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The first stage of the hybrid quantum repeaters is entanglement generation based on transmission of pulses in
coherent states over a lossy channel. Protocols to make entanglement with only one type of error are favorable for
rendering subsequent entanglement distillation efficient. Here we provide the tight upper bound on performances
of these protocols that is determined only by the channel loss. In addition, we show that this bound is achievable
by utilizing a proposed protocol [K. Azuma, N. Sota, R. Namiki, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and
N. Imoto, Phys. Rev. A 80, 060303(R) (2009)] composed of a simple combination of linear optical elements and
photon-number-resolving detectors.
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I. INTRODUCTION

The transmission of quantum information is important
to accomplish applications such as quantum teleportation
[1], quantum key distribution [2], and distributed quantum
computation [3]. To achieve such quantum communication,
optical pulses are used as the carrier of quantum information.
In a practical communication channel, the pulses inevitably
suffer from photon losses that increase exponentially with
channel length, which makes it inefficient to conduct long-
distance quantum communication by direct transmission of
photons. One way to achieve efficient long-distance quantum
communication against the photon losses is to invoke a
quantum repeater protocol [4] utilizing quantum memories. In
fact, there are many works suggesting that long-distance quan-
tum communication can be efficiently achieved by repeater
protocols based on realizable quantum memories [5–14].

A type of the repeater protocols we focus on here is the
so-called hybrid quantum repeater protocol [15–19]. These
protocols are based on a simple interaction between a qubit
quantum memory A and an optical pulse a prepared in a
coherent state, which is

V̂ |0〉A|α〉a = |0〉A|α0〉a,
(1)

V̂ |1〉A|α〉a = |1〉A|α1〉a,
where V̂ is a unitary operator and |α〉a and {|αj 〉a}j=0,1

are coherent states. Quantum memories with this type of
interaction are considered to be implementable by individual
�-type atoms, single electrons trapped in quantum dots,
nitrogen-vacancy (NV) centers in a diamond with a nuclear
spin degree of freedom, or neutral donor impurities in
semiconductors [15,16,18]. As an advantage of the hybrid
quantum repeater protocols, all the stages in the repeater
protocol—entanglement generation, entanglement distillation
[20–22], and entanglement swapping [23]—are shown to be
implementable [15,16,24] only by the unitary operations in
the form of Eq. (1). In the stream of the stages in the
repeaters, an undoubted method to achieve higher efficiencies
is to find a good entanglement generation protocol, leaving
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the quantum memories in entanglement that is efficiently
distillable at the distillation stage and efficiently connectable at
the entanglement swapping stage. Since realistic entanglement
distillation protocols [20–22] and entanglement swapping [23]
work more efficiently against a restricted type of errors,
entanglement generation protocols yielding entanglement with
only one type of error are favorable for a high performance of
the hybrid quantum repeaters. Actually, a number of protocols
[17–19] have been proposed for generating the single-error-
type entanglement, which raises a fundamental question of
how the amount of the channel loss imposes an ultimate bound
on the efficiency of generating single-error-type entanglement.
The answer to this question not only clarifies the possibility of
further improvement of the entanglement generation protocols
in hybrid quantum repeaters but also gives a fundamental
benchmark enabling us to compare other types of quantum
repeaters to hybrid quantum repeaters.

Reference [17] can be regarded as one of the first attempts
to derive such a limit of performance of single-error-type
entanglement generation. There, van Loock et al. have con-
sidered the cases where a single probe pulse interacts with the
sender’s quantum memory and with the receiver’s quantum
memory in exactly the same manner, as in the protocols in
Refs. [17,18]. The question was the best performance among
arbitrary choices of the measurement on the probe pulse after
the interactions. They have given an upper bound on the
performance, but it remains to be open whether the bound
is achievable by optimizing the measurement. On the other
hand, in Ref. [19], we have presented a protocol using two
probe pulses that interact with the quantum memories of
the sender and of the receiver independently, and we have
shown that the protocol has a higher performance than the
single-probe protocols in Refs. [17,18]. At this point, it became
clear that we need a more general bound that encompasses both
one-probe and two-probe protocols. Toward this goal, we have
given a preliminary result in Ref. [19], which was limited
to the cases where the sender begins with a symmetric state
(|0〉A + |1〉A)/

√
2.

