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Multipartite W states for chains of atoms conveyed through an optical cavity
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We propose and work out a scheme to generate the entangled W states for a chain of N four-level atoms which
are transported through an optical cavity by means of an optical lattice. This scheme is based on the combined laser-
cavity mediated interaction between distant and equally separated atoms and works in a completely deterministic
way for qubits encoded by two hyperfine levels of the atoms. Only two parameters, namely the distance between
the atoms and the velocity of the chain, determine the effective interaction among the atoms and, therefore, the
degree of entanglement that is obtained for the overall chain of N qubits. In particular, we work out the parameter
regions for which the WN states are generated most reliably for chains of N = 2, 3, 4 and 5 atoms. In addition, we
analyze the sensitivity in the formation of entanglement for such chains of qubits due to uncertainties produced
by the oscillations of atoms in optical lattices.
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I. INTRODUCTION

During the past few decades, quantum entanglement has
been found essential not only in studying the nonclassical
behavior of composite systems but also as important resource
for the engineering and processing of quantum information.
Nowadays, numerous applications are known that greatly
benefit from having entangled quantum states available, such
as super-dense coding [1], quantum cryptography [2], or
Grover’s quantum search algorithm [3], to name just a few.
Despite the recent progress in dealing with composite quantum
systems, however, the controlled manipulation of these system
and their interaction with the environment remains still a
great challenge. In addition to various other implementations
of composite quantum systems for quantum control and
applications in quantum information, excellent control in
generating entangled states has been achieved recently with
neutral atoms that are coupled to a high-finesse optical
cavity [4,5].

In practice, there are two typical ways to encode a single
qubit into the level structure of an atom: Apart from (i) select-
ing two levels separated by an optical transition frequency
(optical qubit), one may also utilize two hyperfine levels
of—typically—the atomic ground state, sometimes referred
to as hyperfine qubit. In contrast to the optical qubits, the use
of hyperfine qubits has the advantage of long coherence times
(∼1 s) and, moreover, such qubits are known to be more robust
with regard to external perturbations or stray fields. Finally, a
number of microwave techniques have been developed during
the past few decades that allow initialization, manipulation,
and detection of the states of such qubits [6–8].

However, the hyperfine qubit(s) cannot couple directly
to a cavity with a resonant mode frequency in the optical
domain. Therefore, a four-level configuration needs to be
considered, in which the two hyperfine levels are supplemented
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by two electronically excited levels which are separated by
the optical transition frequency and are compatible with
the resonant frequency of the cavity. In order to realize an
effective manipulation of the hyperfine qubit by means of
the optical cavity, its state must be mapped coherently on
the electronically excited states and back to the hyperfine
levels, once all the desired atom-cavity interactions have
been performed. Indeed, such a indirect coupling between
the hyperfine qubit and optical cavity opens a route for the
generation of entanglement and more complex quantum states
between two or more atoms by means of the cavity-mediated
interactions.

Despite the recent progress to couple one single atom
to the cavity mode, further control of the atomic motion
is necessary in order to manipulate the interaction between
cavity and a chain of atoms. At the same time, excellent
control of the motion of atomic chains is merely possible by
using optical lattices (conveyor belts) [9], which have recently
been utilized in various setups of cavity QED [10–12]. In
Fig. 1 we displayed a schematic view of such optical lattice
in which two counterpropagating laser beams with parallel
linear polarization produce an interference pattern in the field
strength that gives rise to a series of equidistant potential wells,
where neutral atoms can be trapped. These wells allow control
of the position of atoms with a submicrometer precision over
millimeter distances due to their tight confinement along the
lattice axis.

The combination of such a lattice with the (optical) cavity
QED setup, however, makes it necessary to revise the evolution
of the atom-cavity interaction for a chain of atoms that is
conveyed by such a lattice through the cavity. In particular,
one need to analyze how the spacing between the atoms and
velocity of the atomic chain (lattice) will affect the formation of
entangled states between the hyperfine qubits. By this revised
evolution, moreover, the small sample approximation, i.e.,
when the spacing between the atoms is considered negligible
in comparison to the cavity waist, should be abandoned
and the position-dependent effects should be taken into
account.
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FIG. 1. (Color online) Schematic view of atoms in an optical
lattice (conveyor belt). Two focused and counterpropagating laser
beams with frequencies ω + �/2 and ω − �/2 give rise to an
interference pattern in the field strength with a series of equidistant
potential wells in which the atoms can be trapped. The distance
d between two neighbored wells is given by (half of) the lattice
wavelength λ, while the velocity of the belt υ is determined by the
detuning � of the two laser beams.

For two hyperfine qubits (in a four-level configuration), we
have recently proposed a scheme to generate the maximally
entangled state 1√

2
(eiφ|01, 12〉 + |11, 02〉) by means of the

combined laser and cavity mediated interaction [13]. In this
reference, we considered the position-dependent coupling
between the atoms and cavity which allowed us to describe
the formation of entanglement between the two atoms being
separated by a macroscopic distance. An effective interaction
between the hyperfine qubits was achieved if both the laser
and cavity fields are detuned with regard to the atomic tran-
sition frequencies (see below). In particular, we demonstrated
explicitly how the degree of entanglement depends on the
atomic velocities and the spacing between two atoms.

In the present work, we extend this analysis and propose a
scheme to generate the entangled W state [14]

1√
N

(eiφ

N terms︷ ︸︸ ︷
|11, 02, . . . , 0N 〉 + · · · + |01, 02, . . . , 1N 〉) (1)

between the hyperfine qubits of N (four-level) atoms that are
equally distanced from each other and conveyed through the
cavity by means of an optical lattice. Similarly to Ref. [13],
this scheme works in a completely deterministic way and is
based on the position-dependent interaction between distanced
atoms which is mediated by the cavity and laser fields. The
two parameters that control this atom-cavity-laser interaction
are (i) the velocity of the atomic chain along the axis of the
lattice and (ii) the distance between the atoms. For the chains
consisting of N = 2, 3, 4, and 5 atoms, we determine the
velocities and distances for which the initially uncorrelated
atoms produce the WN states most reliably. Apart from
generation of the W states, we discuss also how the proposed
scheme can be implemented most efficiently and analyze how
robust are the entangled states with respect to small oscillations
in the atomic motion as caused by the thermal motion of atoms
in the optical lattice.

