 54 Xe XXXXII

3s3p2 4P3/2–3s23p 2P1/2 4.49[−4]/4.58[−4] 4.51[−4]/4.61[−4] 4.50[−4]/4.62[−4] 4.50[−4]/4.62[−4]
–3s23p 2P3/2 4.58[−3]/4.90[−3] 4.60[−3]/4.91[−3] 4.61[−3]/4.91[−3] 4.61[−3]/4.90[−3]
3s3p2 2P1/2–3s23p 2P1/2 7.40[−2]/7.48[−2] 7.41[−2]/7.47[−2] 7.43[−2]/7.46[−2] 1.56[−2]/1.44[−2]
–3s23p 2P3/2 1.56[−2]/1.42[−2] 1.55[−2]/1.43[−2] 1.56[−2]/1.43[−2] 1.56[−2]/1.44[−2]

Z = 79 Au LXVII

3s3p2 4P3/2–3s23p 2P1/2 3.15[−4]/3.12[−4] 3.16[−4]/3.14[−4] 3.16[−4]/3.15[−4] 3.16[−4]/3.17[−4]
–3s23p 2P3/2 2.55[−3]/2.92[−3] 2.56[−3]/2.91[−3] 2.57[−3]/2.91[−3] 2.57[−3]/2.90[−3]
3s3p2 2P1/2–3s23p 2P1/2 2.62[−2]/2.68[−2] 2.63[−2]/2.65[−2] 2.63[−2]/2.65[−2] 2.61[−2]/2.65[−2]
–3s23p 2P3/2 8.29[−3]/8.12[−3] 8.30[−3]/8.14[−3] 8.32[−3]/8.15[−3] 8.32[−3]/8.16[−3]

in reasonable agreement with the experiment; however, it is
necessary to increase the orbital set further to represent the
states to a similar extent and to induce stability in the ground
state. Comparing the valence correlation and core–valence
correlation n � 5 calculations we see that adding in these
additional CSFs has pushed the ground state down except
for the 3s3p2 2P e

j and 2Se
1/2 levels, but the more important

term splitting (the energy difference between different LS
terms) actually improves slightly. Although the 6d orbital was
specifically optimized to represent core polarization effects it
has little effect on the excitation energies. It seems that the most
important core effects have already been included. However,
we shall keep this orbital in our calculations to be consistent
with the effects it represents. We have only given the core–core
correlation n � 4 results, but, as we see from Table I, adding in
the 4d has had a negligible effect on the energies of the system
and will, therefore, be neglected in further calculations.

In Table III, we present values of line strengths calculated in
length Sl and velocity Sv forms for the two E1 lines. The results
are from the various core-valence correlation calculations. The
convergence of the results is clearly seen as n increases in the
core-valence correlation calculations. As can be seen from this
table, the agreement of the two gauges is very good and the
near-equal values of the length and velocity of the transitions
give an additional check on the accuracy of our results. And
the agreement of the two gauges improves with increasing n.
At the same time, we can find that the length value is more
stable in that it changes less as the active space extends. And,
for this reason, we use length gauge in our present work. We

would put an accuracy of about 5% on these allowed transition
S values, although in many cases the accuracy is much better
than this.

The core-valence correlation effect, measured by the differ-
ence among the MCDHF VV, MCDHF CV and MCDHF CC
calculations, is more interesting. A number of different
energies would be interesting to monitor and compare with
experiment. First, in Table IV, we compare results for the four
fine-structure intervals 3s23p [2P 2