In this article, we solve the final piece of the puzzle
about the limit of single-error-type entanglement generation
protocols by providing the tight upper bound encompassing
all the protocols starting from interaction (1) by the sender.
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The bound is stated in terms of the average singlet fraction
of generated entanglement and by the success probability,
and it is determined only by the channel loss, that is, the
length of the channel. Moreover, the general bound is shown
to be achievable by using the proposed protocol [19] that is
realizable by a simple combination of linear optical elements
and photon-number-resolving detectors.

This article is organized as follows. In Sec. II, we define
protocols to generate entanglement with only one type of error
and we define the measure of its performance. We derive an
upper bound on those performances in Sec. III, which is the
main theorem in this article. In Sec. IV, we show that the upper
bound is achievable by convex combination of the protocol
proposed in Ref. [19] and a trivial protocol. In Sec. V, we
derive an explicit expression of the tight upper bound as a
function of the transmittance of the channel loss. Section VI
concludes the article.

II. SINGLE-ERROR-TYPE ENTANGLEMENT
GENERATION AND THE MEASURE

OF ITS PERFORMANCE

Let us define the family of single-error-type entanglement
generation protocols considered in this article. We require
Alice and Bob to make an entangled state with only one
type of error. More precisely, Alice and Bob are required to
make qubits AB in an entangled state that can be transformed
into a state contained in the subspace spanned by Bell states
{|�±〉AB} via local unitary operations, where |�±〉AB :=
(|00〉AB ± |11〉AB)/

√
2.

To generate such an entangled state, Alice and Bob execute
the following steps (Fig. 1): (i) Alice prepares qubit A

in her desired state |φ〉A = ∑
j=0,1 ei�j

√
qj |j 〉A with real
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FIG. 1. The scenario of entanglement generation protocols.
|φ〉A := ∑

j=0,1
√

qj e
i�j |j〉A. Bob’s quantum operation returns qubit

B in a state depending on outcome k, and he shares the outcome with
Alice by using classical communication.

parameters �j , qj � 0, and
∑

j qj = 1, and she makes it

interact with a pulse in a coherent state |α〉a = e−|α|2/2eαâ† |0〉a
via a unitary operation V̂ of Eq. (1). (ii) Alice sends the pulse
a to Bob, through a lossy channel described by an isometry,

N̂ |α〉a = |
√

T α〉b|
√

1 − T α〉E, (2)

where 0 < T < 1 is the transmittance of the channel and
system E is the environment. (iii) Upon receiving the pulse
in mode b, Bob may perform arbitrary operations and
measurements involving pulse b and his memory qubit B and
declare success outcome k occurring with a probability pk or
failure. (iv) If Step (iii) succeeds, depending on the outcome
k, Alice and Bob apply a local unitary operation ÛA

k ⊗ ÛB
k to

the obtained state, in order to satisfy that the final state τ̂ AB
k is

contained in the subspace spanned by {|�±〉AB} and also that
the nearest Bell state to the state τ̂ AB

k is |�+〉AB .
We evaluate the performance of the protocols by the total

success probability,

Ps =
∑

k

pk, (3)

and the averaged fidelity of the obtained entangled states,

F = 1

Ps

∑
k

pkFk, (4)

where Fk is

Fk := 〈�+|τ̂ AB
k |�+〉. (5)

Thanks to the choice of the unitary operation in Step (iv), Fk

is equivalent to the so-called singlet fraction [22]. Since τ̂ AB
k

is contained in the subspace spanned by {|�±〉AB}, Fk � 1/2
holds. This means

F � 1/2. (6)

We also allow Alice and Bob to switch among two or more
protocols probabilistically. The performance of such a mixed
protocol is determined as follows. Suppose that Alice and
Bob can execute a protocol with performance (P (1)

s , F (1)) and
a protocol with performance (P (2)

s , F (2)). Then, by choosing
these protocols with probabilities {r, 1 − r}, Alice and Bob
can achieve performance (P ′

s , F
′) determined by(

P ′
s

P ′
sF

′

)
= r

(
P (1)

s

P (1)
s F (1)

)
+ (1 − r)

(
P (2)

s

P (2)
s F (2)

)
. (7)

It is thus convenient to describe the performance of a
protocol by point (Ps, PsF ). Then, the set of achievable points
(Ps, PsF ) forms a convex set.

