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Origin of Hund’s multiplicity rule in quasi-two-dimensional two-electron quantum dots
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The origin of Hund’s multiplicity rules has been studied for a system of two electrons confined by a quasi-
two-dimensional harmonic-oscillator potential by relying on a full configuration interaction wave function and
Cartesian anisotropic Gaussian basis sets. In terms of appropriate normal-mode coordinates the wave function
factors into a product of the center-of -mass and the internal components. The 1�u singlet state and the 3�u

triplet state represent the energetically lowest pair of states to which Hund’s multiplicity rule applies. They are
shown to involve excitations into different degrees of freedom, namely, into the center-of-mass angular mode
and the internal angular mode for the singlet and triplet states, respectively. The presence of an angular nodal
line in the internal space allows then the triplet state to avoid the singularity in the electron-electron interaction
potential, leading to the energy lowering of the triplet state relative to its counterpart singlet state.
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I. INTRODUCTION

Finite many-body quantum systems consisting of a small
number of electrons bound in a fabricated nano-scale potential
are referred to as quantum dots [1,2] or artificial atoms [3].
In recent years intense attention has been paid to these nano-
sized objects as a source of new properties of matter. As in
natural atoms, the electronic configurations of artificial atoms
have been shown to follow Hund’s multiplicity rule [4–6].
The Hund multiplicity rule is the first rule of Hund empirical
rules [7] (see also Refs. [8–12]; for a historical outline see
Refs. [13] and [14]). This first rule operates rigorously while
the empirical nature of the other two rules was emphasized by
Sommerfeld [15]. Note that the first rule also operates in the
case of molecular species [16].

Hund’s multiplicity rule states that among different spin
states belonging to the same orbital configuration the high-
est total spin state has the lowest energy. The traditional
interpretation of the origin of Hund’s multiplicity rule was
given by Slater in his 1929 article [17] in which he sug-
gested that higher spin states weaken the electron-electron
interaction potential (see also Refs. [10] and [11]). Later,
Davidson [18,19] (see also Refs. [20–25]; for a review see
Ref. [26]) actually evaluated the expectation values of the
one-electron and two-electron operators at the Hartree-Fock
level of approximation for the singlet-triplet pairs of a series
of singly excited states of He, (nl)1L and (nl)3L (n = 2, 3, . . .;
l = s, p, d, . . . ; L = S, P , D, . . .). On the basis of these
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results he concluded, contrary to Slater’s interpretation, that
the triplet state, having the higher spin multiplicity, involves
a larger energy increase due to the electron-electron repulsion
potential than does the corresponding singlet state. This
implies that the reason for a lower energy of the triplet state
relative to the corresponding singlet state is not due to a
decrease in the electron-electron interaction potential, but can
be ascribed to a more compact electron density distribution of
the triplet state, which then results in a much larger energy
decrease due to the nuclear attraction potential that compen-
sates the energy increase in the electron-electron repulsion
potential [20–23,27].

In order to understand the origin of Hund’s multiplicity
rule for artificial atoms, in which the role of the electron re-
pulsion potential varies strongly with the confinement strength
[28–34], a full configuration interaction (CI) calculation has
been carried out for a system of quasi-two-dimensional
isotropic harmonic-oscillator quantum dots [35–38]. The
second and the third Hund rules invoke spherical symmetry
and, thus, do not directly pertain to the two-dimensional system
studied in this article. Yet, it may be worthwhile to look for
their analog in the presence of the cylindrical symmetry. A
two-electron system has been chosen for this purpose, since
a separation of the spin and the center-of -mass degrees of
freedom permits insightful visualization of the internal part
of the wave function, which in turn enables an unambiguous
manifestation of the origin of Hund’s multiplicity rule. Finally,
we note that very recently the Hund rule was investigated for
the three-dimensional, spherically symmetrical quantum dots
confined by a rectangular potential [39].

II. COMPUTATIONAL DETAILS

The Hamiltonian operator used in the present study for a
model of quasi-two-dimensional two-electron quantum dots is
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given by

H =
2∑

i=1

[
−1

2
∇2

i

]
+

2∑
i=1

wq2D(ri) + 1

|r1 − r2| , (1)

where the one-electron confining potential wq2D has the form

wq2D(r) = 1
2ω2

xy(x2 + y2) + 1
2ω2

zz
2. (2)

The effective atomic units are used throughout the article
in which the unit length and energy correspond to 9.79 nm
and 11.9 meV, respectively, for GaAs semiconductor quantum
dots [40,41]. For sufficiently large values of ωz, satisfying the
condition ωz � ωxy , electrons bound by the potential of Eq.
(2) are strongly compressed along the z direction and have
degrees of freedom only within the xy plane. Therefore, under
the condition ωz �ωxy , Eq. (2) represents a confining potential
for quasi-two-dimensional harmonic-oscillator quantum dots
with an oblate-top, disk-like shape. In the present study ωz

has been chosen to be 100 times larger than ωxy , that is,
ωz = 100ωxy . Since the results do not change qualitatively
with a specific choice of ωz, whose value is fixed by the value
of ωxy , its magnitude is not necessarily indicated explicitly
hereafter.