The article is organized as follows. In the next section, we
first outline our scheme to entangle the hyperfine qubits of N

initially uncorrelated atoms. In Sec. III, we then explain and
discuss the effective Hamiltonian which describes the atomic
evolution; we analyze in particular the parameter (regions) in

FIG. 2. (Color online) (a) Schematic setup of the experiment. A
chain of N neutral atoms passes through a pair of Raman lasers
L1, an optical cavity C with a laser beam L, and a second pair of
Raman lasers L2. The atoms are supposed to move in a chain along
the z axis with a constant velocity υ such that the chain crosses the
cavity at the antinode. Apart from the cavity waist w, that is just one
half of the minimum width of the cavity radiation field, the cavity is
also characterized by its position-dependent coupling strength g(z).
(b) The atomic four-level �-type configuration in the Schrödinger
picture and (c) in the interaction picture.

subsections III A– III D for which the states W2, W3, W4, and
W5 are generated most reliably. In Sec. IV, we later discuss
a few issues related to the implementation of our scheme and
how it is influenced by small oscillations in the motion of the
individual atoms, while a short summary and outlook are given
in Sec. V.

II. GENERATION OF THE W STATES

We shall first explain the basic idea of the proposed scheme
for generating multipartite W entangled states within chains
of neutral atoms without going much into details. We assume
that the N atoms are initially in a product state and that they
are inserted into an optical lattice being equally separated
by a distance d as displayed in Fig. 2(a). Moreover, the
atoms are supposed to move with a constant velocity υ along
the (lattice) z axis such that their position vectors �ri(t) =
{0, 0, zo

i + υt} cross the cavity at the antinode and where zo
i

denote the initial position of the ith atom. As briefly outlined
above (cf. Fig. 1), this velocity υ and interatomic distance
d can be controlled experimentally by adjusting the shift in
the frequencies of the two counterpropagating laser beams
and by selecting a proper wavelength of the optical lattice,
respectively [9].

Each of the N identical atoms represents a (hyperfine) qubit
in a �-type configuration as displayed in Fig. 2(b), in which
the two hyperfine states |0〉 and |1〉 are supplemented by the
electronically excited states |e〉 and |a〉 in such a way that
the transitions |a〉 → |1〉 and |a〉 → |0〉 are (electric-dipole)
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forbidden due to the angular momentum and parity selection
rules. Initially, the atoms are prepared in the product state

|11, 02, . . . , 0N 〉 ≡ |11〉 × |02〉 × · · · × |0N 〉, (2)

where the numbering corresponds to the (increasing) coor-
dinates zo

1, z
o
2, . . . , z

o
N of atoms along the z axis. By this

assumption, therefore, the qubits are loaded to the cavity in
the reverse order, i.e., qubit No. 1 corresponds to the last atom
inside the chain.

Just before each atom enters the cavity, its electronic
population is transferred from the state |0〉 to the state |a〉 with
a pair of (slightly) off-resonant laser beams that are coupled

to the atomic transitions |0〉 1→ |e〉 2→ |a〉. This population
transfer is known as the two-photon Raman process and can
be implemented, for example, by means of two phase-locked
laser diodes [6]. Below, we shall briefly refer to this transfer
in the population as the Raman pulse and shall distinguish
between the Raman zones L1 and L2 in front and behind the
cavity [see Fig. 2(a)]. In this notation, the Raman pulse L2

is utilized to perform the population transfer |a〉 2→ |e〉 1→ |0〉
back to the hyperfine level. Inside the cavity, therefore, the
product state (2) becomes |11, a2, . . . , aN 〉 since the last atom
is unaffected by the Raman pulse L1.

To explain the mechanism of the cavity-mediated interac-
tion between the atoms in more detail, let us first consider
a chain of two atoms prepared in the product state |e1, a2〉
and where each atom is coupled to a detuned optical cavity
by the transition |a〉 ↔ |e〉 [cf. Fig. 2(b)]. In this case, both
atoms interact due to the cavity-stimulated exchange of a
photon: |e1, a2, 0̄〉 → |a1, a2, 1̄〉 → |a1, e2, 0̄〉 for a initially
empty cavity |0̄〉. This interaction sequence contains in its
middle part a virtual state and is independent of the photon
number that was initially in the cavity. By following similar
lines, therefore, the (initial) atomic state |e1, a2, . . . , aN 〉 of N

atoms in the chain evolves according to the sequence

|e1, a2, . . . , aN , 0̄〉 → |a1, e2, a3, . . . , aN , 0̄〉
↘ |a1, a2, e3, . . . , aN , 0̄〉

...
|a1, a2, a3, . . . , eN , 0̄〉, (3)

and where the virtual state |a1, . . . , aN , 1̄〉 has been omitted
for brevity. As seen from the sequence (3), the atoms in the
chain interact due to the cavity stimulated exchange of a single
photon between the originally excited atom and one of the
N − 1 other atoms. This photon exchange, moreover, requires
a rather large detuning between the transition frequency of the
atoms and the resonant frequency of the cavity mode

|(ωE − ωA) − ωC | 	 g(�ri), i = 1, . . . , N, (4)

namely such that the cavity remains almost unpopulated in the
course of interaction [16]. In the expression above, we have
introduced the position-dependent atom-cavity coupling

g(�r) = go exp[−z2/w2], (5)

which is caused by the variation of the transversal cavity field
along the atomic trajectories and where go denotes the vacuum
Rabi frequency and w the cavity mode waist, i.e., one-half of
the minimum width of the cavity field [see Fig. 2(a)].