III. AN UPPER BOUND ON THE PERFORMANCE OF A
SINGLE-ERROR-TYPE ENTANGLEMENT

GENERATION PROTOCOL

We first introduce a protocol equivalent to the single-
error-type entanglement generation protocol. Steps (i) and (ii)
indicate that, when the pulse arrives at Bob, the state of the
total system AbE is written in the form of

|ψ〉AbE =
∑
j=0,1

√
qj |j 〉A|uj 〉b|vj 〉E, (8)
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with 0 � q0 � 1, q0 + q1 = 1, and

|〈u1|u0〉|1−T = |〈v1|v0〉|T > 0. (9)

Let us define a phase-flip channel �A on qubit A by

�A(ρ̂) := f ρ̂ + (1 − f )σ̂ A
z ρ̂σ̂ A

z , (10)

with

f := 1 + |〈v1|v0〉|
2

= 1 + |〈u1|u0〉| 1−T
T

2
(11)

and σ̂ A
z := |0〉〈0|A − |1〉〈1|A. From Eqs. (8), (10), and (11),

we have

TrE[|ψ〉〈ψ |AbE] = �A(|ψ ′〉〈ψ ′|Ab), (12)

where
|ψ ′〉Ab :=

∑
j=0,1

√
qj e

i(−1)j ϕ|j 〉A|uj 〉b, (13)

with 2ϕ := arg[〈v1|v0〉]. The effect of the lossy channel is
thus equivalently described as preparation of |ψ ′〉Ab followed
by �A. Since any operation of Bob commutes with �A, the
protocol is equivalent to the following sequence (Fig. 2):
(1) System Ab is prepared in |ψ ′〉Ab; (2) Bob’s successful
measurement leaves system AB in a state ρ̂AB

k ; (3) �A is
applied on qubit A.

In what follows, according to the equivalent protocol of
Fig. 2, we show that, for fixed T and |〈u1|u0〉|, the performance
(Ps, PsF ) of an arbitrary protocol must be in the triangle with
the apexes,

X0 := (0, 0),

X1 :=
(

1 − |〈u1|u0〉|, (1 − |〈u1|u0〉|)1 + |〈u1|u0〉| 1−T
T

2

)
,

X2 := (1, 1/2) . (14)

The proof is divided into two cases.

kk

U
A
k U

B
k

V

A a

b B

Share

τ AB
k

φ′ αA a

ΛA

ρ AB
k

T

ψ′ Ab

Quantum
operation

FIG. 2. An imaginary protocol equivalent to the real protocol
in Fig. 1. |φ′〉A := ∑

j=0,1
√

qj e
i�j +i(−1)j ϕ |j〉A. Channel a → b

becomes ideal at the expense of the application of a phase-flip
channel �A.

(a) |q0 − q1| = 1 or |〈u1|u0〉| = 1. In these cases, from
Eq. (13), |ψ ′〉Ab is a product state between system A and
b. This implies that τ̂ AB

k is a separable state, which means
Fk � 1/2. From Eq. (6), F = 1/2. Thus, in this case, the
performance (Ps, PsF ) of protocols must be on the segment
X0X2.