The Schrödinger equation for the Hamiltonian of Eq. (1) has
been solved by employing closed-shell Hartree-Fock orbitals
in the full CI method. As basis set for the expansion of the
one-particle Hartree-Fock orbitals properly chosen Cartesian
anisotropic Gaussian-type orbitals (C-aniGTO) of appropriate
size have been employed [31,42–44]. The high reliability
of C-aniGTO basis sets for the calculation of properties
of electrons confined by an anisotropic potential has been
amply demonstrated in previous studies and will not be
repeated here [45–53]. A total of 66 functions, sharing the
common exponents (ωxy/2, ωxy/2, ωz/2) and designated as
[1s1p1d1f 1g1h1i1j1k1l1m] using the standard quantum
chemical notation, have been used as the basis set. Here, the
symmetry labels s, p, . . . do not imply spherical symmetry
but specify the number of nodes in each anisotropic orbital.
Functions having nodes along the z coordinate are neglected
[32,54].

III. RESULTS AND DISCUSSION

A. Energy spectrum

In case of two-electron He-like atoms it is straightforward
to interpret the part of the energy spectrum that is situated
below the first ionization limit, since it involves only one-
electron excitations from the singlet ground state (1s)2 1S.
However, in the case of quantum dots, multiple excitations
play a fundamental role in the understanding of their complex
energy spectra [31,32,54]. It is convenient to start the analysis
of the energy spectrum with the case that is referred to
as the large regime, characterized by a large value of the
confinement strength ωxy , since in this case the complexity
of the corresponding spectra is considerably reduced. Indeed,
in this limit the electron correlation effects may be neglected
to a good degree of approximation [28,33,34].

The energy spectrum of two electrons confined by the
potential of Eq. (2) relative to the ground state is displayed in
Fig. 1 for ωxy = 10, which corresponds to the large regime of

FIG. 1. (Color online) Energy spectrum of two electrons confined
by a quasi-two-dimensional harmonic potential with (ωxy, ωz) =
(10, 1000) relative to the ground state energy. Energy levels of singlet
and triplet states are rendered in green (light gray) and red (dark gray),
respectively.

the confinement strength. The symbol 2S+1A that is associated
with each level represents the spin multiplicity 2S + 1 and
the spatial symmetry label A in the D∞,h symmetry group.
The fifth level in the singlet manifold and the second level
in the triplet manifold are doubly and triply degenerate,
respectively. These degeneracies are not accidental, but they
are a consequence of the generalized Kohn theorem [55–60]
which is revisited in Sec. III B.

The low-lying closed-shell Hartree-Fock orbitals are dis-
played in Fig. 2 in the order of increasing orbital energies.
The orbitals are labeled by the symbol [vxy, vz]a [32], with
vxy , vz, and a representing the number of nodes within the
xy plane, the number of nodes along the z axis, and the
spatial symmetry label, respectively. Two types of nodes are
observed in the xy plane: angular nodes originating from
the angular momentum with respect to the z axis and circular
radial nodes cutting the orbital circularly about the z axis,
as displayed in Figs. 2(b), 2(c), and 2(d), respectively. The
number of angular and radial nodes are designated by |lz|
and nr , respectively. They contribute to vxy by 2nr + |lz|. The
reason for the twice-as-large contribution of nr toward vxy

than that of |lz| has been amply discussed elsewhere [54]. The
number of nodes vz is zero for all orbitals covered by the
present study, since an excitation into this mode requires an
extremely large energy due to the strong confinement along
the z axis.
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FIG. 2. (Color online) Closed-shell Hartree-Fock orbitals for two
electrons confined by a quasi-two-dimensional harmonic potential
with (ωxy, ωz) = (10, 1000). The density at the surface is 0.05. The
side length of the red cube is 2.0 a.u. The orbitals are labeled by
[vxy, vz]a, where vxy , vz, and a represent the number of nodes in
the xy plane, the number of nodes along the z axis, and the spatial
symmetry label, respectively.

For the low-lying states that are displayed in Fig. 1,
the leading configurations and the square moduli of their
coefficients in the CI wave functions are listed in Table I.
The polyad quantum number vp [54], which is defined by
the total number of nodes of the leading configuration in
the CI wave functions and is equal to the sum of vxy for
two orbitals in the leading configuration, is also given in
this table. The energy spectrum displayed in Fig. 1 shows
a harmonic band structure, in which the energy levels with

TABLE I. Leading configurations and square moduli of their
coefficients in the CI wave functions for the low-lying states of two
electrons confined by the quasi-two-dimensional harmonic potential
with (ωxy, ωz) = (10, 1000). The symbols vp and E specify the
polyad quantum number and the relative energy from the lowest
state, respectively.

vp E (a.u.) State Configuration Coef.

0 0.000 1�+
g ([0, 0]σg)2 0.995

1 8.437 3�u ([0, 0]σg)([1, 0]πu) 0.998
1 10.002 1�u ([0, 0]σg)([1, 0]πu) 0.993
2 17.968 1�g ([0, 0]σg)([2, 0]δg) 0.499

([1, 0]πu)2 0.498
2 18.437 3�+

g ([0, 0]σg)([2, 0]σg) 0.997
2 18.438 3�g ([0, 0]σg)([2, 0]δg) 0.997
2 18.438 3�−

g ([1, 0]πu)([1, 0]πu) 0.996
2 19.208 1�+

g ([0, 0]σg)([2, 0]σg) 0.498
([1, 0]πu)2 0.498

2 20.003 1�+
g ([0, 0]σg)([2, 0]σg) 0.498

([1, 0]πu)2 0.490
2 20.004 1�g ([0, 0]σg)([2, 0]δg) 0.495

([1, 0]πu)2 0.496

the same value of vp are close together, while those having
a different value of vp are separated by multiples of ωxy .
This is a characteristic feature of the energy spectra of
harmonic-oscillator quantum dots in the strong confinement
regime [33,34].