Recall that according to our scheme, however, the atoms
are loaded to the cavity in the product state |11, a2, . . . , aN 〉
and hence an intermediate excitation |1〉 → |e〉 is first needed
to bring the atoms to interaction by means of the detuned
cavity (see above). In order to realize this excitation, the atomic
chain is exposed to a detuned laser beam with frequency ωL

that couples—via a position-independent strength � to the
|1〉 ↔ |e〉 transition as shown in Fig. 2. With the couplings of
the atoms to the both laser and cavity fields, the initial atomic
state |11, a2, . . . , aN 〉 evolves according to the sequence of
intermediate atom-cavity states

|11, a2, . . . , aN , 0̄〉 → |e1, a2, . . . , aN , 0̄〉 → |a1, a2, . . . , aN , 1̄〉 → |a1, e2, a3 . . . , aN , 0̄〉 → |a1, 12, a3, . . . , aN , 0̄〉
↘ |a1, a2, e3, . . . , aN , 0̄〉 → |a1, a2, 13, . . . , aN , 0̄〉

...
...

|a1, a2, a3, . . . , eN , 0̄〉 → |a1, a2, a3, . . . , 1N, 0̄〉 (6)

into the one of the final states |a1, 12, a3, . . . , aN 〉, . . . ,
|a1, a2, a3, . . . , 1N 〉, which can have the same probability to
occur.

In Refs. [13,15] it was shown that the condition

|(ωE − ω1) − ωL| 	 � (7)

for the detuning between the atomic transition and
laser frequencies ensures that the states |e1, a2, . . . , aN 〉,
|a1, e2, . . . , aN 〉, . . . , |a1, a2, . . . , eN 〉 remain almost unpop-
ulated. For this reason, condition (7) plays the same role as
condition (4) for the atom-cavity interaction which makes
the state |a1, . . . , aN , 1̄〉 to be only virtually populated. In
the following, we shall omit these unpopulated (intermediate)

states and express the sequence (6) in the short form

|11, a2, . . . , aN , 0̄〉 → |a1, 12, a3, . . . , aN , 0̄〉
↘ |a1, a2, 13, . . . , aN , 0̄〉

...
|a1, a2, a3, . . . , 1N, 0̄〉. (8)

With the evolution (8) of the atomic chain due to the laser-
cavity mediated interaction, the entangled W state

1√
N

(eiφ

N terms︷ ︸︸ ︷
|11, a2, . . . , aN 〉 + · · · + |a1, a2, . . . , 1N 〉) (9)
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can be, in principle, generated by adjusting properly the atomic
velocity υ and the inter-atomic distance d for a given set
of fixed cavity and laser parameters. In the last step of our
scheme, the electronic population of each atom that leaves the
cavity is (coherently) transferred back from the state |a〉 to
the hyperfine state |0〉 in order to protect the atom against the
spontaneous decay. This back transfer is achieved by applying
the Raman pulses L2 behind the cavity and it produces the
state (1) from (9), once all the atoms have left the cavity. By
utilizing the proposed scheme, therefore, a multipartite W state
can be generated starting from the initial product state (2) that
is associated with the chain of N atoms which are conveyed
through the cavity.

In the next section, we shall analyze in details of how the
laser-cavity mediated evolution (8) depends on the velocity
υ and the interatomic distance d when the atomic chain is
conveyed through the cavity. In order to take into account
these two parameters, we shall consider the position-dependent
coupling (5), which gives rise to the time-dependent coupling
between the ith atom and the cavity

gi(t) = go exp
[−(

zo
i + υt

)2/
w2

]
, i = 1, . . . , N, (10)

where zo
i and υ denote the initial position of the ith atom and

its velocity along the z axis, respectively.

III. EFFECTIVE HAMILTONIAN AND MULTIPARTITE
DYNAMICS

While sequence (6) displays the basic concept of how
the cavity-laser mediated interaction is achieved between the
atoms, we still have to analyze this coupling quantitatively
as to understand how to control it in practice. For this
purpose, we shall adiabatically eliminate the intermediate
states |a1, . . . , aN , 1̄〉 and |e1, . . . , aN , 0̄〉, . . . , |a1, . . . , eN ,

0̄〉 from the sequence (6). This shall lead to an effective
Hamiltonian that describes the time evolution of N atoms
which interact with each other according to the simplified
sequence (8).

To outline this elimination process, let us first introduce the
short-hand notation

|V1〉 → |VN+1〉 → |V0〉 → |VN+2〉 → |V2〉
↘ |VN+3〉 → |V3〉

...
...

|V2N 〉 → |VN 〉, (11)

for the composite states of N identical atoms and the cavity,
which corresponds one-to-one to the states from sequence (6).
With this notation, the W state (9) refers to the states
|V1〉, . . . , |VN 〉, while the cavity-mediated photon exchange
is performed between the state |VN+1〉 and (one of) the states
|VN+2〉, . . . , |V2N 〉, respectively.

For N identical atoms, the evolution of the coupled atoms-
cavity-laser system is described by the Hamiltonian

H = ωC c† c +
N∑

i=1

(ω1|1〉i〈1| + ωE|e〉i〈e| + ωA|a〉i〈a|

+ [�e−iωLt |e〉i〈1| + gi(t)c|e〉i〈a| + H.c.]), (12)

where the first term describes the cavity energy, with c and
c† being the annihilation and creation operators for a cavity
photon acting on the Fock states |n̄〉, and (the summation
of) the second term describes the chain of atoms and their
interaction with the laser and cavity. In this Hamiltonian, the
interaction of the ith atom and the cavity is based on the
time-dependent coupling (10). In the summation of the second
term, moreover, each term contains the excitation energies ω1,
ωE , and ωA which correspond to the atomic states |1〉, |e〉, and
|a〉, respectively.