3/2–P1/2], 3s3p2 [4 P 4
3/2–

P1/2], 3s3p2 [2D5/2–2D3/2], and 3s3p2 [4P 4
5/2–P3/2] in

aluminum-like ions with Z = 26 to 42. Our MCDHF values
are compared with predicted data given by Safronova et al.
[16], given by Ekberg and Redfors [4], and as recommended
by the National Institute of Standard and Technology (NIST)
presented in [34]. The mixing among some of the relativistic
levels is found to be very strong. To keep our ab initio energies
as close as possible to the experimental values, we have made
small J-dependent adjustments to the diagonal elements of
the Hamiltonian matrices. These adjustments improve the
accuracy of the mixing ciα coefficients, which depend in
part on the accuracy of the eigenvalues. This is a justifiable
[35] fine-tuning technique and is particularly useful for the
calculation of intercombination lines. These adjustments also
affect the composition of the eigenvectors slightly. In a way, we
correct the ab initio approach for the neglected core–valence
correlation, which has been shown to contribute significantly
in neutral magnesium (see, for instance, Ref. [36]). From
Table IV it is clear that including the CV correlation does affect
the energy spectrum substantially for Fe XIV–Mo XXX. This is
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TABLE IV. Comparison of present fine-structure splitting values (in cm−1) of some 3s23p and 3s3p2 levels with experimental results and
calculations of Safronova et al. (MBPT). The values are for the n = 6 (VV correlation), n = 6 (CV correlation), and n = 3 (CC correlation)
active sets corrected for the core–valence electrons interactions.

3s23p[2P3/2–2P1/2] 3s3p2[4 P3/2–4P1/2]

Z VV CV CC Expt.a MBPTb VV CV CC Expta MBPTb

26 18773 18835 18858 18852.5 18831 7632 7660 7624 7675 7702
28 27665 27744 27771 27760.4 27731 11795 11836 11779 11852 11899
34 73485 73631 73665 73626c 73555 36987 37198 36936 37243c 37244
36 97176 97337 97383 97312 97281 51813 51994 51746 52454 52190
40 161511 161734 161780 161680c 161599 96248 97573 96162 97257c 96858
42 203845 204106 204145 204020 203906 127899 128346 127806 128628

3s3p2[4P 4
5/2–P3/2] 3s3p2 [2D5/2– 2D3/2]

26 9600 9620 9686 9598 9562 2181 2230 2132 2227
28 13623 13643 13770 13608 13545 4046 41112 3929 4153
34 30213 30192 30773 30056c 29891 19921 20158 19900
36 36697 36681 37027 36220 36255 31220 31562 31125 31854
40 49826 49773 50339 49462c 49098 68403 69047 68119
42 56201 56591 56805 55340 94444 95339 95469 97470

aTaken from [34].
bSafronova et al. [16].
cEkberg and Redfors [4].

true for the excitation energies and term splitting, but the most
dramatic effect is on the fine structure. If we look at the three
“pure” terms, the ground 3s23p 2P and 3s3p2 4P , we see that
in three cases the CV correlation results show excellent agree-
ment with the experimental values of Ekberg and Redfors [4] to
within a few percent (0.4% and 0.004%). Also, our calculations
are also generally in good agreement with the MBPT results
of Safronova et al. [16] and NIST data from [34] for low-Z
ions. However, a more detailed comparison of the calcu-
lated and observed energies for these transitions (Table IV)
indicates that some splitting energies given by Safronova
et al. [16] calculations are in better agreement with NIST
data than our GRASP2K results. This may be because we have
included a limited number of configurations in our calculation.
In the work presented here we have increased the number
of configurations included or the size of the orbital set in
a systematic manner until good convergence was obtained.
This difference in the two methods should account for a large
fraction of the disagreement in the results.

Our results primarily confirm previous data for Fe XIV,
Ni XVI, Se XXII, Zr XXVII, Kr XXIV, Mo XXX, Xe XXXXII,
and Au LXVII. However, the observation of intercombination
lines of the 3s23p 2P –3s3p2 4P multiplet also provides new
information about the quartet system. The isoelectronic trend
of the wave numbers is shown in Fig. 1, where several
intercombination lines have been observed by Träbert and
co-workers [38,39] by means of time-delayed beam-foil
spectroscopy for a number of ions from Ar VI to Zn XVIII.
Relativity, however, changes the compositions of the levels as
well as the relative amount of fine structure and electrostatic
energy intervals (see Fig. 2 for an illustration of the level
scheme). Consequently, the lines of the multiplet move apart on
the wavelength scale, and the relative line intensities change.
Near Z = 79 (Au), this short-wavelength branch outweighs
the other by about a factor of 10 in transition probability [40].

