
PHYSICAL REVIEW A 81, 022328 (2010)

Quantum logic as superbraids of entangled qubit world lines
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Presented is a topological representation of quantum logic that views entangled qubit spacetime histories
(or qubit world lines) as a generalized braid, referred to as a superbraid. The crossing of world lines can be
quantum-mechanical in nature, most conveniently expressed analytically with ladder-operator-based quantum
gates. At a crossing, independent world lines can become entangled. Complicated superbraids are systematically
reduced by recursively applying quantum skein relations. If the superbraid is closed (e.g., representing quantum
circuits with closed-loop feedback, quantum lattice gas algorithms, loop or vacuum diagrams in quantum field
theory), then one can decompose the resulting superlink into an entangled superposition of classical links. Thus,
one can compute a superlink invariant, for example, the Jones polynomial for the square root of a classical knot.
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I. INTRODUCTION

In topological quantum computing [1,2], a quantum gate
operation derives from braiding quasiparticles, for exam-
ple, two Majoranna zero-energy vortices made of entangled
Cooper-pair states in a p + ip superconductor where the
vortex-vortex phase interaction has a non-Abelian SU(2) gauge
group [3,4]. Dynamically braiding such quantum vortices
(point defects in a planar cross section of the condensate)
induces phase shifts in the quantum fluid’s multiconnected
wave function. Local nonlinear interactions between deflects
(vortex-vortex straining) is otherwise neglected; that is, the
separation distance δ of the zero-mode vortices is much greater
then the vortex core size, which scales as the coherence length
ξ � δ in quantum fluids. The braiding occurs adiabatically so
the quantum fluid remains in local equilibrium and the number
of deflects (qubits) remains fixed. For implementations, the
usual question is how can quantum logic gates, and in turn
quantum algorithms, be represented by braiding deflects,
quasiparticles with a non-Abelian gauge group.

This article addresses the related fundamental question
about the relationship between quantum entanglement, tangled
strands, quantum logic, and quantum-information theory
[5–11]. How can a quantum logic gate, and in turn a
quantum algorithm, be decomposed into a linear combination
(entangled superposition) of classical braid operators? The
goal is to comprehend and categorize quantum-information
topologically. This is done by first viewing a quantum gate
as a braid of two qubit spacetime histories or world lines.
Qubit-qubit interaction associated with a quantum gate is
rendered as a tree-level scattering diagram, a form of ribbon
graph. A quantum algorithm may be represented as a weave
of such graphs, a superbraid of qubit world lines. Finally, one
closes a superbraid to form a superlink. In fact, quantum lattice
gas algorithms, for example, those employed for the simulation
of superfluids themselves [12], are a good superlink archetype;
hence the shared nomenclature.

With this technology we can calculate superlink invariants.
In principle, each quantum circuit has its own unique invariant
(associated with Laurent series); for example, two competing
quantum circuit implementations of a particular algorithm can
be judged equivalent, irrespective of circuit schemes and the
placement of gates and wires. If two quantum algorithms, first-

and second-order accurate, are topologically equivalent, then
the simpler one can be used for analytical predictions of their
common effective theory while the latter can be used for faster
simulations with fewer resources.

In short, presented is a quantum generalization of the
Temperley-Lieb algebra TLQ and Artin braid group BQ: a
superbraid and its closure, a superlink, is formed out of
the world lines of Q qubits (strands) undergoing dynamics
generated by quantum gates. Furthermore, the superbraid
representation of quantum dynamics works equally well for
either bosonic or fermionic quantum simulations. There exists
a classical limit where the generalized Temperley-Lieb algebra
and the superbraid group, defined later in this article, reduce to
the usual Temperley-Lieb algebra and braid group. There also
exists a purely quantum-mechanical limit where superbraids
reduce to conservative quantum logic operators. Thus, the
superbraid is the progenitor of the braid operator and quantum
gate operator.

This article is organized as follows. A condensed review
of knot theory sufficient to define the Jones polynomial and a
condensed review of qubit ladder operators sufficient to define
quantum logic operators and superbraid operators are given
in Sec. II. A diagrammatic representation of quantum logic,
a hybrid between the usual quantum circuit diagrams and
Feynman diagrams, is given in Sec. III. A generalization of
the Temperley-Lieb algebra (that includes fermionic particle
dynamics) is presented in Sec. IV. The superbraid group
relations are given in terms of this generalized algebra in
Sec. V, whereby the superbraid operator is cast in three
different mathematical forms. The first (exponential form)
illustrates how a superbraid is an amalgamation of a classical
braid operator and a quantum gate. The second (knot theory
form) illustrates the very close connection to the well-known
classical braid operator. The third (product form) illustrates
the physics of pairwise quantum entanglement as the braiding
of two qubit world lines through a particular quantum gate
Euler angle. Quantum skein relations are given in Sec. VI,
and calculations of superlink invariants, for example, for the
square root knots introduced here, are given in Sec. VII.
Thus, using the superbraid formalism, quantum knots such
as the square root of the unknot or the square root of the
trefoil knot are well-defined topological objects and each
have their own knot invariant. Finally, a brief summary
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and some final remarks are given in Sec. VIII. To help
make the presentation more accessible to a wider audience,
a primer on joint quantum logic is presented in the Ap-
pendix, which helps explain the origin of the superbraid’s
generator.

II. LINKS, LADDERS, AND LOGIC

Classical braid operators (nearest-neighbor permutations),
represented in terms of Temperley-Lieb algebra [13], were
originally discovered in six-vertex Potts models and statistical
mechanical treatments of two-dimensional lattice systems
[14,15]. The quantum algorithm to compute the Jones polyno-
mial [16,17] employs unitary gate operators that are mapped to
unitary representations of the braid group, that is, generated by
Hermitian representations of the Temperley-Lieb algebra. To
prepare for our presentation of superbraids as a topological
representation of the quantum logic underlying quantum-
information dynamics, let us first briefly review some basics
of knot theory and some basic quantum gate technology using
qubit ladder operators.