In order to simplify the analysis of the time evolution
associated with the Hamiltonian (12), we switch to the
interaction picture by using the unitary transformation [13,15]

UI = exp

(
−ι̇(ω1 + ωL)t

N∑
i=1

|e〉i〈e| − ι̇ω1t

N∑
i=1

|1〉i〈1|
)

× exp

(
−ι̇ωAt

N∑
i=1

|a〉i〈a| − ι̇ [ωL − ωA + ω1] tc+c

)
.

In this picture, the Hamiltonian (12) takes the form

HI = −δc+c +
N∑

i=1

Hi with

(13)
Hi = �|e〉i〈e| + [�|e〉i〈1| + gi(t)c|e〉i〈a| + H.c.],

and where � = (ωE − ω1) − ωL and δ = (ωL − ωC) − (ωA −
ω1) refer to the two off-resonance shifts (detunings) of the laser
and cavity frequencies, respectively, as depicted in Fig. 2(c).
The time evolution of the wave function then follows the
Schrödinger equation

ι̇
d|
〉
dt

= HI |
〉, (14)

where we restrict the wave function |
〉 to the ansatz

|
〉 = exp

(
ι̇
�2

�
t

) 2N∑
i=0

Ci(t)|Vi〉, Ci(0) = δi1. (15)

For this ansatz, the Schrödinger equation (14) gives rise to a
closed system of 2N + 1 equations (i = 1, . . . , N)

ι̇Ċ0(t) =
(

�2

�
− δ

)
C0(t) +

N∑
j=1

gj (t)CN+j (t),

ι̇Ċi(t) = �2

�
Ci(t) + �CN+i(t), (16)

ι̇ĊN+i(t) =
(

�2

�
+ �

)
CN+i(t) + �Ci(t) + gi(t)C0(t),

where the dot denotes the time derivative.
As explained above, the N + 1 states |V0〉 and

|VN+1〉, . . . , |V2N 〉 remain (almost) unpopulated if the atom-
cavity and atom-laser detuning satisfy the two conditions (4)
and (7), respectively. Therefore, in order to separate these states
from Eqs. (16), we utilize the adiabatic elimination procedure
which assumes an adiabatic behavior of the functions C0(t)
and CN+1(t), . . . , C2N (t) or, in other words, that their time
derivative vanishes to a good approximation. Together with
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condition (7) and conditions

|δ| 	 g(t), |δ�| 	 �2, |δ�| 	 g(t)2, (17)

it is justified to eliminate N + 1 equations from the
system (16). Here, we shall omit further details of this
derivation for which the reader is referred to the seminal
article [16]. The remaining N (effective) equations for the
functions Ci(t), take the form

ι̇Ċi(t) =
N∑
j=1

(j �=i)

gi(t)gj (t)�2

δ�2
Cj (t). (18)

Due to Eqs. (18) for functions Ci(t) and the adiabatic
behavior for functions C0(t) and CN+1(t), . . . , C2N (t), the
evolution of the overall state of the atomic chain is given by
the wave function

|�〉 =
N∑

i=1

Ci(t)|Vi〉 = exp

(
−ι̇

∫ t

−∞
Heff ds

)
|V1〉, (19)

which is associated with the effective Hamiltonian

Heff =
N∑

i,j=1
(i �=j )

gi(t) gj (t) �2

2δ�2
(S+

i S−
j + S−

i S+
j ), (20)

where S+
i = |1〉i〈a| and S−

i = |a〉i〈1| denote the atomic two-
photon excitation and de-excitation operators. Obviously, this
Hamiltonian (20) is much simpler and describes the effective
atomic evolution (8) as mediated by the combined laser and
cavity fields in Eqs. (18). In order to summarize the steps
before, we have therefore found that the evolution of four-level
atoms is reduced to the evolution of effectively two-level atoms
which interact via a two-photon exchange in such a manner
that the excited state |e〉 remains (almost) unpopulated.

When all the N atoms have left the cavity, the wave
function (19) becomes in the limit t → +∞

|�〉 = exp(−ι̇M)|V1〉, M ≡
∫ +∞

−∞
Heff ds, (21)

where the matrix elements Mij = 〈Vi |M|Vj 〉 are given by

Mii = 0 and Mij = θ (υ, |i − j |d) for i �= j, (22)

with

θ (υ, d) =
√

π

2

�2g2
ow

δ�2υ
exp

(
− d2

2w2

)
. (23)

The latter expression (23) can be interpreted as the asymptotic
coupling for a pair of atoms that move with the same velocity
υ and are separated by the distance d from each other. The
atomic evolution of the state (21), therefore, is completely
characterized by the asymptotic coupling (23) which depends
on the two parameters (υ, d) once the frequency shifts and
coupling constants δ, �, w, go, and � are fixed by a particular
experimental setup.

Let us recall here that, after the atoms have left the cavity,
their population in the (electronic) state |a〉 is transferred
coherently back into the hyperfine state |0〉 by applying the
Raman pulses L2. With this transfer, the wave function (21)

then gives the entangled W -class state of N hyperfine qubits

|�′
N 〉 =

N∑
i=1

Ci(υ, d)|V′
i〉, with

(24)
|V′

1〉 = |11, . . . , 0N 〉, . . . , |V′
N 〉 = |01, . . . , 1N 〉,

and where the functions

Ci(+∞) ≡ Ci(υ, d) = 〈V′
i | exp(−ι̇M)|V′

1〉 (25)

are obtained from the exponentiation of the Hermitian operator
(−ι̇M). These functions can be computed routinely for any
number of atoms N , for instance, by diagonalization of the
matrix (22).

The wave function (24), however, has not yet the desired
form of a W state (1). In the next subsections, we shall therefore
discuss the properties of the WN states for different values of
N and display those υ and d parameters for which the function
|�′

N 〉 is equivalent (or close) to the desired W states.