Because of the quantum mechanical peculiarity of a matrix
element, the upper level of this line, 4P3/2, is much longer
lived than the other two levels of the same term at low
Z [31,32]. At high Z, however, the 4P5/2 level is the longest
lived [41]. One multiplet component, the J = 3/2 to J ′ = 1/2
line, even vanishes when the level sequence changes, that is,
when the ground-state fine-structure interval grows larger than
the 3s-3p energy difference (near Z = 58 [41]). Then the
upper level (J = 3/2) of the 3s23p2P o ground term crosses the
position of the J ′ = 1/2 level of the excited (displaced) term
3s3p2 4P , and thereafter it lies higher in excitation energy. As
a consequence of this, the energy-level pattern in the multiplet
varies substantially. Also, it has been found that the calculated
wave number data (in Fig. 1) seemed to follow a smooth trend
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FIG. 2. (Color online) Calculated levels for the lowest five levels
of Al-like ions of Xe (Z = 54, left) and Au (Z = 79, right).

as in many isoelectronic sequences, but only with data for
Z � 42. By combining this extensive MCDHF of calculations
with the results of experimental material of Jupén et al. [1], it
would be interesting to follow these changes in detail in order
to verify one or the other interpretation and to study the details
of the available relativistic calculations as a function of Z;
reliable interpolations and extrapolations are possible. Thus,
the small differences between the theoretical and experimental
energies, which vary slowly and smoothly with Z, were
fitted to a fourth-degree polynomial in Z. However, with the
experimental results now available up to Mo XXX, reasonably
reliable extrapolations up to Xe XXXXII are possible. Such
extrapolations are best achieved by studying the Z dependence
of the difference between experimental and theoretical tran-
sition energies. Further experimental confirmation would be
very helpful in verifying the correctness of these occasionally
sensitive mixing parameters.

Five lines of the doublet system were found for most of
the ions studied. These determine the levels of the 3s23p

and 3s3p2 configurations. Tables V–IX each contain the
lines of one isoelectronic transition, including the measured
and calculated energy values. Comparisons of our MCDHF
energies with other theoretical and experimental data are too
voluminous to include here but are available as experimental
data are taken as reported by Jupén et al. [3], Sugar et al. [7],
Ekberg et al. [4], and researchers at NIST. Predicted data based
on measurements has been given by Froese Fischer et al. [9],
Safronova et al. [16], and Vilkas et al. [17,18]. Similar data for
Fe XIV and Ni XVI were given by Gupta et al. [13] and Aggarwal
et al. [37]. As can be seen in Tables V–IX, our results are in ex-
cellent agreement with the predicted data, the difference being
0.01%–1% for most cases. It should be noted that relativistic
MCDHF calculation are more accurate for high-Z ions. Good
agreement with experimental data obtained for low-Z ions
leads us to conclude that the MCDHF method can provide
accurate energies for all values of Z. Our MCDHF results are
in excellent agreement with NIST data for Fe through Mo,
the difference being about 0.008%–0.1% for most cases. The
deviations between the present values and the experimental
determinations suggest that additional correlation effects must
be taken into account to reduce the discrepancy.

In Table X, we give A values, lifetimes, and branching ratios
for the MCDHF methods, discussed previously. We compare
these results with those from other experiments. It is interesting
to note that experimental results for Q agree with ours to
within a couple of percent. The lifetime appears to be a slowly
converging property within a given model, while the Q value,
in comparison, converges very quickly and can be estimated to
a good accuracy from relatively small calculations. Together
these two properties constitute an excellent test for atomic
structure calculations.