The 1�+
g ground state has the leading configuration

([0, 0]σg)2, with the weight 0.995, showing that the ground
state is dominated exclusively by the doubly occupied lowest
orbital configuration. The first excited 1� singlet state and the
lowest 3� triplet state have the same leading configuration
([0, 0]σg)([1, 0]πu) with the weights 0.993 and 0.998, respec-
tively. This implies that they form a singlet-triplet pair to which
the Hund multiplicity rule applies.

On the other hand, in the case of the singlet manifold with
vp = 2, all three energy levels, namely, the two 1�+

g states and
the one 1�g state, involve two leading configurations having
almost the same weights, indicating a strong configuration
mixing. Furthermore, the two 1�+

g singlet states share the
same set of two leading configurations, ([0, 0]σg)([2, 0]σg) and
([1, 0]πu)2. Now, in this strong confinement regime of ωxy =
10, electron correlation should be negligibly small. Therefore,
the large mixing of these two configurations in the strong
confinement regime indicates an improper description of the
states of quantum dots that is based on an independent electron
model with Hartree-Fock orbitals. In order to properly describe
the states in the vp = 2 manifold, appropriate assignments of
the normal modes of electrons are required [33,34,61]; these
are introduced in the next section.

B. Normal-mode assignments

The normal coordinates for two electrons of the present
model are obtained by transforming the independent electron
coordinates (x1, y1, x2, y2) into

xs = 1√
2

[x1 + x2],

ys = 1√
2

[y1 + y2],

(3)

xa = 1√
2

[x1 − x2],

ya = 1√
2

[y1 − y2],

where z coordinates are neglected. The symmetric coordinates
xs and ys represent the center-of-mass degrees of freedom,
while the anti-symmetric coordinates xa and ya represent the
internal degrees of freedom. Using these new coordinates
and neglecting the dependence on the z coordinate, the
Hamiltonian of Eq. (1) separates into the sum of two contribu-
tions, depending on either the coordinates (xs, ys) or (xa, ya),
that is,

H2D = Hc.m.(xs, ys) + Hint(xa, ya), (4)

where

Hc.m. = −1

2

[
∂2

∂x2
s

+ ∂2

∂y2
s

]
+ 1

2
ω2

xy

[
x2

s + y2
s

]
, (5)
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and

Hint = −1

2

[
∂2

∂x2
a

+ ∂2

∂y2
a

]
+ 1

2
ω2

xy

[
x2

a + y2
a

] + 1√
2
(
x2

a + y2
a

) .

(6)

The Schödinger equation for the two-dimensional Hamil-
tonian H2D and for its three-dimensional analog, that is,
the Hamiltonian for two electrons confined in a spherical
harmonic-oscillator potential, can be solved in a closed form
for specific values of ωxy [62,63].

The Hamiltonian Hc.m. is the Hamiltonian for a two-
dimensional isotropic harmonic oscillator. Therefore, the
eigenstates of Hc.m. are specified by the two quantum numbers
ns and ls as 	ns,ls

c.m. , where ns and ls represent the number
of radial nodes and the angular momentum about the z axis,
respectively, as for the Hartree-Fock orbitals in Fig. 2. The
eigenenergy Ec.m. is represented in terms of these quantum
numbers as Ec.m. = ωxy[2ns + ls + 2]. The Hamiltonian Hint

is then a sum of another two-dimensional isotropic harmonic-
oscillator Hamiltonian and of a singular potential located
at the center of the harmonic-oscillator potential. The latter
originates from the electron repulsion potential. Since the
potential energy function of Hint has an axial symmetry about
the origin, the eigenstates of this Hamiltonian can also be
labeled by a radial quantum number na and the angular
momentum quantum number la as 	

na,la
int . Therefore, the

eigenstates of the total Hamiltonian are labeled by the set
of four normal-mode quantum numbers (ns , ls , na , la).

The Pauli principle imposes a restriction on the symmetry
of 	

na,la
int as follows. Exchanging the spatial coordinates of

the electron 1 and 2 changes the sign of the antisymmetric
coordinates as (xa, ya) → (−xa,−ya), while it does not affect
the symmetric coordinates (xs, ys). Therefore, the eigenfunc-
tion for the center-of-mass degrees of freedom 	ns,ls

c.m. (xs, ys)
is not affected by the Pauli principle and only the internal
eigenfunction 	

na,la
int is affected by it. Since the spin part

of the wave function is separated from the spatial part for
two-electron systems, 	na,la

int changes its sign with the exchange
of the electron coordinates for triplet states but not for singlet
states.

The relation between this symmetry restriction and the
quantum numbers (na, la) can be established by transforming
the Cartesian coordinates (xa, ya) into the polar coordinates
(ra, θa), where xa = ra cos θa and ya = ra sin θa . By using
these polar coordinates the internal eigenfunction becomes

	
na,la
int = ψna

(ra) exp(ilaθa), (7)

where the polar angle θa is the conjugate variable to the angular
momentum la . Inverting the Cartesian coordinates, (xa, ya) →
(−xa,−ya), corresponds to the transformation (ra, θa) →
(ra, θa + π ) in terms of the polar coordinates. Therefore, as
implied by Eq. (7), the internal eigenfunction is transformed
with respect to the interchange of electron coordinates as
	

na,la
int → (−1)la	na,la

int . As a result the singlet and triplet
states must be labeled by even and odd values of la ,
respectively.