A link comprising Q strands, denoted by L, say, is the
closure of a braid. The Jones polynomial VL(A) is an invariant
of L [18], where A is a complex parameter associated with the
link whose physical interpretation will be presented later in this
article. VL(A) is a Laurent series in A. The Jones polynomial
is defined for a link embedded in three space—an oriented
link. One projects L onto a plane. In the projected image, in
general crossing of strands occurs but is disambiguated by its
sign ±1; that is, one assigns overcrossings the sign of +1 and
undercrossings −1. The writhe w(L) is sum of the signs of all
the crossings, that is, the net sign of a link’s planar projection.
The Jones polynomial is computed as follows:

VL(A) = (−A3)−w(L) KL(A)

d
, (1)

where KL(A) is the Kauffman bracket of the link. KL(A) is
determined from a planar projection of L, for example, using
the skein relations below. In the simplest case of an unknotted
link (or unknot), the Kauffman bracket is

= K©(A) = d = −A2 − A−2. (2)

The Kauffman bracket of a disjoint union of n unknots has the
value dn, for example, = d2.

KL(A) for a link with crossings can be computed recur-
sively using a skein relation that equates it to the weighted
sum of two links, each with one less crossing:

= A + A−1 , (3a)

= A + A−1 , (3b)

where A and its inverse are the weighting factors. As an exam-
ple, let us recursively apply (3) to prove an intuitively obvious
link identity = One reduces the relevant braid
as follows:

(3a)= A + A−1 , (4a)
(3b)= A2 + + A−1 , (4b)
(3b)= A2 + + + A−2 , (4c)

(2)= A2 + + d + A−2 , (4d)

= + (d + A2 + A−2 , (4e)
(2)= . (4f)

A quantum gate represents the qubit-qubit coupling that
occurs at the crossing of world lines of a pair of qubits, say,
|qα〉 and |qγ 〉 in a system of Q qubits. Every quantum gate is
generated by a Hermitian operator, Eαγ say, and whose action
on the quantum state may be expressed as

| . . . qα . . . qγ . . .〉′ = eiζEαγ | . . . qα . . . qγ . . .〉, (5)

where ζ is a real parameter. The archetypal case considered
here is E2

αγ = Eαγ ; the generator is idempotent.
Suppose the system of qubits is employed to model the

quantum dynamics of fermions or bosons. Is there an analytical
form of the generator Eαγ that allows one to easily distinguish
between the two cases? It is natural to begin by treating fermion
statistics. With the logical one state of a qubit |1〉 = (0

1

)
, notice

that σz|1〉 = −|1〉, so one can count the number of preceding
bits that contribute to the overall phase shift due to fermionic bit
exchange involving the γ th qubit with tensor product operator,
σ

⊗γ−1
z |ψ〉 = (−1)Nγ |ψ〉. The phase factor is determined by

the number of bit crossings Nγ = ∑γ−1
k=1 nk in the state |ψ〉 and

where the Boolean number variables are nk ∈ [0, 1]. Hence,
an annihilation operator is decomposed into a tensor product
known as the Jordan-Wigner transformation [19],

aγ = σ⊗γ−1
z ⊗ a ⊗ 1⊗Q−γ , (6)

for integer γ ∈ [1,Q] and here the singleton operator is a =
1
2 (σx + iσy), where σi for i = x, y, z are the Pauli matrices.
See page 17 of Ref. [20] for a typical way of determining Nγ .
Equation (6) and its transpose, the creation operator a†

γ = aT
γ ,

satisfy the anticommutation relations

{aγ , a
†
β} = δγβ, {aγ , aβ} = 0, {a†

γ , a
†
β} = 0. (7)

The Hermitian generator of a quantum gate can be analyt-
ically expressed in terms of qubit creation and annihilation
operators. A novel generator that is manifestly Hermitian is
the following:

E	αγ = d−1[−A2 nα − A−2 nγ − Aa†
αaγ

−A−1 a†
γ aα + d (	 − 1)nαnγ ], (8)

where d = −A2 − A−2 is real. The parameter 	 is Boolean,
and it allows one to select between Fermi (	 = 1) or Bose
(	 = 0) statistics of the modeled quantum particles. The
operator generated by E	αγ is

ez E	αγ = 1⊗Q + (ez − 1)E	αγ , (9)

which is a quantum state interchange for the case when z is pure
imaginary. That is, (9) is a conservative quantum logic gate for
z = iζ . For the case when z is complex, (9) is proportional to
a superbraid operator. The origin of the mathematical form of
(8) is given in the Appendix.

III. DIAGRAMMATIC QUANTUM LOGIC

The state evolution (5) by the quantum logic gate
(9) can be understood as scattering between two
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qubits

|ψ ′〉 = eiζ E	αγ |ψ〉 ⇐⇒ , (10a)

|ψ〉 = e−iζ E	αγ |ψ ′〉 ⇐⇒ , (10b)

where the “gauge field” that couples the external qubit world
lines is represented by an internal double wavy line (or ribbon).
The external lines either overcross or undercross and are
assigned +1 and −1 multiplying the action, that is, ±ζE	. This
sign disambiguates between a quantum gate and its adjoint,
respectively, as shown in (10a) and (10b). Let us denote a qubit
graphically |qα〉 ≡ uα ↑ +dα ↓, with complex amplitudes
constrained by conservation of probability |uα|2 + |dα|2 = 1.