In order to check the reliability of our calculation, we
compare our results for wavelengths λ, transition probabilities
A, and line strengths S in length L and velocity V forms for

TABLE V. Fine-structure energy levels (in cm−1) for the 3s23p 2P3/2 level for different ions in the aluminum like
isoelectronic sequence, from present calculations and compared with experiments and theoretical results.

Z VV CV CC NISTa Expt.b MBPTc CIV3d MCHFe

26 18773 18835 18845 18852.5 18852 18684 18793.9 18766.34
28 27665 27744 27739 27760.4 27756 27731 27752.4 27626.3f

34 73485 73631 73556 73640 73626 73555
36 97176 97337 97241 97312 97322 97281
40 161511 161734 161554 161680g 161680
42 203845 204106 203877 204020 204048 203906
54 665848 666349 665955 665774h

79 1505306 1505039 1504660 1504645i

aTaken from [34].
bJupén and Curtis [3].
cSafronova et al. [16].
dGupta et al. [13].
eFroese Fischer et al. [9].
fAggarwal et al. [37].
gEkberg and Redfors [4].
hVilkas et al. [17].
iVilkas et al. [18].
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TABLE VI. Fine-structure energy levels (in cm−1) for the 3s3p2 4P1/2 level for different ions in the aluminum like
isoelectronic sequence, from present calculations and compared with experiments and theoretical results.

Z VV CV CC NISTa Expt.b MBPTc CIV3e MCHFe

26 223923 224452 223385 225114 225083 225187 225125.9 223427.79
28 258325 258881 257852 259489 259472 259627 259467.2 257190.4f

34 370683 371438 370434 371506g 371658 37244
36 411100 411668 410944 411750 411903 411898
40 495702 496213 495758 495631g 495754
42 539590 539349 539744 538435 538930
54 818362 818437 819114 817897h

79 4017333 4018744 4021257 4013023i

aTaken from [34].
bJupen and Curtis [3].
cSafronova et al. [16].
eGupta et al. [13].
eFroese Fischer [9].
fAggarwal et al. [37].
gEkberg and Redfors [4].
hVilkas et al. [17].
iVilkas et al. [18].

Al-like ions with nuclear charges ranging from Z = 26 to 79
(Table XI). Also some available theoretical and experimental
results are tabulated for comparison. Our comparison is
presented in two parts: wavelengths and transition probability
differences. Our MCDHF values are compared with theoretical
values given by Froese Fischer et al. [9], by Safronova
et al. [43], and by Vilkas et al. [17,18] and experimental
results given by Jupén et al. [1], by Sugar and Kaufman [7],
by Jupén and Curtis [3], and by researchers at NIST [34].
For medium- to low-Z ions (Table XI), it is clear that the
calculated values including the CV correlation are in general
in very good agreement with the MCHF calculations of Froese
Fischer et al. [9] and the MBPT calculations of Safronova

et al. [43] and Vilkas et al. [17,18] except for some transitions
with a maximum difference of approximately 0.4%, but the
maximum difference for our VV correlation calculations is
0.8%. A comparison between the present wavelengths and the
JET tokamak experimental values of Jupén et al. [1], Sugar and
Kaufman [7], and Jupén and Curtis [3] and the observations
of NIST [34] reveals that the greatest difference between the
experimental results and our GRASP2K transition wavelengths
for our CV correlation calculations is 0.25% and the maximum
difference for the results of VV correlation calculations is
0.5%. However, a more detailed comparison of the calculated
and observed wavelengths for these transitions for high-Z ions
(Table XI) indicates that the transition wavelengths given by

TABLE VII. Fine-structure energy levels (in cm−1) for the 3s3p2 4P3/2 level for different ions in the aluminum
like isoelectronic sequence, from present calculations and compared with experiments and theoretical results.