(b) |q0 − q1| < 1 and |〈u1|u0〉| < 1. As stated in Step (iv),
whenever Bob declares success outcome k, the state τ̂ AB

k of
their qubits satisfies

〈�±|τ̂ AB
k |�±〉 = 〈� ′±

k |�A(ρ̂AB
k )|� ′±

k 〉 = 0, (15)

with |� ′±
k 〉AB := Û

A†
k ⊗ Û

B†
k |�±〉AB = (|x0

k 〉A|y1
k 〉B ± |x1

k 〉A
|y0

k 〉B)/
√

2, |�±〉AB := (|01〉AB ± |10〉AB)/
√

2, |xj

k 〉A :=
Û

A†
k |j 〉A and |yj

k 〉B := Û
B†
k |j 〉B (j = 0, 1). Since ρ̂AB

k is
positive and 0 < f < 1, Eq. (15) indicates√

ρ̂AB
k |� ′±

k 〉AB = 0, (16)√
ρ̂AB

k σ̂ A
z |� ′±

k 〉AB = 0, (17)

for both ±. Note that Eq. (16) implies

ρ̂AB
k = 1 + ak

2
|�′+

k 〉〈�′+
k |AB + 1 − ak

2
|�′−

k 〉〈�′−
k |AB

+ bk

2
|�′+

k 〉〈�′−
k |AB + b∗

k

2
|�′−

k 〉〈�′+
k |AB, (18)

where |�′±
k 〉AB := Û

A†
k ⊗ Û

B†
k |�±〉AB = (|x0

k 〉A|y0
k 〉B ±

|x1
k 〉A|y1

k 〉B)/
√

2, and the positivity of ρ̂AB
k implies

a2
k + |bk|2 � 1. (19)

Note that 0 � ak � 1 is satisfied by the choice of the unitary
operation ÛA

k ⊗ ÛB
k in Step (iv). Adding and subtracting

Eqs. (16) and (17), we obtain√
ρ̂AB

k

∣∣x0
k

〉
A

∣∣y1
k

〉
B

=
√

ρ̂AB
k σ̂ A

z

∣∣x0
k

〉
A

∣∣y1
k

〉
B

=
√

ρ̂AB
k

∣∣x1
k

〉
A

∣∣y0
k

〉
B

=
√

ρ̂AB
k σ̂ A

z

∣∣x1
k

〉
A

∣∣y0
k

〉
B

= 0. (20)

Since ρ̂AB
k �= 0, the four states, |x0

k 〉A|y1
k 〉B , σ̂ A

z |x0
k 〉A|y1

k 〉B ,
|x1

k 〉A|y0
k 〉B , and σ̂ A

z |x1
k 〉A|y0

k 〉B , must be linearly dependent,

which only happens when {|xj

k 〉A}j=0,1 is a set of eigenvectors
of σ̂ A

z . Combining this fact with Eq. (18), we obtain

ρ̂A
k := TrB

[
ρ̂AB

k

] = 1̂A + zkσ̂
A
z

2
, (21)

where zk := ±Re(bk).
The fidelity Fk of the final state is given by Fk =

〈�+|τ̂ AB
k |�+〉 = 〈�′+

k |�A(ρ̂AB
k )|�′+

k 〉. Since {|xj

k 〉A}j=0,1 is
an eigenbasis of σ̂ A

z , we have σ̂ A
z |�′+

k 〉 = ±|�′−
k 〉, which

means Fk = f 〈�′+
k |ρ̂AB

k |�′+
k 〉 + (1 − f )〈�′−

k |ρ̂AB
k |�′−

k 〉.
From Eqs. (18) and (11), the fidelity Fk is
rewritten as

Fk = 1
2 (1 + |〈v1|v0〉|ak). (22)
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Combining this equation, Eq. (19), and the definition of zk , we
have (

2Fk − 1

|〈v1|v0〉|
)2

+ z2
k � 1. (23)

Let us consider the success probability of the protocol.
Suppose that Bob’s failure measurement returns a state ρ̂AB

f

with probability 1 − Ps . Since Alice does nothing until the end
of Bob’s generalized measurement, Alice’s averaged density
operator is unchanged through the measurement, that is,