Starting, for example, with a separable input state |ψ〉 =
|qα〉|qγ 〉, a scattering diagram is a quantum superposition of
four oriented graphs:

= uαuγ + uαdγ

+ dαuγ + dαdγ (11)

Each oriented scattering graph can be reduced to a quantum
superposition of classical graphs, or just a single classical
graph, as the case may be. There are four quantum skein
relations representing dynamics generated by (8):

= , (12a)

= −A2−A−2eiζ

d
+A−1(eiζ − 1)

d
, (12b)

= −A2eiζ − A−2

d
+A (eiζ − 1)

d
, (12c)

= [1 + (eiζ − 1)	] (12d)

These are the quantum analog of (3). Adjoint quantum
skein relations are obtained simply by taking ζ → −ζ in the
amplitudes in the diagrams in (12). All superbraids can be
reduced to a quantum superposition of classical braids. The
closure of a superbraid forms a superlink. Hence, a superlink
can be reduced to a quantum superposition of classical links
and, consequently, for each superlink one can compute an
associated invariant, for example, a superposition of Jones
polynomials. An example calculation of such invariants is
presented in Sec. VII.

In the context of quantum-information dynamics, a physical
interpretation of the parameter A can be rendered as follows.
If the strands in L are considered closed spacetime histories
of Q qubits (e.g., qubit states evolving in a quantum circuit
with closed-loop feedback), then the left-hand side of (12)
represents a trajectory configuration within a piece of the
superlink where entanglement is generated by a qubit-qubit
coupling that occurs at a quantum gate (i.e., generalized
crossing point). For the one-body cases (12b) and (12c), the
right-hand side represents classical alternatives in quantum

superposition: d−1ei
ζ

2 (−A2e∓i
ζ

2 − A−2e±i
ζ

2 ) is the amplitude
for no interaction (nonswapping of qubit states), whereas the
amplitude of a SWAP interaction (interchanging of qubit states)
goes as d−1A∓1(eiζ − 1).

As a first example of reducing a superbraid, let us
recursively apply (12) to prove an obvious evolution identity:
the composition of a quantum gate with its adjoint is the
identity operator, that is, UU † = 1. For simplicity, we start
with |qα〉 =↑ and |qγ 〉 =↓, so the initially oriented super-
braid is reduced to a superposition of classical braids as
follows:

(12b)= −A2 − A−2eiζ

d
+ A−1(eiζ − 1)

d

(12b)†= −A2 − A−2eiζ

d

−A2 − A−2e−iζ

d
+ −A2 − A−2eiζ

d

A−1(e−iζ − 1)

d
+ A−1(eiζ − 1)

d

(12c)†= A4 + A−4 + 2 cos ζ

d2
− A−1

d2
(A2 + A−2eiζ )(e−iζ − 1) − A−1

d2
(A2e−iζ + A−2)(eiζ − 1)

+ (e−iζ − 1)(eiζ − 1)

d2

(4)= A4 + A−4 + 2 cos ζ

d2
− A−1

d2
(A2e−iζ − A−2eiζ − A2 + A−2) + 2 − 2 cos ζ

d2

= (13)
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It is easy to verify that the same result occurs for inputs |qα〉 =
↓ and |qγ 〉 = ↑. Furthermore, the identity trivially follows for
|qα〉 = ↑ and |qγ 〉 = ↑ and for |qα〉 = ↓ and |qγ 〉 = ↓ since
	 is Boolean.

IV. GENERALIZATION OF TLQ(d)

With adjacent indices, for example, γ = α + 1 in (9), we
need write the first index only (i.e., suppress the second indice),
E	α ≡ E	α,α+1. Using this compressed notation, (8) satisfies
the following generalized Temperley-Lieb algebra:

E2
	α = E	α, α = 1, 2, . . . ,Q − 1, (14a)

E	αE	α±1E	α − E	α±1E	αE	α±1 = d−2E	α − d−2E	α±1,

(14b)

E	αE	β = E	βE	α, |α − β| � 2. (14c)

To help understand this algebra, we may write (14b) as follows:

E	αE	α+1E	α − d−2E	α = d−2Xα,α+1, (15a)

E	α+1E	αE	α+1 − d−2E	α+1 = d−2Yα,α+1, (15b)

where Xα,α+1 and Yα,α+1 are introduced solely for the purpose
of separating (14b) into two equations. For (15) to be equiv-
alent to (14b), one must demonstrate that Xα,α+1 = Yα,α+1.
Inserting (8) into the left-hand side of (15), after considerable
ladder operator algebra, one finds that the difference of the
right-hand side of (15) is

Xα,α+1 − Yα,α+1 = 	(	 − 1)[(A4 − A−4)nαnα+1nα+2

−A4nαnα+1 + A−4nα+1nα+2], (16)

vanishing for Boolean 	. Thus, (14b) follows from (8).
One finds X and Y are proportional to 	, so a remarkable

reduction of (14) occurs for the 	 = 0 case:

E2
0α = E0α, α = 1, 2, . . . ,Q − 1, (17a)

E0αE0α±1E0α
(15)= d−2E0α, (17b)

E0αE0β = E0βE0α, |α − β| � 2. (17c)

This is the Temperley-Lieb algebra over a system of Q

qubits (TLQ). Thus, entangled bosonic states generated by
E0α are isomorphic to links generated by E0α . So (14) is a
generalization of TLQ. We now consider the generalized braid
that it generates: a superbraid.

V. SUPERBRAID GROUP

A general superbraid operator is an amalgamation of both
a classical braid operator and a quantum gate,

bs
	αβ ≡ Aez E	αβ , (18)

where A and z are complex parameters. Equation (18) can be
applied to any two qubits, α and β, in a system of qubits (i.e.,
we do not impose a restriction to the adjacency case when
β = α + 1). Equation (18) can be written in several different
ways, each way useful in its own right.