A. Two-partite entangled state

For a chain of just two atoms (N = 2), the wave
function (24) takes the simple form [13]

|�′
2〉 = cos θ (υ, d)|V′

1〉 − ι̇ sin θ (υ, d)|V′
2〉. (26)

From this expression, we readily recognize that the two-partite
W2 states

|W±
2 〉 = 1√

2
(e±i π

2 |11, 02〉 + |01, 12〉) (27)

are obtained (up to a global phase factor) if the condition
θ (υ, d) = (2n + 1)π/4 is satisfied for some integer n. For
a fixed set of experimental parameters δ, �, w, go, and �,
therefore, a maximum entanglement is obtained only along the
solid lines displayed in Fig. 3(a) for n = 0, 1, 2, 3. Obviously,
the change between maximally entangled (solid lines) and
completely disentangled states (dashed lines) happens more
and more rapidly as the velocity of the chain is decreased from
a certain maximum value (namely for n = 0) onward.

Apart from understanding the dynamical parameters (υ, d)
for which a maximum entanglement is achieved, it is important
also to know how sensitive these states are with regard to
small uncertainties in the velocity and interatomic distance. To
analyze this sensitivity, Fig. 3(b) displays the von Neumann
entropy [17]

E(υ, d) = −Tr(ρ log2 ρ)

= − cos2 θ (υ, d) log2[cos2 θ (υ, d)]

− sin2 θ (υ, d) log2[sin2 θ (υ, d)] (28)

for velocities and distances satisfying θ (υ, d) < 2π and where
ρ = Tr2(|�′

2〉〈�′
2|) denotes the reduced density operator with

regard to the second hyperfine qubit. As expected, the maximal
values of the von Neumann entropy, i.e., E(υ, d) = 1, are
obtained along the lines which are displayed in Fig. 3(a).
Moreover, the least rapid variation in the maxima occurs
along the n = 0 line and for rather small interatomic distances.
For small velocities or some larger distance of the atoms, in
contrast, a good control of the entanglements of the |�′

2〉 states
becomes more and more difficult.
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FIG. 3. (Color online) (a) Atomic velocities υ and interatomic distances d for which the initial product state of two atoms |11, 02〉 becomes
maximally entangled (solid lines). The dashed lines, in contrast, indicate the (υ, d) pairs for which the atomic qubits remain disentangled.
(b) Plot of the von Neumann entropy E(υ, d) as a function of the atomic velocity and distance. In all these figures, the velocities υ are displayed
in units of �2g2

ow/δ�2 and the distances d in units of w.

Figure 3(a) shows that an entanglement between the atoms
occurs even for interatomic distances which are larger than 2w,
i.e., twice the cavity waist. In a high finesse cavity, indeed, the
Gaussian profile (5) approximates quite well the intracavity
field and, thus, it is possible to generate an entangled state
even for the atomic separation d > 2w. In practice, however,
the cavity relaxation and the spontaneous decay of the atoms
introduce certain limitations on the distance between the
atoms, beyond which it is not possible to generate the entangled
state (27). In order to estimate this limitation, we consider the
condition [18]

Ng2
o exp[−2z2/w2]/(κγ ) > 1 (29)

which ensures that N atoms couple strongly to the cavity
field and, therefore, implies the validity of the effective
evolution (20). Here, κ and γ denote the cavity loss rate and
the atomic decay rate, respectively. For N = 2, the above
condition bounds the atomic coordinate to the interval z− <

z < z+ with

z± = ±w

√
ln

[
2g2

o

/
(κγ )

]
2

. (30)

Due to these boundaries, therefore, the distance d between two
atoms must satisfy

d

w
<

√
2 ln

[
2g2

o

/
(κγ )

] = z+
w

− z−
w

. (31)

For the typical atom-cavity parameters [12]: {go, κ, γ } =
2π × {10, 0.4, 2.6} MHz, this codition implies the limi-
tation d < 3.243 w. We note that this estimation agrees
well with the solid lines from Fig. 3(a) since, for d >

3.2 w, the atomic velocity becomes so small that it
would prevent any experimental implementation of our
scheme.

B. Tree-partite W state

For a chain of three atoms (N = 3), the wave function (24)
takes the form

|�′
3〉 =

3∑
i=1

Ci(υ, d)|V′
i〉, (32)

with

C1(υ, d) = −ξ 3λ− +
√

8 + ξ 6(λ+ + 2eiκ )

4
√

8 + ξ 6
e−iζ ,

C2(υ, d) = − λ−√
8 + ξ 6

e−iζ , (33)

C3(υ, d) = −ξ 3λ− +
√

8 + ξ 6(λ+ − 2eiκ )

4
√

8 + ξ 6
e−iζ ,

and where we used the notation ξ = exp[−d2/(2w2)] and

λ± = exp[i2ξχ
√

8 + ξ 6] ± 1,

χ =
√

π

8

�2g2
ow

δ�2υ
,

κ = ξχ (3ξ 3 +
√

8 + ξ 6),

ζ = ξχ (ξ 3 +
√

8 + ξ 6).

In order to obtain the state W3 from wave function |�′
3〉, we

have to determine those pairs (υ, d) for which the equations

|C1(υ, d)| = |C2(υ, d)| = |C3(υ, d)| = 1√
3

(34)

are fulfilled. In Fig. 4(a), we displayed the corresponding lines
for which the moduli |C1(υ, d)| (solid), |C2(υ, d)| (dashed),
and |C3(υ, d)| (dotted) are equal to 1/

√
3. The requested W3

states are obtained for those (υ, d) pairs for which all three
types of lines intersect with each other.