ψ̂ ′A = Psρ̂
A
s + (1 − Ps)ρ̂f

A, (24)

where ψ̂ ′A := Trb[|ψ ′〉〈ψ ′|Ab], ρ̂A
s := (

∑
k pkρ̂

A
k )/Ps and

ρ̂f
A := TrB[ρ̂f

AB]. Equation (13) indicates that ψ̂ ′A is in the
form of

ψ̂ ′A = 1̂A + x0σ̂
A
x + y0σ̂

A
y + z0σ̂

A
z

2
, (25)

where σ̂ A
x := |0〉〈1|A + |1〉〈0|A, σ̂ A

y := −i|0〉〈1|A + i|1〉〈0|A
and x0, y0, and z0 satisfy

z0 = q0 − q1,
(26)

x2
0 + y2

0 = 4q0q1|〈u1|u0〉|2 = (
1 − z2

0

)|〈u1|u0〉|2.
On the other hand, ρ̂A

s is written as

ρ̂A
s = 1

Ps

∑
k

pkρ̂
A
k = 1̂ + zsσ̂

A
z

2
, (27)

where zs := (
∑

k pkzk)/Ps , and it satisfies(
2F − 1

|〈v1|v0〉|
)2

+ z2
s � 1 (28)

from Eq. (23) and the convexity of function x2. Note that this
inequality implies

F � 1 + |〈v1|v0〉|
2

= 1 + |〈u1|u0〉| 1−T
T

2
, (29)

where we used Eq. (9). We also decompose ρ̂A
f as

ρ̂A
f = 1̂A + xf σ̂ A

x + yf σ̂ A
y + zf σ̂ A

z

2
(30)

with real numbers xf , yf , zf satisfying

x2
f + y2

f + z2
f � 1. (31)

From Eq. (24), we have

x0 = (1 − Ps)xf ,

y0 = (1 − Ps)yf , (32)

z0 = Pszs + (1 − Ps)zf .

From these equations, Eqs. (26) and (31), we
obtain

g(Ps) := P 2
s

(
1 − z2

s

) − 2Ps(1 − z0zs)

+ (1 − |〈u1|u0〉|2)
(
1 − z2

0

)
� 0, (33)

or, equivalently, we have

[(1 − |〈u1|u0〉|2)z0 − Pszs]
2

�
[
1−(

1−z2
s

) |〈u1|u0〉|2
] (

Ps − 1 − |〈u1|u0〉|2
1 − |〈u1|u0〉|

√
1 − z2

s

)

×
(

Ps− 1 − |〈u1|u0〉|2
1 + |〈u1|u0〉|

√
1 − z2

s

)
. (34)

Since z2
0 < 1 and 0 < |〈u1|u0〉| < 1, we have

g(1 − |〈u1|u0〉|2) = −(1 − |〈u1|u0〉|2)
[(

1 − z2
s

) |〈u1|u0〉|2
+ (z0 − zs)

2
]

< 0, (35)

and

g(1) = − (
1 − z2

0

) |〈u1|u0〉|2 − (z0 − zs)
2 < 0, (36)

which means g(Ps) < 0 for Ps � 1 − |〈u1|u0〉|2 because g(Ps)
is linear or convex. Thus, Eq. (33) implies

Ps < 1 − |〈u1|u0〉|2. (37)

To satisfy inequality (34), the right-hand side of the inequality
should be nonnegative, which occurs only when

Ps � 1 − |〈u1|u0〉|2
1 + |〈u1|u0〉|

√
1 − z2

s

(38)

under the condition of Eq. (37). Combining Eq. (28), we have

Ps � 1 − |〈u1|u0〉|2
1 + |〈u1|u0〉|

(
2F−1

|〈v1|v0〉|
) , (39)

which can be rewritten as

PsF � 1

2

(
1 − |〈v1|v0〉|

|〈u1|u0〉|
)

Ps

+ 1

2
(1 − |〈u1|u0〉|2)

|〈v1|v0〉|
|〈u1|u0〉| (40)

= 1

2

(
1 − |〈u1|u0〉| 1−2T

T

)
Ps

+ 1

2
(1 − |〈u1|u0〉|2)|〈u1|u0〉| 1−2T

T , (41)

where we used Eq. (9).
Since Eqs. (6), (29), and (41) must be satisfied at the same

time, the performance (Ps, PsF ) of an arbitrary protocol must
be in the triangle with the apexes X0, X1, and

X3 := (
1 − |〈u1|u0〉|2, 1

2 (1 − |〈u1|u0〉|2)
)
, (42)

which is included in the triangle X0X1X2. This completes the
proof.