The eigenenergy E
na,la
int of the internal Hamiltonian relative

to the energy of the lowest state and the plot of the square

density of the internal eigenfunction 	
na,la
int are displayed in

Fig. 3 for the same energy region as in Fig. 1. The ωxy-scaled
dimensionless internal coordinates (xa

√
ωxy, ya

√
ωxy) have

been used in the density plots for convenience in the later
discussion concerning the dependence of the results on the
confinement strength. For comparison, the spectrum of the
total energy has also been plotted on the left-hand side
of the figure.

As seen from Fig. 3 for some levels in the total energy
spectrum a corresponding level in the internal energy spectrum
located at nearly the same height can be found while for some
levels this is not the case. For example, the 1�+

g ground state
and the 3�u lowest triplet state have such a corresponding
level, while the first excited 1�u singlet state has no counterpart
in the internal energy spectrum. Since the total energy is the
sum of Ec.m. and Eint, and since Ec.m. is the eigenenergy of
a harmonic oscillator, those levels having a corresponding
level in the internal energy spectrum are associated with the
states that have no excitation into the center-of-mass degrees
of freedom, namely, those labeled by (0, 0, na , la). The
remaining states that have no counterpart in the internal energy
spectrum are generated from the internal states by exciting the
center-of-mass modes, and their energy is given by the sum of
the internal energy and of a multiple of ωxy .

Assignments that are based on the four normal-mode
quantum numbers (ns , ls , na , la) for the low-lying states,
displayed in Figs. 1 and 3, are given in Table II. The 1�+

g

ground state involves neither an excitation into the center-
of-mass mode nor an excitation into the internal mode. The
lowest 3�u triplet state involves an excitation of one quantum
into the angular mode of the internal degrees of freedom,
as can be seen from the density plot in Fig. 3. Since this
state has no excitation into the center-of-mass mode, the total
angular momentum quantum number of this state, calculated
as |ls + la|, equals 1, which agrees with the symmetry label of
this �u state. On the other hand, the first excited 1�u singlet
state, which is a singlet counterpart to the 3�u triplet state
according to Hund’s multiplicity rule, has no excitation into

TABLE II. Assignments based on the normal-mode quantum
numbers (ns , ls , na , la) for the low-lying states displayed in Table I.
|ls + la| specifies the total angular momentum of the state. See the
caption of Table I for other remarks.

vp E (a.u.) State ns ls na la |ls + la |
0 0.000 1�+

g 0 0 0 0 0
1 8.437 3�u 0 0 0 ±1 1
1 10.002 1�u 0 ±1 0 0 1
2 17.968 1�g 0 0 0 ±2 2
2 18.437 3�+

g 0 +1 0 −1 0
0 −1 0 +1 0

2 18.438 3�g 0 +1 0 +1 2
0 −1 0 −1 2

2 18.438 3�−
g 0 +1 0 −1 0

0 −1 0 +1 0
2 19.208 1�+

g 0 0 1 0 0
2 20.003 1�+

g 1 0 0 0 0
2 20.004 1�g 0 ±2 0 0 2
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FIG. 3. (Color online) Eigenenergies and square density plot of the eigenfunctions for the internal Hamiltonian Hint with ωxy = 10. The
eigenenergies Eint (blue short bar) are represented as relative energy with respect to the lowest state. The vertical and horizontal axes of the
density plots are the scaled internal coordinates xa

√
ωxy and ya

√
ωxy , respectively. The label (na, |la |) given to the density plots represents

the number of radial nodes na and the modulus of the angular momentum la , respectively. The spectrum of the total energy Etot is plotted on
the left-hand side for comparison (see also the caption to Fig. 1 for the remarks on the spectrum).

the internal degrees of freedom, but instead has an excitation
of one quantum into the angular mode of the center-of-mass
degree of freedom. Therefore, although this singlet-triplet
pair of states has the same orbital configuration in terms of
Hartree-Fock orbitals, there is a significant difference in terms
of the normal-mode description since these singlet and triplet
states involve an excitation into different degrees of freedom,
that is, the center-of-mass for the singlet and the internal
angular degree of freedom for the triplet. It is also noted that
the 1�u and 3�u states are associated with the |la| value equal
to 0 and 1, respectively. This is a consequence of the Pauli
principle requiring even and odd values of la for singlets and
triplets, respectively.

Another observation concerning the first excited 1� singlet
state that can be made on the basis of the values of Table II
is the fact that the excitation energy of 10.002 a.u. relative to
the ground state is very close to the value of ωxy . This is again
no accident but another consequence of the generalized Kohn
theorem. Radiative transitions occur through a dipole operator
such as

∑2
i=1 ri in the length gauge. Since this operator is

proportional to the center-of-mass coordinates, it only affects
the center-of-mass part of the wave functions 	ns,ls

c.m. , resulting
in an excitation energy equal to the harmonic-oscillator energy
ωxy . The tiny difference between the exact value of ωxy and the
calculated energy comes from the limited size of the basis set.