Letting z ≡ iζ + ln τ , the superbraid operator has the
following exponential form

bs
	αβ ≡ τ− 1

4 e(iζ+ln τ ) E	αβ = τ− 1
4 (eiζ τ )E	αβ , (19)

where A ≡ τ− 1
4 (and so τ = A−4). The superbraid operator

can be written linearly in its generator,

bs
	αβ = A[1Q + (A−4 eiζ − 1)E	αβ]. (20)

Thus, the superbraid operator and its inverse can be expressed
in knot theory form,

bs
	αβ = A 1Q + A−1

(
1 − eiζ τ

1 + τ

)
d E	αβ, (21a)

(
bs

	αβ

)−1 = A−1 1Q + A

(−e−iζ + τ

1 + τ

)
d E	αβ. (21b)

A nontrivial classical limit of quantum logic gates represented
as (9) occurs at ζ = π (SWAP operator). Consequently, the
superbraid operator in product form is

bs
	αβ ≡ τ− 1

4 e(ln τ+iπ) E	αβ e(iζ−iπ) E	αβ , (22a)

= b	αβ ei(ζ−π) E	αβ , (22b)

where b	αβ = τ− 1
4 e(ln τ+iπ) E	αβ is the conventional braid oper-

ator. Equation (22b) is useful for comprehending the physical
behavior of the superbraid operator. It classically braids world
lines α and β and quantum-mechanically entangles these world
lines according to the deficit angle ζ − π .

The superbraid group is defined by

bs
α bs

β = bs
β bs

α for |α − β| > 1, (23a)

bs
α bs

α+1 bs
α + γ bs

α = bs
α+1b

s
α bs

α+1 + γ bs
α+1

for 1 � α < Q, (23b)

where γ is a constant that depends on the representation. For
(8), we have γ = (A4 + A−4eiζ )(1 + eiζ )A−2d−2.

In the classical limit ζ = π , the superbraid operator reduces
to the classical braid operator, bα ≡ bs

α(π, τ ), and (23) reduces
to the Artin braid group,

bα bβ = bβ bα for |α − β| > 1, (24a)

bα bα+1 bα = bα+1bαbα+1 for 1 � α < Q. (24b)

Equation (24) follows from Eq. (23) because γ = 0 for
ζ = π . Also, in this classical limit, Eq. (20) reduces to the
braid operator

bα = A 1Q + A−1d E	αβ, (25)

for α = 1, 2, . . . ,Q − 1 (and technically the standard braid
operator when β = α + 1). After some ladder operator ma-
nipulations using (8), one finds that

bαbα+1bα − bα+1bαbα+1
(25)= A−1(A4 − A−4)d−2	(	 − 1)

× (1 − nα)nα+1nα+2, (26)

where nα ≡ a†
αaα . Since 	 is Boolean, the right-hand side

vanishes, and this is just (24b).

VI. QUANTUM SKEIN RELATIONS

The skein relations (3) for directed strands are

= A = A−1 , (27a)

= A−1 = A (27b)
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The writhe of a braid, +1 for (27a) and −1 for (27b), is
determined by applying the right-hand rule at the crossing
point (viz., considering the strands as vectors), rotating the
strand above toward the one below with the axis of rotation
either out of the plane (+1) or into the plane (−1). By inserting
(27) into (12), one arrives at a remarkably simple form of the
quantum skein relations:

= , (28a)

(27b)= + (eiζ − 1)

d
, (28b)

(27a)= + (eiζ − 1)

d
, (28c)

= + (eiζ − 1)	 (28d)

Equation (28) is most useful for reducing a closed quantum
circuit into a superposition of oriented links. The relations in
the one-body sector can be written as

A
(28b)= A + A−1

[
A2 (ez − 1)

d

]
, (29a)

A−1 (28c)= A−1 + A

[
A−2 (e−z − 1)

d

]

(29b)

for the case of a complex rotation angle (i.e., iζ → z) and
where we have multiplied through by A and A−1, respectively,
and taking the adjoint of the latter relation. Now with ez =
A−4eiζ and A−4 = τ , we arrive at

A = A + A−1

(
1 − eiζ τ

1 + τ

)
, (30a)

A−1 = A−1 + A

(−e−iζ + τ

1 + τ

)
(30b)

the diagrammatic representation of the superbraid operators
(21). Thus, we have the correspondence

bs
	αβ ←→ A (31)

which is just (18) in graphical form. The superbraid operator
(31) is unitary when A = 4

√
1, in which case it reduces to a

conservative quantum logic gate.1

VII. SUPERLINK INVARIANTS

Let us begin by writing the conservative quantum logic gate
(9) graphically:

= + (ez − 1)

d
(32)

1Since flipping over a braid preserves the writhe of its crossing, we
may flip over each diagram in (30) to have yet another way to specify
operative quantum skein relations. Using this specification, if we take
ζ = π , then the flipped-over quantum skein relations just reduce to
the classical skein relations (27).

where we choose to use the complex time parameter z. Now
w number of successive superbraids is

= + (ewz − 1)

d

(33)

where the right-hand side follows from (32) by taking z →
wz. Letting 〈b〉 ≡ d−1KL(A), where L is the closure of b,
the Markov trace closure of (33), here denoted with angled
brackets, is

= − d−1 + d−1ewz (34a)

= d−1
( − d−1

) + d−2ewz

= d − d−1 + d−1ewz. (34b)

Multiplying through by Aw, we then have the trace closure of
w superbraids:

〈(bs)w〉 (31)= Aw(d − d−1) + d−1(Aez)w. (35)

In the classical limit ζ = π and ez = −A−4, then (35) becomes
a standard w braid:

〈bw〉 (31)= Aw(d − d−1) + d−1(−A−3)w (36a)

= (−A3)−wd−1[1 + (−A4)w(d2 − 1)]. (36b)

The Jones polynomial is VL(A)
(1)= (−A3)−w 〈bw〉, so

VL(A) = (A6)−wd−1[1 + (−A4)w(d2 − 1)]. (37)

For example, considering classical links formed from the
closure of two strands braided an integer number of times
with w = 0, 1, 2, 3, 4, 5 . . . , (37) gives

V (A) = −A−2 − A2 , (38a)

V (A) = −A3 , (38b)

V (A) = −A−4 − A4 , (38c)

V (A) = A−7 − A−3 − A5 , (38d)

V (A) = −A−10 + A−6 − A−2 − A6 , (38e)

V (A) = A13 − A9 + A5 − A−1 − A7 , (38f)
...