As seen from Fig. 4(a), however, the lines for the (moduli
of the) functions Ci(υ, d) intersect only if the interatomic
distance vanishes. In order to determine the corresponding
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FIG. 4. (Color online) (a) Lines along which the moduli
|C1(υ, d)| (solid), |C2(υ, d)| (dashed), and |C3(υ, d)| (dotted) are
equal to 1/

√
3. These lines correspond to velocities (36) with n = 0, 1

and m = 1, 2 (in the limit d → 0). (b) Two maxima in the fidelity
F−(υ, d) obtained for velocities (36) with n = 0, 1 and m = 1, 2 (in
the limit d → 0). For guidance of the eyes, the semitransparent layer
displays a constant value F−(υ, d) = 0.5. (c) The same as in figure
(b) but for the fidelity F+(υ, d). Again, all velocities υ are displayed
in units of �2g2

ow/δ�2 and the distances d in units of w.

velocities, we first observe that for d → 0 (ξ → 1), the wave
function (32) becomes

e−i4χ 1 + 2ei6χ

3
|V′

1〉 + e−i4χ 1 − ei6χ

3
(|V′

2〉 + |V′
3〉).

This expression can be readily cast into the W3 form

|W±
3 〉 = 1√

3
(e±i 2π

3 |V′
1〉 + |V′

2〉 + |V′
3〉) (35)

if χ = (3n + m)π/9 or, equivalently, if the velocity takes the
values

υ =
√

π

8

�2g2
ow

δ�2

9

π (3n + m)
, (36)

with m = 1, 2 and n being an integer. To summarize, the van-
ishing interatomic distance along with velocities (36) are both
necessary to obtain the W3 states due to wave function (32).
According to our scheme, however, the atoms are separated by
a macroscopic distance which is non-negligible with regard to
the cavity waist. Therefore, we may determine the parameter
region (υ, d) with the nonzero interatomic distance, for which
the two fidelities [17]

F±(υ, d) = |〈W±
3 |�′

3〉|2

= 1
3 |e∓i 2π

3 C1(υ, d) + C2(υ, d) + C3(υ, d)|2,
(37)

between the states |W±
3 〉 and |�′

3〉 are larger than the threshold
value of 1/2. These fidelities F−(υ, d) and F+(υ, d) are dis-
played in Figs. 4(b) and 4(c), together with a semitransparent
plane in order to delimit the regions for which F±(υ, d) � 0.5.
While the maximum values F±(υ, d) = 1 are obtained only
for a few velocities and vanishing interatomic distance, there
are still (υ, d) regions (with nonzero distance) for which the
fidelities become reasonably close to the maximal value. Note,
moreover, that the region with F+(υ, d) � 0.5 is notably larger
than those with F−(υ, d) � 0.5. We conclude, therefore, that
from the experimental perspective it might be preferable to
generate the |W+

3 〉 state between three hyperfine qubits by
means of the suggested scheme.

C. Four-partite W state

For a chain of four atoms (N = 4), the wave function (24)
can be written as

|�′
4〉 =

4∑
i=1

Ci(υ, d)|V′
i〉. (38)

In contrast to N = 2 or N = 3, however, the expressions for
Ci(υ, d) become rather bulky now and are not displayed here.
Recall from the previous subsection that the wave function
|�′

3〉 produced the |W±
3 〉 states only for vanishing distances

and velocities (36). In this subsection, therefore, we proceed
in a similar fashion and consider the wave function (38) with
the vanishing interatomic distance (d → 0)

e−i4χ 1 + 3ei8χ

4
|V′

1〉 + e−i4χ 1 − ei8χ

4

4∑
i=2

|V′
i〉.

From this expression, the state

|W4〉 = 1
2 (eiπ |V′

1〉 + |V′
2〉 + |V′

3〉 + |V′
4〉) (39)
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FIG. 5. (Color online) Fidelity F4(υ, d) for the generation of
the W4 state as a function of the velocity and the interatomic
distance. Again, the maximum value F4(υ, d) = 1 is obtained only
for vanishing distance (d = 0) and velocities (40) with n = 0, 1. The
semitransparent plane with F4(υ, d) = 0.5 is plotted to guide the
eyes; the units are the same as in Figs. 3 and 4.

is readily produced if χ = π (2n + 1)/8 or, equivalently, if the
velocity takes the values

υ =
√

π

8

�2g2
ow

δ�2

8

π (2n + 1)
. (40)

More generally, Fig. 5 displays the fidelity F4(υ, d) =
|〈W4|�′

4〉|2 for the generation of the W4 states as a function
of the velocity and the interatomic distance due to the wave
function (38). Analogous to the last subsection, the maximum
fidelity F4(υ, d) = 1 is obtained only for zero distance (d = 0)
and velocities that fulfill the condition (40). For nonzero
distances, nevertheless, there is one broad parameters region
for which the W4 state (39) can be generated with a reasonable
high fidelity.

D. N � 5 partite W state

For any other number N � 5 of atoms in the chain, the
functions C1(υ, d), . . . , CN (υ, d) can still be computed from
the formula (25), and the wave function |�′

N 〉 can be further
analyzed with regard to the (υ, d) region, for which the
corresponding WN state is produced most reliably. In order
to generate such a state, according to the definition (1), the
conditions

|C1(υ, d)| = · · · = |CN (υ, d)| = 1√
N

(41)

need to be fulfilled. By performing numerical analysis,
however, it turns out that the Eqs. (41) cannot be fulfilled
for any choice of the velocity and interatomic distance and,
therefore, the fidelity |〈WN |�′

N 〉|2 is always smaller than unity.
Nevertheless, we can display this fidelity as a function of

υ and d and determine the region where it takes the highest
value. In order to proceed so, however, we still need to specify
the reference state |WN 〉, which we are looking in the form

|WN 〉 = 1√
N

(
eiφ|V′

1〉 +
N∑

i=2

|V′
i〉

)
(42)

with an unknown phase φ. The form of this state has been
chosen in line with the previously obtained W states (27), (35),
and (39). In order to calculate the unknown phase φ in (42),

let us first consider the W -class state

|�̃′
N 〉 = ei4χ

N∑
k=1

Ck(υ, 0)|V′
k〉

=
N∑

k=1

1 + (δk1N − 1) exp(ι̇2Nχ )