Z VV CV CC NISTa Expt.b MBPTc CIV3d MCHFe

26 231555 232112 231009 232789 232470 232889 232894.3 231238.10
28 270120 270718 269619 271341 271247 271526 271433.6 268918.7f

34 407670 408576 407277 408749g 409934
36 462914 463662 462547 464204 465300 464088
40 591950 592786 591638 592888g 592888
42 667489 668428 667182 668752h 666293
54 1342192 1343346 1342108 1343238i

79 5249361 5251590 5247237 5247290j

aTaken from [34].
bJupén and Curtis [3].
cSafronova et al. [16].
dGupta et al. [13].
eFroese Fischer [9].
fAggarwal et al. [37].
gEkberg and Redfors [4].
hJupén et al. [1].
iVilkas et al. [17].
jVilkas et al. [18].
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TABLE VIII. Fine-structure energy levels (in cm−1) for the 3s3p2 4P5/2 level for different ions in the aluminum
like isoelectronic sequence, from present calculations and compared with experiments and theoretical results.

Z VV CV CC NISTa Expt.b MBPTc CIV3d MCHFe

26 241155 241733 240669 242387 242332 242451 242432.7 240683.01
28 283743 284360 283326 284949 284858 285072 284920.0 282563.1f

34 437883 438768 437735 438805g 438821
36 499611 500343 499574 500480(75)h 500593 500343
40 641776 642559 641977 642359g 642715
42 723690 724546 723987 724522h 724101
54 1433350 1434253 1434213 1433127i

79 5412380 5413777 5433071 5408298j

aTaken from [34].
bJupén and Curtis [3].
cSafronova et al. [16].
dGupta et al. [13].
eFroese Fischer et al. [9].
fAggarwal et al. [37].
gEkberg and Redfors [4].
hJupén et al. [1].
iVilkas [17].
jVilkas et al. [18].

our VV calculations are in better agreement with the accurate
calculations of Vilkas et al. [17,18] than our CV correlation
results. The maximum difference between the accurate results
of Vilkas et al. [17,18] and our VV transition wavelengths is
0.03%, but the maximum difference for our CV results and
those calculated by Vilkas et al. [17,18] is 0.04%. For this
transition the wavelengths obtained by the two models are very
close. It is most likely that this is due to slower convergence
of the correlation treatment for GRASP2K, since the effect
decreases for higher Z. The calculations are fundamentally
different and a comparison between the different models
employed merely indicates the main similarities, and only the
final converged values can be critically compared. To avoid
future level identification problems, besides wavelengths we
include in Table XI transition rates A and line strength S.

In view of the VV and CV correlation independence just
discussed, our transition rate results are presented in CV
correlation form only. Uncertainties in the accuracy of the
A values for these transitions will be determined mainly by
the accuracy of the line strength S. Our GRASP2K calculation
of the A value for the 3s23p-3s3p2 transition is in excellent
agreement with the theoretical and experimental results. In
Table XI, we illustrate the Z dependence of the differences
between line strengths calculated in length SL and velocity
SV forms. The agreement between the theoretical L form and
theV form results were also used in [9,43] as an indicator
of accuracy. Since the present transition data are obtained
using a single method for all Z, and improve in accuracy
with increasing Z, we expect our data for high Z to be very
reliable.

TABLE IX. Fine-structure energy levels (in cm−1) for the 3s3p2 2D3/2 level for different ions in the aluminum
like isoelectronic sequence, from present calculations and compared with experiments and theoretical results.

Z VV CV CC NISTa Expt.b MBPTc CIV3d MCHFe

26 299689 300636 301031 299242 299247f 298903 298407.9 299078.23
28 347574 348517 348914 347032 346780 346099.2 347783.8g

34 514934 515878 516251 514130h 514128
36 580722 581641 582018 579737(120)i 579808 579451
40 731515 732401 732806 730348h 730340
42 818134 819074 819456 816880(100)i 816860
54 2332472 2336124 2341023 2332373j

79 5590890 5593645 5607532 5586504k

aTaken from [34].
bSugar and Kaufman [7].
cSafronova et al. [16].
dGupta et al. [13].
eFroese Fischer et al. [9].
fRedfors and Litzén [5].
gAggarwal et al. [37].
hEkberg and Redfors [4].
iJupén et al. [1].
jVilkas et al. [17].
kVilkas et al. [18].
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TABLE X. Properties for the 3s23p 2PJ –3s3p2 2S1/2 transition, for different ions in the aluminum like isoelectronic
sequence, from present calculations and compared with experiment.