By adopting the normal-mode assignments given in
Table II, the energy levels belonging to the vp = 2 manifold,
which appear to be rather complicated in an independent
electron picture in terms of Hartree-Fock orbitals, can be
rationalized as follows: First, the lowest energy 1�g state in
this manifold arises by the excitation of two quanta into the in-
ternal angular mode and no excitation into the other modes. In
analogy to the 1�u-3�u pair, a counterpart triplet state should
have the same value of vp but possess one more quantum in the
internal angular mode and one quantum less in the center-of-
mass modes. Since, however, this 1�g state has no excitation
into the center-of-mass modes it cannot form a triplet state
by transferring one quantum from the center-of-mass mode to
the internal angular mode. Therefore, there is no counterpart
triplet state to this singlet state as seen in the energy spectrum of
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Fig. 1. Next, the three triplet states of this manifold, 3�+
g , 3�g ,

and 3�−
g , have practically the same energy and their excitation

energies relative to the lowest 3�u triplet state equal ωxy

within an accuracy of 1×10−3 a.u., implying that the excitation
to these states from the 3�u state is dipole-allowed. This
observation can be confirmed by the normal-mode assignments
in Table II. All these three states involve one quantum both in
the internal angular mode and in the center-of-mass angular
mode, that is, |la| = |ls | = 1. Their differences lie in the mutual
signs between la and ls . In the case of the 3�g state the two
angular momenta la and ls have the same sign. As a result,
the total angular momentum |ls + la| of this state is 2, which
agrees with the symmetry label of the 3�g state. On the other
hand, in the case of both 3�g states, 3�+

g and 3�−
g , the two

angular momenta la and ls have mutually opposite signs, so
that their total angular momentum vanishes. Since there are
two sets of (ls , la) quantum numbers yielding the zero angular
momentum state, namely, (1,−1) and (−1, 1), there should
result two 3�g states from these configurations. The sum and
the difference of these states gives rise to the symmetric 3�+

g

state and to the antisymmetric 3�−
g state, respectively.

A new phenomenon arises in the 1�+
g state at E =

19.208 a.u. in which case the internal radial mode is excited
for the first time with one quantum. Since the number of radial
nodes contributes to the polyad quantum number vp by twice
their number, the vp value of this state is 2. Since this 1�+

g

state has no excitation into the center-of-mass mode there is
no triplet counterpart to it that would arise by transferring a
quantum from the center-of-mass mode to the internal angular
mode.

For the remaining two singlet states in the vp = 2 manifold,
1�+

g and 1�g , with the relative energies E = 20.003 and
20.004, respectively, the excitation energy relative to the 1�u

state almost equals ωxy , implying that they are the dipole-
allowed states from the 1�u state. From these 1�+

g and 1�g

states the counterpart triplet states, 3�+
g and 3�g , respectively,

can be derived as follows. The 1�+
g has the normal-mode

assignment of (ns, ls, na, la) = (1, 0, 0, 0). Since this state has
one quantum in the center-of-mass degree of freedom, triplet
state can be derived by transferring one quantum into the
internal angular mode. But since one quantum in the radial
mode amounts to two quanta in the angular mode, transferring
one quantum into the internal angular la mode leaves one
quantum in the center-of-mass angular ls mode. In order
to preserve the original vanishing total angular momentum
|ls + la|, the possible combinations of (ls , la) are (1,−1) and
(−1, 1). Taking their symmetric linear combination gives rise
to the triplet 3�+

g state. Similarly, in the case of the 1�g state
that possesses two quanta in the center-of-mass angular mode,
the counterpart 3�g state can be formed by transferring one
quantum into the internal angular mode. In the next section the
origin of Hund’s multiplicity rule is clarified in terms of these
normal-mode assignments.

C. Origin of Hund’s multiplicity rule

As has been seen in the previous section there are two
candidates for singlet-triplet pairs in the energy spectrum
displayed in Fig. 1 that should obey Hund’s multiplicity rule.

FIG. 4. (Color online) Energy differences between the lowest
singlet-triplet pair of states, 1�u and 3�u, for two electrons confined
by a quasi-two-dimensional harmonic potential for different ωxy .
�E1, �E2, and �E represent the difference of the one-electron
energy, two-electron energy, and the total energy, respectively, in
units of ωxy .

The first one is the 1�u-3�u pair in the vp = 1 manifold, and
the other candidate is the degenerate pair 1�g-3�g and 1�+

g -
3�+

g in the vp = 2 manifold. Since the latter pairs are simply
replicas of the first pair, shifted toward the higher energy region
by ωxy as a consequence of the generalized Kohn theorem, the
following analysis focuses on the first 1�u-3�u pair.

Three energy differences between the 1�u and 3�u states,
namely, the one-electron energy �E1, the two-electron energy
�E2, and the total energy �E, are plotted in Fig. 4 for
different ωxy values. The vertical energy axis in this figure
is normalized by ωxy , so that the results for different ωxy

values can be easily compared. The one-electron energy E1

has been calculated by evaluating the expectation value of the
sum of one-electron operators in the Hamiltonian (1) over the
CI eigenfunctions, while the two-electron energy E2 has been
obtained by subtracting E1 from the total energy E. Therefore,
the three energy differences, �E1, �E2, and �E satisfy the
relation

�E = �E1 + �E2. (8)

As shown in Fig. 4, the total energy difference �E (orange
triangles) increases significantly as ωxy decreases from its
initial value of 10. This implies that the energy splitting
between the singlet and triplet levels is larger for smaller ωxy

than for the larger ones. For large values of ωxy , such as ωxy =
10, the relative contribution of �E1 and �E2 to the total
energy difference �E is almost exclusively ascribed to �E2.
This implies that in this large ωxy regime the interpretation
of the energy difference between different spin multiplets
is closer to that of Slater rather than to that for the helium
atom. A similar trend of the dominance of the two-electron
contribution to the singlet-triplet energy difference was also
reported for a system of two electrons confined by a spherically
symmetric rectangular potential [39]. On the other hand, as ωxy

decreases, so does �E2, while �E1 increases. Consequently,
the interpretation of the multiplicity rule becomes closer to
that found for the helium case.