Equation (38b) is the Jones polynomial invariant for the
unknot, (38c) for the Hopf link, (38d) for the trefoil knot,
and so forth, and these Laurent series are well known.

Yet the formula (37) follows from the quantum logic gate
relation (34), where w is a time scaling factor. Since time is
a continuous variable in quantum logic, we are free to take
w to be a real-valued parameter whereby the formula for the
invariant Jones polynomial remains physically well defined.
Thus, for example, we can evaluate (37) for half-integer w,
and calculate Jones polynomial invariants for quantum links
that are “halfway” between classical links, which is to say in

022328-5



JEFFREY YEPEZ PHYSICAL REVIEW A 81, 022328 (2010)

equal superposition of two classical links. For quantum links
formed from the closure of two strands braided an half-integer
number of times with w = 1

2 , 3
2 , 5

2 , 7
2 . . . , (37) then gives

V√ (A) = −i − A−2 − A2 − A6

A− 3
2 (A−2 + A2)

(39a)

V√ (A) = iA−3 − A−1 − A3 − A7

A− 3
2 (A−2 + A2)

(39b)

V√ (A) = −1 − iA−6 − A4 − A8

A− 3
2 (A−2 + A2)

(39c)

V√ (A) = iA−9 − A − A5 − A9

A− 3
2 (A−2 + A2)

(39d)

...

Equation (39a) is the superlink invariant for the square root
of the unknot (

√
), (39b) for the square root of the trefoil

knot (√ ), and so forth. The square root of unknot and
trefoil knots are examples of quantum knots, a special class of
superlinks.

VIII. CONCLUSION

Einstein, Podolsky, and Rosen discovered nonlocal quan-
tum entanglement over three quarters of a century ago [21].
Although this inscrutable seminal result is the most cited
one in the physics literature, quantum entanglement still
remains one of the most mysterious properties of quantum
physics. Here we have strived to unravel some of the mystery
behind this important physical effect by rendering quantum
entanglement geometrically as tangles of the most basic
of strands: quantum-informational spacetime trajectories (or
qubit world lines). The advantage of this approach is that it
allows us to represent quantum entangled states in terms of
intuitive constructs borrowed from the mathematics developed
to understand knots.

In knot theory, the most fundamental construct is braiding
(or crossing) two adjacent strands. In quantum-information
theory, a fundamental construct is entangling two qubits.2

In general, the braiding operation is nonunitary, whereas an
entangling operation (two-qubit universal quantum gate) is
manifestly unitary. Yet, these two operations are not entirely
unrelated—they are in fact special aspects of a general
operation, termed a superbraid. The superbraid covers both
nonunitary and unitary fundamental physical operations. It
both braids qubit world lines and entangles the qubits and
in this way mathematically disambiguates these most basic
physical processes.

2Quantum computing algorithms can be specified in terms of
entangling quantum gates that act only between adjacent qubits—
two-qubit entangling gate operations between nonadjacent qubits
(customarily used in specifying quantum algorithms in the quantum
computing literature) can each be represented as a sequence of
two-qubit gate operations acting on adjacent qubit pairs. Thus, local
braid and quantum gate operations are both universal operations in
their respective contexts.

Analytical defining relations for a superbraid operator were
presented, as was the algebra for its generator. For Q number
of qubits, the generator of a superbraid was found to be
a Hermitian operator that is a generalization of the usual
generators in knot theory satisfying the Temperley-Lieb alge-
bra, TLQ(d). The generalization presented here handles both
the fermionic and the bosonic cases of quantum-information
dynamics; the quantum particles (whose motion defines the
quantum-informational strands) can obey either Fermi or
Bose statistics. In the bosonic case, the operative generators
are the usual ones that satisfy TLQ(d) and they serve as a
Hermitian representation. The generalization of TLQ(d) was
actually needed to handle the case of entangled fermionic
world lines. These generators, and in turn their respective
superbraid operators, are analytically expressed in terms of
the qubit ladder operators: qubit anticommuting creation and
destruction operators and number operators.

With the technology presented, one can topologically
classify closed-loop quantum circuits with various schemes
for quantum wires crossed (braided) at some locations and
coupled together at some locations via quantum logic gates,
for example, a sequence of braid operations (particle motion)
and quantum gate operations (particle-particle interactions)
that specify the local dynamics of a quantum lattice gas
used for a computational physics application. The closure
of a sequence of superbraids is called a superlink. We have
demonstrated how a superlink invariant may be computed,
for example, as a generalized Jones polynomial invariant.
Invariants were calculated for two-stranded superlinks, and
extending this to Q strands is straightforward. The approach is
to reduce a superbraid with n crossings to a simpler superbraid
with n − 1 crossings by applying a quantum skein relation,
a straightforward generalization of the skein relations of
knot theory. The quantum skein relations are summarized as
follows.