N
|V′

k〉, (43)

where the velocity υ is such that it makes the expressions∣∣∣∣|C1(υ, 0)| − 1√
N

∣∣∣∣ , . . . , ∣∣∣∣|CN (υ, 0)| − 1√
N

∣∣∣∣ (44)

minimal. It can be straightforwardly shown that all the expres-
sions (44) are minimized for the values χ = π (2n + 1)/(2N )
or, equivalently, for velocities

υ =
√

π

8

�2g2
ow

δ�2

2N

π (2n + 1)
. (45)

Substituting this value for χ , the state (43) then becomes

|�̃′
N 〉 = 2 − N

N
|V′

1〉 + 2

N

N∑
i=2

|V′
i〉. (46)

For a vanishing interatomic distance, therefore, the state |�̃′
N 〉

with velocities (45) gives the best approximation to the WN

state.
As we explained in the beginning of this subsection,

there are no such (υ, d) pairs for which the Eqs. (41) can
be fulfilled. However, we found the state (46) which gives the
best approximation to the WN state (42). By comparing the
states |WN 〉 with |�̃′

N 〉 for N = 4, we find that the phase φ is
equal to π and, therefore, the reference state becomes

|WN 〉 = 1√
N

(
eiπ |V′

1〉 +
N∑

i=2

|V′
i〉

)
, N � 4. (47)

In order to understand how well the state (46) approximates
the above state (47), in Fig. 6(a) we displayed the fidelity
F (N ) = |〈WN |�̃′

N 〉|2. As seen from this figure, the fidelity
has its maximum value F (N ) = 1 for N = 4 and decreases
monotonically as the number of atoms is increases in the chain.
The fidelity drops below the threshold F (N ) = 1/2 for N >

15. We therefore conclude that the state (46) approximates
reasonably well the reference state for at least 4 < N < 15.

Having specified the reference state (47), we can evaluate
the fidelities

FN (υ, d) = |〈WN |�′
N 〉|2; 5 � N < 15 (48)

as functions of the velocity and the interatomic distance. In
Fig. 6(b), for instance, we display the fidelity (48) for N = 5.
According to this figure, moreover, the fidelity reaches its
maxima F5(υ, d) = F (5) ≈ 0.97 for d = 0 and velocities that
satisfy the condition (45) with n = 0, 1. Let us note here
that the typical spacing between two neighbored potentials
wells (sites) of an optical lattice is in the submicrometer
range [10–12]. As seen from Fig. 6(b), this typical spacing is
comparable to the interatomic distance for which the fidelity
F5(υ, d) ≈ 0.9 is reasonable high and where the typical cavity
waist (w = 20 µm) has been considered as the distance units.
The recent developments in cavity QED, therefore, make it
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FIG. 6. (Color online) (a) The fidelity F (N ) = |〈WN |�̃′
N 〉|2 has

its maximum value F (N ) = 1 for N = 4 and decreases monotoni-
cally as the number of atoms increases. For N > 15, it falls below
the threshold F (N ) = 1/2 (dotted line). (b) Fidelity F5(υ, d) for the
production of the |W5〉 state due to |�′

5〉 as a function of the velocity
and the interatomic distance. Similarly as in Fig. 5, it reaches its
maxima for d = 0 and velocities (45) with n = 0, 1. The units are the
same as in Figs. 3 and 4.

possible to generate the W5 state by means of the proposed
scheme. If we compare, however, the (υ, d) regions for which
the fidelities F±(υ, d) [Fig. 4(b)–4(c)], F4(υ, d) [Fig. 5], and
F5(υ, d) [Fig. 6(b)] are higher than the threshold value of 1/2,
we also conclude that these regions become smaller as the
number of atoms (in the chain) increases.

IV. REMARKS ON THE IMPLEMENTATION OF
THE PROPOSED SCHEME

In our discussions so far, we have always assumed that the
velocity and the distance of the atoms in the chain, i.e., their
position within the optical lattice, can be controlled exactly.
With this assumption in mind, the atom-cavity coupling was
described by expression (10). This assumption, however,
neglects the transversal components of the cavity field as well
as the oscillations of the atoms within the potential well due to
their finite temperatures, which include both the axial (along
the z axis) and radial (along the x and y axes) oscillations [see
Fig. 2(a)]. This additional motion gives rise to a dispersion
of the atomic positions and velocities and, thus, leads to
uncertainties in selecting the dynamical parameters in our
model.

Obviously, any significant uncertainty in the parameters
{υ, d, δ,�, go,�} will influence the generation of the desired
W entangled states. According to our scheme, however, these

entangled states are produced when all the atoms have left
the cavity. Instead of understanding these parameters as exact,
therefore, they should refer to the mean values and we need to
analyze how small (but realistic) variations in these parameters
affect the final state of the atomic chain. For instance, the
radial oscillations of the atoms lead to the mean value of
the vacuum Rabi frequency go and axial oscillations to the
mean values of the interatomic distance d and velocity v,
respectively. Axial oscillations affects also the initial position
zo
i and velocity υi of each atom inside the lattice and result

in uncertainties �di = d − |zo
i+1 − zo

i | and �υi = υ − υi ,
where i = 1, . . . , N . Therefore, the plots E(υ, d), F±(υ, d),
F4(υ, d), and F5(υ, d) from Figs. 3–6 should be recalculated
as function of the mean values υ and d and their corresponding
uncertainties, respectively.

In order to determine realistic uncertainties for the distance
and velocity of the atoms in the chain, we first mention
that recent cavity QED experiments allow to position the
atoms relative to the cavity antinode with a precision of
∼0.1 µm by utilizing an additional dipole trap acting along
the cavity y axis [10]. When compared to the typical cavity
wavelength (∼0.8 µm), such positioning precision leads to
the spatial dispersion which, in turn, yields the mean value
go ≈ 0.75go that is still good enough for our purposes [see
Eq. (17)]. Moreover, the same spatial dispersion implies upper
bounds for the uncertainties |�d/d| � 0.2 and |�υ/υ| � 0.1,
if compared with the typical spacing (∼0.5 µm) between two
neighbored potential wells of an optical lattice and the typical
atomic velocities (∼0.5 m/s) along the lattice axis.