The square radial electron density distributions of the
singlet-triplet pair of the 1�u and 3�u states are shown in Fig. 5
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FIG. 5. (Color online) Square radial electron density distributions
of the 1�u-3�u singlet-triplet pair of states for two electrons confined
by a quasi-two-dimensional harmonic potential for ωxy = 10, 1, and
0.1. The horizontal axis represents the dimensionless, scaled radial
coordinate r

√
ωxy . The green (light gray) and red (dark gray) curves

represent the density distributions of the 1�u singlet state and of the
3�u triplet state, respectively.

for ωxy = 10, 1, and 0.1, as a function of the dimensionless
scaled radial coordinate r

√
ωxy . For the sake of comparison,

the square electron density distributions of the corresponding
states of the helium atom, (2p) 1P and (2p) 3P , are plotted in
Fig. 6 (cf. also Fig. 2 of Ref. [39]). These electron density
distributions of He were calculated using a full CI wave
function of the He atom, obtained with the even-tempered

FIG. 6. (Color online) Square electron density distributions of the
(2p) 1P -(2p) 3P singlet-triplet pair of states of the helium atom as a
function of the spherical radial coordinate r . The green (light gray)
and red (dark gray) curves represent the density distribution of the
(2p) 1P singlet state and of the (2p) 3P triplet state, respectively.

uncontracted Cartesian basis set [10s7p5d] that was employed
in our previous study [43].

The density distributions of He reveal that their inner part,
having a sharp peak at around r = 0.5, is almost the same for
the (2p) 1P and (2p) 3P states. Since this component of the
density distribution originates primarily from 1s orbitals which
are tightly bound to the nucleus, only marginal differences
between the singlet and triplet states are found in this region.
Thus, the only significant difference is found in the outer
region, near the second broad peak in the density distribution.
In the outer tail for r > 5 the density distribution for the
singlet, represented by the green (light grey) curve in Fig. 6, is
larger than that of the triplet state, represented by the red (dark
grey) curve. The deficient density of the triplet state in this
region reappears in an inner region around r = 2.2, where the
triplet state has a larger density than the singlet state. These
observations imply that the density distribution of the triplet
state is on the average closer to the nucleus than that of the
singlet state [20,21,23]. As shown by Davidson [18,19] and
later by others, this compact density distribution of the triplet
state results in a larger energy increase in the electron repulsion
potential, yet a much larger energy decrease in the nuclear
attraction potential than is the case for the corresponding
singlet state. These two opposite contributions to the total
energy result in the lowering of the triplet level relative to
the singlet one, even though a simple reason for the compact
density distribution of the triplet state is still lacking.

On the other hand, as is apparent from Fig. 5, the electron
density distributions for the 1�u and 3�u states of the studied
quantum dot are almost identical for ωxy = 10, except for
a small difference in the height of their peaks. Since their
electron density distributions are almost the same, their one-
electron energies should also be nearly equal to each other. This
agrees with the energy differences displayed in Fig. 4, where
the one-electron energy difference �E1 is very small while
the difference in the two-electron energy �E2 is primarily
responsible for the singlet-triplet energy gap. A similar trend in
the increase of the importance of the two-electron contribution
relative to the nuclear attraction with increasing nuclear charge
has been reported for highly charged atomic cations, in which
the electron density distribution is highly contracted around
the nucleus [24–26]. As the confinement strength decreases
to ωxy = 1.0, the density distribution of the singlet state,
represented by the green (light grey) curve, peaks at a slightly
larger value of r

√
ωxy and becomes slightly broader, while that

of the triplet state, represented by the red (dark grey) curve,
remains almost the same as in the ωxy = 10 a.u. case. When
the confinement strength is further decreased to ωxy = 0.1, the
density distribution of the singlet state become even broader
with the peak position shifted strongly toward larger r values,
while that of the triplet state preserves almost the same shape
with a slightly shifted peak position toward the region of larger
r values.

In order to rationalize these observations, based on the
results shown in Figs. 4 and 5, namely, the change in the energy
differences �E1 and �E2 and the evolution of the electron
density distributions with ωxy , and, more fundamentally, to
understand the mechanism of why the triplet 3�u state always
has a lower energy than the singlet 1�u state in the whole
range of ωxy , the potential energy function defined by a sum
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FIG. 7. (Color online) Contour plot of the potential energy
function defined by the sum of the one- and two-electron potentials
within the internal space for ωxy = 10 (upper figure) and 0.1 (lower
figure). The horizontal and vertical axes represent ωxy-scaled internal
coordinates, xa

√
ωxy and ya

√
ωxy , respectively. The maximum energy

contour displayed in the plot is 10ωxy .

of one-electron and two-electron potentials within the internal
space, namely, the potential part of the internal Hamiltonian
Hint of Eq. (6), has been plotted in Fig. 7 for both the large and
small confinement regimes as represented by ωxy = 10 and
0.1, respectively. In this figure the potential energy function
is represented in the ωxy-scaled dimensionless internal coor-
dinates, namely, xa

√
ωxy and ya

√
ωxy . The maximum energy

of contours plotted in this figure amounts to 10ωxy . When the
electron-electron interaction is neglected in this representation
the potential energy functions for ωxy = 10 and 0.1 become
essentially identical. Therefore, this figure clearly reveals the
effect of the electron-electron interaction.