Z A1(2P1/2-2S1/2) (108 s−1) A2(2P3/2-2S1/2) (108 s−1) QA
a Q (Expt.) Theoryc (ps) Expt.d (ps)

26 182.70 10.10 0.055 0.060 ± 0.01b 51.867 52.083
28 263.64 3.66 0.014 0.0146d 37.411 37.908
34 540.46 6.55 0.012 18.281
36 651.95 13.60 0.021 15.025
40 920.97 32.18 0.035 10.492
42 1094.65 43.71 0.040 8.785
54 3233.22 128.31 0.040 2.975
79 48530.08 377.15 0.008 0.204

aBranching ratios of transition rates, QA = A(3s23p 2P3/2–3s3p2 2S1/2)/A(3s23p 2P1/2–3s3p2 2S1/2).
bTaken from [42].
cPresent results from the core–valence correlation, n = 7 calculations.
dThe experimental results are those we calculated from Ref. [34].

TABLE XI. Wavelengths (in angstroms), line strengths, and transition probabilities in different Al-like ions in different approaches,
compared to experiments and theories. Numbers in square brackets denote powers of 10.

Previous Present λ (Å) SL SV CV Previous Present A (s−1)

Z λ (Å) VV CV CC CV CV A(s−1) VV CV CC

3s23p 2P1/2–3s3p2 4P1/2

26 447.57a 446.58 446.48 447.81 2.10[−3] 2.20[−3] 2.62(7)a 2.54(7) 2.59(7) 2.29(7)
28 385.37b 386.23 386.14 386.82 3.05[−3] 3.18[−3] 5.7(7)b 5.39(7) 5.57(7) 5.16(7)
34 268.91c 268.78 268.90 268.95 7.75[−3] 7.50[−3] 3.88(8) 3.86(8) 3.77(8)
36 242.56c 243.26 243.16 243.34 9.43[−3] 9.75[−3] 6.83(8) 6.73(8) 6.52(8)
40 201.74 201.74 201.71 1.37[−2] 1.35[−2] 1.71(9) 1.69(9) 1.65(9)
42 185.53f 185.43 185.41 185.28 1.54[−2] 1.59[−2] 2.47(9) 2.45(9) 2.43(9)
54 122.27g 122.26 122.28 122.08 2.06[−2] 2.08[−2] 1.15(10)g 1.15(10) 1.16(10) 1.15(10)
79 66.46h 66.43 66.49 66.46 1.33[−2] 1.43[−2] 4.65(10)h 4.68(10) 4.60(10) 4.83(10)

3s2 3p2 P1/2–3s3p2 2P1/2

26 255.42a 254.54 255.78 253.88 2.54[−1] 2.48[−1] 1.51(10)a 1.53(10) 1.27(10) 1.40(10)
28 223.13b 221.36 222.83 221.30 1.21[−1] 1.15[−1] 1.3(10)b 1.38(10) 1.12(10) 1.22(10)
34 150.32e 149.40 149.62 148.96 2.36[−2] 2.24[−2] 7.84(9)e 8.56(9) 7.16(9) 7.72(9)
36 132.56e 131.80 131.96 131.44 1.70[−2] 1.68[−2] 6.90(9)e 7.43(9) 6.35(9) 6.79(9)
40 124.02d 123.62 123.94 123.40 1.72[−1] 1.71[−1] 9.35(10) 9.1110) 9.24(10)
42 112.17d 111.58 111.89 111.47 1.51[−1] 1.53[−1] 1.32(11) 1.09(11) 1.12(11)
54 61.62g 61.56 61.55 61.39 7.43[−2] 7.46[−2] 3.30(11)g 3.28(11) 3.23(11) 3.28(11)
79 17.58 17.59 17.55 2.63[−2] 2.65[−2] 4.94(12) 4.85(12) 4.99(12)