The A parameter commonly used in the classical skein
relation of knot theory, = A + A−1 a version
of (27a) that is flipped over, may be understood in the
context of quantum-information processing as representing
the two alternatives for the exchange of a pair of bits for
configurations with one bit up (logical zero) and the other
bit down (logical one). The diagrammatic convention has
information flowing from top to bottom, entering in the top
leads of the diagram and exiting from the bottom leads.
So if the initial state is | . . .↑↓ . . .〉, then the final-state
alternatives are: (a) no interaction (identity operation) | . . .↑↓
. . .〉 or (b) an exchange interaction (classical SWAP)
| . . .↓↑ . . .〉. A is the amplitude for the identity transition
| . . .↑↓ . . .〉 ⇒ | . . .↑↓ . . .〉, whereas A−1 represents the am-
plitude for the exchange transition | . . .↑↓ . . .〉 ⇒ | . . .↓↑ . . .〉.
Since the braid operator conserves bit number and A is
an amplitude, we generalized the classical skein relation
by allowing the interaction alternative (b) to represent a
conservative quantum-mechanical exchange—one defined by
a bit-conserving, two-qubit entangling gate operation. This re-
sulted in the following quantum skein relation for a superbraid
operator:

A = A + A−1[(ez − 1)/(A−2d)]
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where d = −A2 − A−2. Thus, a classical point occurs for any
value of z that causes the quantity in the square bracket to
become unity, ez − 1 = A−2d. That is, a superbraid reduces
to a braid when ez = −A−4.

In the case when ez = eiζ A−4 and A is complex unimodular,
the phase of A physically acts as an internal ebit phase
angle; that is, A = ei(ξ− π

2 ) as is discussed in the Appendix.
In (22b) we wrote the superbraid operator as the product of
a braid and conservative quantum gate. It braids two-qubit
world lines and entangles them according to the deficit angle
	ζ = ζ − ζ◦ �= 0, where ζ is the real-valued time (related
to the imaginary part of z) parametrizing the operation and
ζ◦ = π is the classical point. Entangled qubit world lines
and tangled strands are related through their respective skein
relations sharing a common A parameter. The approach of
representing quantum-information topologically in terms of
tangled strands [5–11,22], and that we have explored here,
offers insights about quantum entanglement as the quantum
skein relation just mentioned, for purely imaginary z, is an
entangling conservative quantum gate.

The aforementioned considerations naturally lead to some
relevant further outlooks, for example the observability of
quantum knots such as the square root of a knot, which
of course has no classical counterpart. Just how the square
root of a knot may be physically realized in an experimental
setup is not presently known for certain, but according to
Gell-Mann’s totalitarian principle it should be experimentally
compulsory as a physical phenomenon. Here is one possibility:
a superbraid could exist within a Bose-Einstein condensate
(BEC) superfluid as a superposition of quantum vortex loops.
Furthermore, such vortex loops could represent a topologically
protected qubit, and entangled states of such qubits could exist
within a spinor BEC.3 In a BEC, all the vorticity in the flow
is pinned to filamentary topological defects in the phase of
the condensate, that is, quantum vortices with integer winding
numbers [25]. In a spinor BEC with two or more components
in the condensate, each component may have its own quantum
vortices. In the dilute vortex limit for each component, these
quantum vortices act like strands that may be braided and
entangled as the spinor superfluid flow evolves in time.

Consider a configuration of quantum vortices in a superfluid
comprising two unlinked closed loops .4 Since nearby
quantum vortex segments spontaneously undergo reconnec-
tion, one would expect that ⇒ ⇒ and so on.
To form a qubit, one could identify the logical states with
the two basic quantum vortex configurations: |0 ≡ and
|1 〉 ≡ So a topologically protected qubit (superbraided
qubit) could be represented as a superposition of quantum

3Spinor BECs have been realized in a confined cold spinor atomic
BEC with several hyperfine states [23,24].

4The vorticity points along a quantum vortex line, so these act like
directed strands. For simplicity, we omit arrow labels. Furthermore,
these loops are not necessarily coplanar, for example, with the first
loop in the plane of the paper, the second one could be rotated about
the axis along its horizontal diameter, and perpendicularly oriented
after a 90◦ rotation.

vortex solitons,

|q〉 = a + b (40)

with amplitudes constrained by |a|2 + |b|2 = 1.5 These am-
plitudes are time-dependent quantities, like the amplitudes of
a half-integer spin precessing about a uniform magnetic field,
but in this case the effective Rabi frequency is set by the inverse
of two reconnection times.

In a two-component BEC, a topologically protected (per-
pendicular) pairwise entangled state could be formed by
coupling two superbraided qubits:

|ψ〉 = ψ01 | 〉 + ψ10 | 〉. (41)

Allowing for spatial overlap of the quantum vortices in
each component, the two-qubit quantum vortex configuration

could have its two-loop configuration simultane-
ously occupy the same location as its unknot quantum vortex
configuration in the spinor superfluid’s second component.
So, might physically occur as (overlapped). If the
quantum vortex solitons can be spatially correlated in this way,
then the quantum particles comprising the condensate can be-
come physically entangled across their respective vortex cores,
and in turn so too the vortex solitons themselves—a physical
pathway whereby linkage may be related to entanglement.6

Superbraid solitons such as (40) could store topologically
protected qubits, and superlinks such as (41) could process
topologically protected e-bits. If many superbraided qubits
were coupled together to realize controllable quantum logic
operations, then topological quantum computation may be
directly achievable within spinor superfluids. This offers us a
potential alternative to exotic non-Abelian vortices (Fibonacci
anyons) recently proposed for thin-film superconductor-based
topological quantum-information processing. This proposition
will be explored in future work on topological quantum
computing with superbraids.

Finally, since a superbraid can be a nonunitary operation
for certain values of the complex time parameter z, in
a future study one could also explore if, and if so how,
this particular feature might be akin to other behaviors of
quantum systems in the real world. Quantum dynamics is
effectively nonunitary because of decoherence (loss of phase
coherency between previously correlated qubits) as well as
the nonunitarity of projective measurement (collapse of qubit
states onto a logical basis). So, for example, the behavior
of the nonunitary dynamics of superbraids could also be
explored regarding its potential connection to measurement-
based quantum computation—either ruling out or elucidating
this connection.