As seen in Fig. 7 the yellow (light grey) spot in the center
of the potential energy function, representing a sharp increase
of the energy due to the electron-electron repulsion potential,
becomes larger as ωxy decreases from 10 to 0.1. This implies
that the effect of the electron-electron interaction becomes

stronger as the confinement strength ωxy becomes smaller.
This can be easily understood by rewriting the potential
energy function in terms of the scaled internal coordinates as
follows:

Vint/ωxy = 1

2

(
x̃2

a + ỹ2
a

) + 1√
ωxy

1√
2
(
x̃2

a + ỹ2
a

) , (9)

where x̃a and ỹa represent the scaled coordinates xa
√

ωxy

and ya
√

ωxy , respectively. The second term on the right-hand
side of Eq. (9), representing the electron-electron repulsion
potential, is scaled with respect to ωxy by 1√

ωxy
. Therefore,

this term becomes increasingly stronger as ωxy becomes
smaller.

By relying on this potential energy function the origin
of Hund’s multiplicity rule in the quasi-two-dimensional
quantum dots can be rationalized as follows: The total wave
function, i.e., both of the center-of-mass component 	c.m.

and the internal part 	int of the 1�u singlet and 3�u triplet
states is shown in Fig. 8 for ωxy = 10 and 0.1. As is apparent
from Table II, the 1�u singlet and 3�u triplet states are
characterized by the normal-mode assignments (0,±1, 0, 0)
and (0, 0, 0,±1), respectively, implying that the singlet state
involves an excitation of one quantum into the center-of-mass
angular mode, while the triplet state involves an excitation into
the internal angular mode. Should there be no electron-electron
interaction, the internal wave function 	int would represent
the eigenfunction of the two-dimensional isotropic harmonic
oscillator with frequency ωxy ; that is, it would be identical to
the corresponding 	c.m. wave function having the same set of
quantum numbers. Therefore, in this case these two total wave
functions of singlet and triplet states in Fig. 8 should have
the same energy, since they involve the same total number
of nodes. Quite a different situation arises, however, in the
presence of the electron repulsion potential that appears only
in the internal space and is characterized by a sharp pole-like
singularity in the potential energy, as displayed in Fig. 7. In
the case of the 3�u triplet state, the internal wave function
	int is only insignificantly influenced by this pole, since its
density in the neighborhood of this singularity is negligible,
that is, at the origin of the internal space, owing to the nodal
line passing through the origin, as displayed in Fig. 8. On the
other hand, in the case of the 1�u singlet state, the internal
wave function is significantly influenced by the pole, since it
has a finite density at the singularity region. Thus, the 3�u

triplet state has an energy lower than that of the corresponding
1�u singlet state.

As the confinement strength ωxy becomes smaller, the
electron-electron interaction potential becomes stronger rel-
ative to the harmonic-oscillator confining potential as implied
by Eq. (9). Indeed, the pole at the center of the potential
energy function, as displayed in Fig. 7, significantly increases
in size. Consequently, it should exhibit a larger influence on the
internal wave functions for ωxy = 0.1. In the case of the 3�u

triplet state the internal wave function 	int can still avoid the
effect of the singularity at the pole thanks to the presence of its
nodal line. The width of the nodal region is, however, larger in
this case than for ωxy = 10, indicating that the electrons avoid
the central region where the potential energy is very high due to
the electron repulsion potential. In the case of the 1�u singlet
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FIG. 8. (Color online) Square-density plot of the center-of-mass and internal parts of the wave function of the 1�u singlet state (left) and
of the 3�u triplet state (right) for ωxy = 10 (upper) and 0.1 (lower). The horizontal and vertical axes represent the ωxy-scaled dimensionless
coordinates, (xs

√
ωxy , ys

√
ωxy) for the center-of-mass part 	c.m. and (xa

√
ωxy , ya

√
ωxy) for the internal part 	int, respectively. Only the

x component of the doubly degenerate � state is displayed in this figure for both 1�u and 3�u states.

state the internal wave function has a “hole” at the center for
ωxy = 0.1, as shown in the second row of Fig. 8. Of course,
the internal wave function of this state should not have a node
since this is the lowest eigenstate of the internal Hamiltonian
Hint. In fact, the hole in this internal wave function is not a
real node, but rather a low-density area where the electron
density practically vanishes. This hole region is created by
the large singular region in the neighborhood of the potential
pole that strongly expels the electrons from this region. The
electron density which is suppressed in this central region
by the potential pole expands the internal wave function as
displayed in Fig. 8, resulting in the deformation of the electron
density distribution of the singlet state as has been observed in
Fig. 5. The large difference in the electron density distributions
between the singlet and triplet states for small ωxy results in
a significant difference in their one-electron energies. This
explains the reason why for smaller ωxy the partition of the total
energy difference into the one- and two-electron contributions
becomes closer to that of the helium case rather than to that of
Slater’s.