3s2 3p2 P1/2–3s3 p2 2P3/2

26 250.01a 249.15 250.78 248.79 2.29[−1] 2.21[−1] 7.90(9)a 8.01(9) 7.36(9) 7.76(9)
28 218.38b 217.97 218.27 217.64 1.86[−1] 1.80[−1] 9.5(9)b 1.00(10) 9.18(9) 9.73(9)
34 147.75e 146.52 147.12 146.38 1.16[−1] 1.13[−1] 2.08(10)e 2.14(10) 1.90(10) 2.05(10)
36 130.78e 129.74 130.18 129.62 1.13[−1] 1.10[−1] 2.92(10)e 2.99(10) 2.61(10) 2.84(10)
40 103.35e 102.69 102.92 102.54 1.37[−1] 1.35[−1] 7.13(10)e 7.23(10) 6.38(10) 6.77(10)
42 92.59e 92.04 91.90 91.85 1.67[−1] 1.68[−1] 1.13(11)e 1.15(11) 1.01(11) 1.09(11)
54 64.20g 64.12 64.11 64.06 4.68[−2] 4.82[−2] 8.39(10)g 8.88(10) 8.99(10) 8.79(10)
79 16.49e 16.45 16.43 16.35 5.64[−2] 5.66[−2] 6.69(12)e 6.60(12) 6.43(12) 6.93(12)

3s2 3p2 P3/2–3s3p2 4P3/2

26 470.65a 470.00 470.40 471.40 1.22[−3] 1.22[−3] 5.91(6)a 5.94(6) 5.90(6) 5.62(6)
28 410.54b 410.47 410.32 411.13 1.61[−3] 1.61[−3] 1.15(7)c 1.16(7) 1.17(7) 1.12(7)
34 298.20c 298.25 298.18 298.65 2.94[−3] 2.98[−3] 5.29(7) 5.16(7) 5.02(7)
36 272.54c 272.43 272.48 272.74 3.37[−3] 3.42[−3] 8.29(7) 8.31(7) 8.05(7)
40 232.33 232.31 232.51 4.11[−3] 4.26[−3] 1.65(8) 1.66(8) 1.61(8)
42 215.70 215.84 215.85 4.36[−3] 4.40[−3] 2.19(8) 2.18(8) 2.15(8)
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TABLE XI. (Continued.)

Previous Present λ (Å) SL SV CV Previous Present A (s−1)

Z λ (Å) VV CV CC CV CV A(s−1) VV CV CC

54 147.61g 147.86 147.87 147.90 4.61[−3] 4.90[−3] 7.18(8)g 7.23(8) 7.23(8) 7.15(8)
79 81.02h 81.16 81.18 81.56 2.57[−3] 2.90[−3] 2.38(9)h 2.43(9) 2.43(9) 3.24(9)

3s2 3p2 P1/2–3s3 p2 2D3/2

26 334.36a 333.67 334.19 333.52 1.84[−1] 1.90[−1] 2.46(9)a 2.45(9) 2.55(9) 2.42(9)
28 288.15b 287.70 287.48 287.60 1.60[−1] 1.64[−1] 3.2(9)b 3.32(9) 3.44(9) 3.28(9)
34 194.51e 194.20 194.48 193.70 1.13[−1] 1.15[−1] 6.92(9)e 7.70(9) 7.01(9) 7.58(9)
36 172.58e 172.20 172.70 171.82 1.03[−1] 1.04[−1] 9.05(9)e 1.00(10) 9.23(10) 9.88(9)
40 136.98e 136.70 136.82 136.46 8.58[−2] 8.81[−2] 1.53(10)e 1.67(10) 1.58(10) 1.65(10)
42 122.47e 122.23 122.35 122.03 7.87[−2] 7.96[−2] 1.97(10)e 2.15(10) 2.09(10) 2.12(10)
54 64.20g 64.12 64.08 64.11 4.69[−2] 4.79[−2] 8.08(10)e 8.86(10) 9.03(10) 8.99(10)
79 17.91e 17.89 17.88 17.52 1.45[−2] 1.50[−2] 1.02(12)e 1.24(12) 1.28(12) 1.14(12)