5The square root of unknot
√

is realized in this qubit when
a = b = 1/

√
2, or 45◦ polarization in the logical basis.

6This is allowed so long as the separation δ between the component
vortices is much less than the coherence length ξ . This particular
condition δ � ξ for interspinor superflow with quantum vortex
solitons of unit winding number is different than the requirement ξ �
δ in topological quantum computing with quantum logic represented
in terms of braided zero-mode vortices in a p + ip superconductor
(as discussed in the Introduction).
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APPENDIX: JOINT QUANTUM LOGIC

The coefficients in (8) can be parametrized by a real angle
ϑ : E	αγ = E	αγ (ϑ) with

A2 = −cos ϑ + 1

sin ϑ
, (A1)

and d = −A2 − A−2 = 2 csc ϑ . Then, (8) takes the form

E	αγ = cos2 ϑ

2
nα + sin2 ϑ

2
nγ − 1

2
sin ϑ (Aa†

αaγ

+A−1 a†
γ aα) + (	 − 1)nαnγ . (A2)

The purpose of this appendix is to explain the origin of (A2).
Let us consider entangling two quantum bits, say, |qα〉 and

|qβ〉, in a system comprised of Q � 2 qubits and where the
integers α and β ∈ [1,Q] are not equal, α �= β. Joint pair
creation and annihilation operators [26] act on a qubit pair,

a
†
αβ ≡ 1√

2
(a†

α − e−iξ a
†
β), aαβ ≡ 1√

2
(aα − eiξ aβ), (A3)

and are defined in terms of the fermionic ladder operators a†
α

and aα . The joint number operator corresponding to (A3) is

nαβ ≡ a
†
αβaαβ (A4a)

= 1
2 (nα + nβ − eiξ a†

αaβ − e−iξ a
†
βaα), (A4b)

where the usual qubit number operator is nα ≡ a†
αaα . Finally,

I introduce an entanglement number operator (Hamiltonian)
with a simple idempotent form

ε	αβ ≡ nαβ + (	 − 1)nαnβ, (A5)

where 	 is a Boolean variable (0 for the bosonic case
and 1 for the fermionic case). Eq. (A5) acts on some state
| . . . qα . . . q ′

β . . .〉, with a qubit of interest located at α and
another at β.

For convenience, I will use a shorthand for writing a state,
specifying only two qubit locations as subscripts

|qq ′〉αβ ≡ | . . . qα . . . q ′
β . . .〉,

since the operators act on a qubit pair, regardless of the
respective pair’s location within the system of Q qubits.
Then, the entangled “singlet” substate is 1√

2
(|01〉 − |10〉)αβ

and the entangled “triplet” substates are 1√
2
(|01〉 + |10〉)αβ and

1√
2
(|11〉 ± |00〉)αβ . I will refer to the ket |qq ′〉αβ as perpen-

dicular with respect to its constituent qubits |q〉α and |q ′〉β
when q �= q ′ and as parallel when q = q ′. Examples of
perpendicular and parallel two-qubit (Fock) states are depicted
in Fig. 1.

Neglecting normalization factors, the action of (A5) on the
entangled αβ substates is

ε	(|01〉 ± |10〉)αβ = 1
2 (1 ∓ e−iξ )|01〉 − 1

2 (1 ± eiξ )|10〉,
(A6)

ε	(|11〉 ± |00〉)αβ = 	|11〉.
As a matter of convention, the αβ indices are moved from ε	

to the state ket upon which the entanglement number operator
acts and also the αβ indices are not repeated on the right-hand
side of an equation if avoiding redundancy does not introduce
any ambiguity.

|10 αβ :

|1

|0

|1

|0

|00 αβ :

|1

|0

|1

|0

αth qubit βth qubit

⊥

FIG. 1. Example of perpendicular and parallel two-qubit sub-
states. The perpendicular substate |10〉 (top pair) and the parallel
substate |00〉 (bottom pair) are depicted with qubits as unit vectors on
the complex circle.

Two special cases of interest are ξ = π and ξ = 0. For
convenience, let us denote these particular angles with plus
and minus symbols (+ = π and − = 0):

n±
αβ ≡ 1

2 (a†
α ± a

†
β)(aα ± aβ), ε±

	αβ = n±
αβ + (	 − 1)nαnβ.

(A4′)

Eq. (A4′) measures entanglement between qubits that are
perpendicularly oriented in the four-dimensional αβ subspace
of the 2Q-dimensional Hilbert space.

The sum of these perpendicular joint number operators is
related to the qubit number operators as follows:

ε+
	αβ + ε−

	αβ = nα + nβ + 2(	 − 1)nαnβ. (A7)

The left-hand side of (A7) represents the total information in
the αβ subspace spanned by two qubits in the form of quantum-
mechanical e-bits, whereas the right-hand side represents the
equivalent amount of information in classical bits. Suppressing
indices, ε−

	 has unity eigenvalue for the singlet state,

ε−
	(|01〉 − |10〉)αβ = |01〉 − |10〉, (A8a)

ε−
	(|01〉 + |10〉)αβ = 0,

ε−
	(|11〉 ± |00〉)αβ = 	|11〉, (A8b)

but it has eigenvalue 0 for the triplet state, |01〉 + |10〉.
Conversely, ε+

	 has a zero eigenvalue for the singlet state,

ε+
	(|01〉 − |10〉)αβ = 0, (A9a)

ε+
	(|01〉 + |10〉)αβ = |01〉 + |10〉,

ε+
	(|11〉 ± |00〉)αβ = 	|11〉, (A9b)

but it has eigenvalue 1 for the first triplet state.
To avoid any contribution arising from parallel entangle-

ment from the triplet states in (A8b) and (A9b), we must take
	 = 0 in the Hermitian operator (A4′) to ensure we count
only one bit of perpendicular pairwise entanglement. Hence,
denoting the pairwise entangled states with qubits of interest at
locations α and β as ψ±

⊥ ≡ | . . . 0 . . . 1 . . .〉 ± | . . . 1 . . . 0 . . .〉,
then these entangled states are eigenvectors of the 	 = 0
joint number operators (with unit eigenvalue): ε±

0 ψ±
⊥ = ψ±

⊥ .