For a further analysis of how reliably a given (experimental)
setup will generate a particular W state, in Fig. 7 we display
the (mean) functions E(υ, d), F±(υ, d), and F 4(υ, d) by
calculating their average for a certain spread of parameters.
For each subfigure 7(a)–7(d), we have randomly chosen 20
uncertainties �d and �υ from the intervals [0, 0.2d] and
[0, 0.1υ], respectively. By comparing the Figs. 3(c) and 7(a)
it can be seen that the von Neumann entropy, for instance,
is reduced considerably for its sharp maxima (n = 3) and
that it remains almost the same around the broad maxima
(n = 0). Similarly, the mean fidelities which are displayed
in Figs. 7(b)–7(d), are considerably reduced for their sharp
maxima. These (υ, d) regions for the velocity and interatomic
distance in the atomic chain are, therefore, less useful for any
practical implementation and only the (υ, d) regions which
correspond to the broad maxima of the von Neumann entropy
and fidelities are relevant for the generation of entangled W

states by means of the proposed scheme.
Finally, we assumed in our treatment that the (center-

of-mass) position of each atom is not a quantum variable
but described classically by the vector �ri(t) = {0, 0, zo

i + υt}.
Obviously, such an assumption excludes several important
effects on the atomic motion that arise due to quantization
of the cavity field. For example, the correlations between the
internal dynamics of the atoms and their transverse (center-of-
mass) position may lead to an additional source of decoherence
and disentanglement in the effective evolution (20), if the
atom-cavity system is embedded in a realistic reservoir [19].
In our scheme, however, the external potential that is created
by the optical lattice dominates the kinetic energy associated
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D. GONŢA AND S. FRITZSCHE PHYSICAL REVIEW A 81, 022326 (2010)

FIG. 7. (Color online) Entanglement and fidelity measures averaged over 20 randomly chosen uncertainties � d and � υ of the interatomic
distance and the velocity, respectively. (a) Von Neuman entropy E(υ, d), (b) fidelities F −(υ, d) and (c) F +(υ, d) for a chain of three atoms, and
(d) F 4(υ, d) for a chain of four atoms. The uncertainties for the distance and velocities are chosen from the intervals [0, 0.2 d] and [0, 0.1 υ],
respectively (see text for further details).

with the atomic momentum. Therefore, any correlations which
are induced by the mechanical effects of cavity on atoms are
strongly suppressed and have been neglected in our treatment.

V. SUMMARY AND OUTLOOK

A scheme is proposed to generate the entangled W states for
a chain of N four-level atoms that are equally separated and
conveyed through an optical cavity by means of an optical
lattice. This scheme is based on the cavity-laser mediated
interaction between the atoms which are separated by a
macroscopic distance and works in a completely deterministic
way for qubits encoded by two hyperfine levels of the atoms.
Only two parameters, namely the velocity υ of the chain and
the interatomic distance d, determine the effective interaction
among the atoms and, thus, the degree of entanglement that is
obtained for the overall chain. The asymptotic coupling (23)
that completely characterizes the atomic evolution tells ex-
plicitly how the degree of entanglement depends on these
two parameters. The purpose of this work is to understand
the state evolution of the atomic chain and how it can
be utilized to generate the entangled W states. For chains
consisting of N = 2, 3, 4, and 5 atoms, Figs. 3–6 display the
von Neumann entropy and the fidelities as functions of the
velocity and interatomic distance. For 5 � N < 15, moreover,
we suggested the reference state (47) which is approximated
by the wave function |�′

N 〉 with a high fidelity. In view of
the recent developments in cavity QED, moreover, we have
also analyzed and discussed the proposed scheme with regard

to sensitivity in the formation of desired entanglement due to
uncertainties in the atomic motion.

For two or more atoms, the generation of entanglement by
means of a (detuned) optical cavity has been investigated in
several articles [15,16,20]. All these studies, however, relied
on the small sample approximation in which the separation
of the atoms is considered to be negligible when compared
with the cavity waist. Only recently [21–23], the atom-cavity
coupling (5) has been exploited in more detail in order to
suggest various entanglement schemes within cavity QED. In
the work by Amniat-Talab et al., for instance, a scheme was
proposed in which two atoms were coupled sequentially to a
resonant cavity and where a position-dependent coupling is
used to drive a STIRAP-type process in order to reduce the
losses due to atomic and cavity decays. Moreover, the scheme
by Marr et al. is also based on a STIRAP-type process and
describes an adiabatic evolution of a product state of two atoms
which are coupled simultaneously to a detuned cavity. The
success of this scheme, however, relies strongly on the ability
to detect the photons which leak through the cavity mirrors
with an efficiency close to one. In both schemes, therefore,
the atomic velocities and interatomic separation are used to
control the accuracy of a STIRAP-type process, in contrast to
our approach, in which these parameters are utilized to control
the degree of entanglement.

Our proposed scheme might be suitable also for ion-cavity
experiments in which N trapped ions interact simultaneously
with a (detuned) optical cavity [24,25]. In these experiments,
the same coupling to the laser and cavity fields applies for
ions with a three-level �-type configuration [as displayed
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in Fig. 2(b)]. For such a level configuration, the qubit is
associated with the states |1〉 and |a〉, and the W state can
be generated by moving the equally distanced trapped ions
along the trap. Similarly as for the atomic chains above, the
cavity-laser-mediated interaction between the ions is described
by the effective Hamiltonian (20) and, therefore, requires the
same analysis as performed in Secs. III A– III D in order to
produce the WN states.

Finally, we like to mention our recent article [26] in which
another deterministic scheme for generation of the multipartite

W states has been proposed. In contrast to this work, the
resonant atom-cavity interaction regime has been exploited for
N flying two-level (Rydberg) atoms which couple sequentially
(one after another) to the mode(s) of a high-finesse bimodal
cavity.
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