3s2 3p2 P3/2–3s3p2 4P5/2

26 450.62a 449.71 449.99 450.91 6.56[−3] 6.82[−3] 2.49(7)a 2.56(7) 2.43(7) 2.33(7)
28 388.82b 389.53 389.74 390.26 9.63[−3] 9.85[−3] 5.6(7)b 5.71(7) 5.45(7) 5.27(7)
34 273.79c 273.44 273.50 273.59 2.29[−2] 2.38[−2] 3.86(8) 3.75(8) 3.65(8)
36 248.07c 248.10 248.12 248.15 2.76[−2] 2.86[−2] 6.14(8) 6.08(8) 5.94(8)
40 208.22 208.21 208.15 3.50[−2] 3.75[−2] 1.31(9) 1.31(9) 1.26(9)
42 192.26e 192.38 192.35 192.27 3.62[−2] 3.77[−2] 1.75(9) 1.72(9) 1.69(9)
54 130.32g 130.29 130.34 130.16 3.30[−2] 3.62[−2] 4.95(9)g 5.07(9) 5.03(9) 4.99(9)
79 71.67h 71.68 71.74 70.83 1.87[−2] 2.17[−2] 1.70(10)h 1.73(10) 1.71(10) 2.55(10)

aCalculation of Froese Fischer et al. [9].
bTaken from [34].
cExperimental results of Jupén et al. [1].
dExperimental results of Sugar and Kaufman [7].
eCalculation of Safronovaet al. [43].
fExperimental results of Jupén and Curtis [3].
gCalculation of Vilkas et al. [17].
hCalculation of Vilkas et al. [18].

VI. SUMMARY

We report on relativistic multiconfiguration Dirac-Hartree-
Fock calculations of fine-structure energy levels, the term
splitting, the wavelengths, transition rates, line strengths, and
thereby the branching ratios and lifetimes of the aluminum
like 3s23p-3s3p2 transitions in the ions Fe XIV–Au LXVII. We
show different results for fine-structure energies from methods
including different effects. The MCDHF gives excellent
agreement with experimental data and adopted results. It would
be beneficial if experimental data for other highly charged
Al-like ions were available. At the present time, there are
no experimental data between Z � 43 and Z � 100 for
the aluminum isoelectronic sequence. Availability of such
data would lead to an improved understanding of the relative
importance of different contributions to the energies of highly
charged ions. In addition, we estimate that the uncertainties
are about 10% for the GRASP2K calculations. The influence
of the core-valence correlation on the lifetime and branching
ratio were discussed. These calculations provide a theoretical
benchmark for comparison with experiment and theory. It
is found that the relativistic and configuration interaction
effects play an important role in the correct assignment of
different transitions and also in the accurate evaluation of
atomic transition data of highly ionized atoms. For low-Z (see
Tables IV–IX) ions it is clear that the MCDHF method,

including the core-valence correlation, is an accurate approach
for the whole sequence and that calculations including only
the valence correlation and the core-core correlation under-
estimate the energy levels. The agreement with NIST data,
including only the core-core correlation, shows that this might
be fortuitous. Since the discrepancy is not clear as atomic
number Z increases, further experimental investigation is of
great interest to explain the difference between theoretical
and experimental results, especially for large Z values. It is in
general clear that these kinds of transitions require much work,
especially on the experimental side, to explain the differences
among different computational methods and to facilitate their
use in plasma diagnostics. However, because these results are
all from single- or few-configuration calculations, it would
be imprudent to conclude that it is presently more than a
trend; more calculations with more configurations are clearly
in order. We hope that these results will be useful in analyzing
older experiments and planning new ones.
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