IV. SIMULATABILITY OF AN ARBITRARY PROTOCOL
VIA SYMMETRIC PROTOCOLS

Here we show that the performance of an arbitrary protocol,
which is in the triangle defined by Eq. (14) with fixed T and
|〈u1|u0〉|, is simulatable by utilizing a protocol in Ref. [19]. In
the protocol in Ref. [19], Alice starts with preparing system
A in a symmetric state |φ〉A = (|0〉A + |1〉A)/

√
2, and, upon

receiving pulses from Alice, Bob carries out a measurement
that is composed of a simple combination of linear optical
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elements and photon-number-resolving detectors. Let us call
it symmetric protocol in what follows. With a proper choice
of the intensity of pulse a, the symmetric protocol can achieve
(Ps, PsF ) with

Ps = 1 − u,
(43)

F = 1 + u
1−T
T

2
,

for any u with 0 < u � 1 [19]. This indicates that the sym-
metric protocol can achieve performance (Ps, PsF ) = X0 by
choosing u = 1 and performance (Ps, PsF ) = X1 by choosing
u = |〈u1|u0〉|. On the other hand, performance (Ps, PsF ) =
X2 is also achievable by a trivial protocol in which Alice
and Bob prepare their memories in state |00〉AB and declare
success all the time. The achievability of points X0, X1, and
X2 indicates that all the points in the triangle X0X1X2 are
achievable by mixing. Since this fact holds for any |〈u1|u0〉|,
we conclude that, for given T , the performance of an arbitrary
protocol is simulatable by combining symmetric protocols and
the trivial protocol.

V. OPTIMAL PERFORMANCE OF SINGLE-ERROR-TYPE
ENTANGLEMENT GENERATION

Here we calculate the optimal performance of the mixture of
arbitrary single-error-type entanglement generation protocols
for given T . As shown in the preceding section, for any
T , the performance (Ps, PsF ) of an arbitrary protocol is
achievable by mixing symmetric protocols and the trivial
protocol. Since the performance achieved by a symmetric
protocol or the trivial protocol can be described by a point
(Ps, PsF ) = (Ps, PsF

sym(Ps)) with

F sym(Ps) := 1 + (1 − Ps)
1−T
T

2
, (0 � Ps � 1), (44)

the performance of the mixture of arbitrary protocols must
be in the convex hull of the region S := {(Ps, PsF ) | 0 �
Ps � 1, 1/2 � F � F sym(Ps)}. In what follows, we show
that the convex hull, Conv(S), is given by the region
CS := {(Ps, PsF ) | 0 � Ps � 1, 1/2 � F � F opt(Ps)} with
F opt(Ps) defined by

F opt(Ps) :=
{

1+(1−Ps )
1−T
T

2

(
Ps � T

1−T

)
,

1
2 + 1−Ps

2Ps

T
1−2T

(
1−2T
1−T

) 1−T
T

(
Ps > T

1−T

)
.

(45)

Note that Ps > T/(1 − T ) holds only when T < 1/2. The tight
upper bound F opt(Ps) is depicted in Fig. 3.

Let us proceed to the proof of CS = Conv(S). From
Eq. (44), we have

dPsF
sym(Ps)

dPs

= 1

2

[
1+

(
1− Ps

T

)
(1 − Ps)

1−2T
T

]
, (46)

d2PsF
sym(Ps)

dPs
2 = 1

2

1 − T

T

(
Ps

T
− 2

)
(1 − Ps)

1−3T
T . (47)

The latter equation indicates

0.5
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FIG. 3. (Color online) The optimal performances of single-error-
type entanglement generation for 10 � l � 100 km at intervals of
10 km, where we assume T = e−l/ l0 and l0 = 25 km (corresponding
to ∼0.17 dB/km attenuation).

d2PsF
sym(Ps)

dPs
2 > 0 (Ps > 2T ),

(48)
d2PsF

sym(Ps)

dPs
2 � 0 (Ps � 2T ).