The parallel joint operators can be defined in terms of the
perpendicular joint operators as

ε±
0 ≡ 1

2 (1 ∓ ε+
0 ± ε−

0 ± {σxσx, ε
∓
1 }), (A10)
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suppressing qubit indices, and σxσx ≡ σ (α)
x ⊗ σ

(β)
x is short-

hand for a tensor product. The sum

ε+
0 + ε−

0 + ε+
0 + ε−

0 = 1 (A11)

is as fundamental to two-qubit substates as the singleton
number operator identity n + n̄ = 1 is to one-qubit states.

If the other pairwise entangled states with qubits at
α and β are ψ±

‖ ≡ | . . . 0 . . . 0 . . .〉 ± | . . . 1 . . . 1 . . .〉, then
these entangled states are eigenvectors of the joint number
operators (with unit eigenvalue): ε±

0 ψ±
‖ = ψ±

‖ . In summary,
the operators ε±

0 and ε±
0 are number operators for the Bell

states.
A consistent framework for dealing with quantum logic

gates using the quantum circuit model of quantum computation
was introduced over a dozen years ago by DiVincenzo et al.
[27]. Here we consider an alternative: an analytical approach to
quantum computation based on generalized second quantized
operators, which is also practical for numerical implementa-
tions. Let us now consider quantum gates that induce entangled
states from previously independent qubits. The basic approach
employs a conservative quantum logic gate generated by (A5):

eiϑ ε	 = 1 + (eiϑ − 1)ε	. (A12)

Thus, a similarity transformation of the number operators
nα and nβ yields generalized joint number operators

n′
α(ϑ, ξ ) ≡ eiϑ ε	αβ nαe−iϑ ε	αβ

(A13a)

= cos2

(
ϑ

2

)
nα + sin2

(
ϑ

2

)
nβ

+ i sin ϑ

2
(eiξ a†

αaβ − e−iξ a
†
βaα) (A13b)

and

n′
β(ϑ, ξ ) ≡ eiϑ ε	αβ nβe−iϑ ε	αβ

(A14a)

= sin2

(
ϑ

2

)
nα + cos2

(
ϑ

2

)
nβ

− i sin ϑ

2
(eiξ a†

αaβ − e−iξ a
†
βaα). (A14b)

Thus, the generalized joint number operators rotate contin-
uously from nα(0, ξ ) = nα and nβ(0, ξ ) = nβ as ϑ ranges
from 0 to π to the number operators nα(π, ξ ) = nβ and
nβ(π, ξ ) = nα .

That information is conserved by this similarity transforma-
tion is readily expressed by the number conservation identity
obtained by adding (A13a) and (A14):

n′
α(ϑ, ξ ) + n′

β(ϑ, ξ ) = nα + nβ. (A15)

The left-hand side counts the information in its quantum-
mechanical (entangled) form, whereas the right-hand side
counts information in its classical form (separable) form. In
any case, the total information content in the αβ subspace is

conserved. This is why the quantum logic gate operation (A12)
is referred to as a conservative operation.

Comparing the generalized joint number operator (A13a) to
the joint number operator (A4a), we obtain the useful identity
in the special case of maximal entanglement,

nα

(π

2
, ξ + π

2

)
= nβ

(π

2
, ξ − π

2

)
= 1

2
(nα + nβ

− eiξ a†
αaβ − e−iξ a

†
βaα) = nαβ. (A16)

The tensor product nαnβ is invariant under similarity transfor-
mation:

nαnβ = eiϑ ε	αβ nαnβ e−iϑ ε	αβ . (A17)

Let us also construct generalized joint ladder operators:

a′
α = eiϑ ε	αβ cα e−iϑ ε	αβ , (A18a)

a′†
α = eiϑ ε	αβ c†α e−iϑ ε	αβ . (A18b)

After some algebraic manipulation, these can be ex-
pressed explicitly just in terms of the original ladder
operators,

a′
α = e−i ϑ

2

[
cos

(
ϑ

2

)
aα + ieiξ sin

(
ϑ

2

)
aβ

]
, (A19a)

a′†
α = ei θ

2

[
cos

(
ϑ

2

)
a†

α − ie−iξ sin

(
ϑ

2

)
a
†
β

]
. (A19b)

The product of the generalized joint ladder operators (A19),

n′
α = a′†

α a′
α, (A20)

yields the generalized joint number operator (A13a), as
expected.

An important special case of (A12) for half angles ξ = π
2

and ϑ = π
2 is an antisymmetric square root of swap gate,

U	 ≡ ei π
2 ε	,π/2 . (A21)

Using (A21) as a similarity transformation, we find the
identities

ε+
	αβ = U	

†nβ U	 and ε−
	αβ = U	

†nα U	, (A22)

illustrating how the entanglement operators are related to the
standard number operators.

Noting that the joint number operator is related to the
generalized joint number operator according to (A16), and
also noting that nαnβ is invariant under the similarity transfor-
mation (A17), we can also write a generalization of (A5) as
follows:

E	αβ ≡ eiϑ ε	αβ [nα + (	 − 1)nαnβ]e−iϑ ε	αβ (A23a)

(A13b)= cos2

(
ϑ

2

)
nα + sin2

(
ϑ

2

)
nβ + i sin ϑ

2
(eiξ a†

αaβ

− e−iξ a
†
βaα) + (	 − 1)nαnβ. (A23b)

We have the freedom to choose A = −ieiξ , and thus we have
recovered the mathematical form of (A2).
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