The mechanism for the lowering of the triplet state energy
relative to the corresponding singlet state in quasi-two-
dimensional, two-electron quantum dots can be summarized
as follows: The singlet and triplet states, which comprise the

Hund multiplicity pairs, are characterized by the normal-mode
quantum numbers (ns , ls , na , la) for the former state and by
either (ns , ls − 1, na , la + 1) or (ns − 1, ls + 1, na , la + 1)
for the latter states. The larger quantum number in the
internal angular mode for triplets enables these to avoid more
efficiently the singularity in the electron repulsion potential
than in the case for the corresponding singlet states, leading to
a lower energy of triplets relative to singlets.

IV. SUMMARY

The present study considers the low-lying states of two
electrons confined by a quasi-two-dimensional harmonic-
oscillator potential that lies below the vp = 2 polyad manifold,
as described by the full CI method employing Cartesian
anisotropic Gaussian basis sets. The primary objective is
to elucidate the origin and nature of the Hund multiplicity
rule for two-electron quantum dots and its relationship to
the mechanism operating in atomic or molecular systems.
Analysis of the pertinent CI wave functions reveals that above
the vp = 1 manifold they involve more than one leading
Hartree-Fock reference even in the large confinement regime
where the effect of electron correlation is negligibly small. This
indicates the shortcomings of a description of the quantum
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dot states that is based on an independent electron model
using Hartree-Fock orbitals. The introduction of normal-mode
coordinates enables a factorization of the wave functions
into a product of two independent components, namely, the
center-of-mass 	c.m. and the internal 	int wave functions.
Each of these component wave functions can be labeled by
a set of two quantum numbers: the radial quantum number n

and the angular momentum quantum number l, designated
as (ns, ls) and (na, la) for 	c.m. and 	int, respectively. A
unified normal-mode assignment adopting these four quantum
numbers, (ns , ls , na , la), has been successfully made for all
the eigenstates covered in the present study for the large
confinement regime of ωxy = 10.

The 1�u singlet and 3�u triplet states in the vp = 1
manifold have been chosen as a typical example to study
Hund’s multiplicity rule in quasi-two-dimensional quantum
dots. The energy separation characterizing this lowest singlet-
triplet pair significantly increases in terms of the normalized
energy unit as the confinement strength ωxy decreases. This
energy separation is shown to be primarily due to the difference
in the two-electron energy for large ωxy , implying that it is
closer to Slater’s interpretation than to that found for the atomic
helium. As ωxy decreases, the contribution of the one-electron
energy becomes larger while that of the two-electron energy
becomes relatively smaller, implying that the energy partition-
ing into the one- and two-electron contributions approaches
that characterizing the helium case. The radial electron density
distributions have been also examined for different values of
ωxy . For ωxy = 10 these distributions are almost identical in the
singlet and triplet states, while they increasingly differ as ωxy

becomes smaller: the singlet state electron density distribution
becomes broader and its shape becomes gradually deformed as
ωxy decreases while the distribution of the triplet state density
remains almost the same except for a small shift of the peak
position toward the region of larger r values.

In order to rationalize the observed evolution of the
energy differences and the electron density distributions of
the singlet-triplet pair for different values of ωxy , the nodal
patterns of the center-of-mass and the internal wave functions
have been examined. It appears that the singlet-triplet pair
of states having the same orbital configuration in terms of
Hartree-Fock orbitals involves an excitation into different
degrees of freedom, namely, the center-of-mass angular mode
for the singlet and the internal angular mode for the triplet.
Thanks to a nonzero angular momentum in the internal degree
of freedom, the 3�u triplet state avoids the singularity of
the electron repulsion potential, since the angular nodal line

passes through the origin. On the other hand, in the case
of the 1�u singlet state, the internal wave function has no
node and thus a finite density in the region of singularity.
Consequently, the triplet state has always an energy lower
than that of the counterpart singlet state. This situation is
the same for smaller ωxy as well, yet the electron repulsion
potential has more profound influence on the internal wave
function. As a result, the electron density distribution of the
singlet state is more strongly deformed than that of the triplet
state. The large difference in the electron density distributions
between the singlet and triplet states for small ωxy results in a
significant difference in their one-electron energies, which in
turn makes the one-electron contribution to the singlet-triplet
energy splitting dominate the two-electron contribution.

In closing, let us remark that the present study provides
an unambiguous manifestation of the origins of the Hund
multiplicity rule for two-dimensional, two-electron quantum
dots by visualizing the internal part of the wave function. This
in turn was made possible thanks to the special characteristics
of our model: the two-electron nature admits the separation
of the orbital and spin degrees of freedom, the harmonic
nature of the confining potential allows the separation of the
center-of-mass and of the internal degrees of freedom, and
a low dimensionality of our model (less than 3) reduces the
dimension of the internal space to as small as two, allowing a
direct visualization of the internal wave functions within the xy

plane. Indeed, this has been precisely the reason for our choice
of this model. Although our results pertain, strictly speaking, to
artificial atoms, they undoubtedly enhance our understanding
of Hund’s multiplicity rule in general, particularly thanks to
the fact that our model enables a smooth transition from the
regime in which the conventional interpretation operates [17]
to the regime characterizing the actual atomic or molecular
systems [18–23] depending on the strength of the confine-
ment ωxy .
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