(a) T � 1/2. In this case, F opt(Ps) = F sym(Ps), and hence
S = CS . In addition, Eq. (48) indicates that PsF

sym(Ps) is
concave for 0 � Ps � 1. These facts imply that Conv(S) is
equivalent to S, namely, to CS .

(b) T < 1/2. Let P ∗
s be P ∗

s := T/(1 − T ). The proof
begins with noting the following facts: (i) F opt(Ps) = F sym(Ps)
for 0 � Ps < P ∗

s ; (ii) F opt(P ∗
s ) = F sym(P ∗

s ); (iii) F opt(1) =
F sym(1); (iv) PsF

opt(Ps) and [dPsF
opt(Ps)]/(dPs) are contin-

uous at Ps = P ∗
s ;

(v)
d2PsF

opt(Ps)

dPs
2

{
< 0, (0 � Ps < P ∗

s ),
= 0, (P ∗

s < Ps);
(49)

(vi) F opt(Ps) > F sym(Ps) for P ∗
s < Ps < 1. Facts (i)–(v) are

easily confirmed from Eqs. (44)–(45). Fact (vi) is proven by
facts (ii)–(iii),

dPsF
opt(P ∗

s )

dPs

= dPsF
sym(P ∗

s )

dPs

, (50)

and by Eqs. (48)–(49). Facts (iv)–(v) show that CS is convex.
Facts (i)–(iii) and (vi) imply S ⊂ CS . From facts (i)–(v), we
have CS ⊂ Conv(S). Therefore, we conclude Conv(S) = CS .

VI. SUMMARY

In conclusion, we have provided the tight upper bound on
the performances of protocols that generate entanglement with
only one type of error by transmitting pulses in coherent states
through a lossy channel. As represented by Eq. (45), the tight
upper bound is stated in terms of the success probability Ps

and the average singlet fraction F of generated entanglement
and is determined only by the transmittance T of the channel.
In addition, we have shown that the upper bound is achievable
without large-scale quantum operations, namely, by utilizing a
simple protocol [19] composed of linear optical elements and
photon-number-resolving detectors.

The method enabling us to derive such a general bound can
be summarized as follows. The proof begins with replacing
the real protocol in Fig. 1 by an equivalent (virtual) protocol
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in Fig. 2. Thanks to the replacement, the effect of the optical
loss in the practical channel is reduced to a local phase-flip
channel acting on Alice’s memory, and the quality of final
entanglement is bounded by the form of the local density
operator of the memory A fed to the phase-flip channel [see
Eqs. (21) and (23)]. Since the local density operator can only be
altered by Bob remotely at the expense of a failure probability,
we are led to Eq. (24) relating the change in Alice’s local
density operator and the success probability. This relation
enables us to derive a trade-off relation, Eq. (41), between
the success probability Ps and the average singlet fraction F ,
which leads to the tight upper bound of arbitrary protocols.

Throughout this article, we have focused on the entan-
glement generation protocols with only one type of error,
based on the fact that the known simple distillation protocols
and swapping protocols work more efficiently against such a
restricted type of errors. In addition, since the efficiencies of the
entanglement distillation protocols and swapping protocols for
the single-error-type entanglement are usually characterized
by the singlet fraction, we have adopted a specific set of
measures, the total probability Ps and the singlet fraction
F . In order to treat the entanglement generation protocols
separately from distillation protocols and swapping protocols,
we have considered the average of the singlet fractions, which
has an operational meaning of treating all the success events

in the same manner in the subsequent steps of distillation and
swapping. If we look into the properties of the distillation
protocols in more detail, there is a possibility that accepting
multiple types of errors for higher success probability in the
generation protocol could lead to a better result if there exists a
distillation protocol with a lesser penalty on the multiple types
of errors. It is also better to postpone the averaging until the end
of the whole protocol. Pursuing such possibilities is important
for implementation of quantum repeaters and is also interesting
in connection with the fundamental question of what is the best
way of distributing entanglement against an optical loss in the
channel. We expect that the methods introduced here may be
also useful in solving such general problems in the search for
good entanglement generation protocols in hybrid quantum
repeaters.
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