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Overcoming a limitation of deterministic dense coding with a nonmaximally entangled initial state
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Under two-party deterministic dense coding, Alice communicates (perfectly distinguishable) messages to Bob
via a qudit from a pair of entangled qudits in pure state |�〉. If |�〉 represents a maximally entangled state (i.e.,
each of its Schmidt coefficients is

√
1/d), then Alice can convey to Bob one of d2 distinct messages. If |�〉 is

not maximally entangled, then Ji et al. [Phys. Rev. A 73, 034307 (2006)] have shown that under the original
deterministic dense-coding protocol, in which messages are encoded by unitary operations performed on Alice’s
qudit, it is impossible to encode d2 − 1 messages. Encoding d2 − 2 messages is possible; see, for example, the
numerical studies by Mozes et al. [Phys. Rev. A 71, 012311 (2005)]. Answering a question raised by Wu et al.
[Phys. Rev. A 73, 042311 (2006)], we show that when |�〉 is not maximally entangled, the communications limit
of d2 − 2 messages persists even when the requirement that Alice encode by unitary operations on her qudit is
weakened to allow encoding by more general quantum operators. We then describe a dense-coding protocol that
can overcome this limitation with high probability, assuming the largest Schmidt coefficient of |�〉 is sufficiently
close to

√
1/d . In this protocol, d2 − 2 of the messages are encoded via unitary operations on Alice’s qudit, and

the final (d2 − 1)-th message is encoded via a non-trace-preserving quantum operation.

DOI: 10.1103/PhysRevA.81.022314 PACS number(s): 03.67.Hk, 03.65.Ud, 03.67.Mn

I. INTRODUCTION

We assume that Alice and Bob, located some distance
apart, each initially control one qudit from an entangled
pair in pure state |�〉. Deterministic dense coding, originated
by Bennett and Wiesner [1], allows Alice to send to Bob,
via her qudit, one of up to d2 perfectly distinguishable
messages. Under the original protocol for deterministic dense
coding, to send a message to Bob, Alice first applies to
her qudit a local unitary operation selected from a group of
possible “encoding unitaries.” She then sends her qudit via a
d-dimensional noiseless quantum channel to Bob, who—with
both qudits now in his possession—performs a measurement
that reveals the particular encoding unitary operation that Alice
had performed; that is, it reveals the particular message Alice
had chosen to send. So that these messages are perfectly
distinguishable by Bob (the hallmark of deterministic dense
coding), the set of encoding unitaries that Alice may apply
to her qudit must produce a set of orthogonal states in the
state-space of the two-qudit system that Alice and Bob share.
Since that state-space is of dimension d2, she can send at
most d2 messages to Bob by this process. She can send as
many as d2 messages only when |�〉 is a maximally entangled
state, meaning that its Schmidt coefficients are identical (each
equaling

√
1/d).

When |�〉 is not maximally entangled, Alice cannot send
d2 messages via the original dense-coding protocol; in fact,
Ji et al. [2] establish that she can send at most d2 − 2 messages
(a result suggested by numerical data in [3]). Wu et al. ask ([4],
p. 10) whether Alice’s inability to create d2 − 1 messages
(when |�〉 is not maximally entangled) reflects a limitation
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of the type of unitary encoding employed in the original
protocol. We answer this question here, showing that the
limitation of d2 − 2 messages persists even when Alice uses
as encoding operations the most general quantum operations
possible. Alice performs a quantum operation on her qudit via
the following three-step process: (i) she pairs her qudit with
an ancillary quantum particle (of dimension � 2 but otherwise
arbitrary), (ii) she then applies a unitary operation to the pair,
and (iii) she then either measures the ancilla or chooses not
to measure the ancilla. Mathematically speaking, if in step
(iii), she chooses not to measure the ancilla, then the quantum
operation Alice has performed is trace preserving. If in step
(iii), she does measure the ancilla, then her quantum operation
may not preserve trace. For further information about quantum
operators, the reader may consult Ref. ( [5], Chapter 8).

This article is organized as follows. In the next section,
we describe the mathematical framework for our results,
providing a discussion of deterministic dense coding with
quantum encoding operators. In Sec. III, we show that when
the initial state |�〉 of their two-qudit system is not maximally
entangled, Alice cannot send d2 − 1 messages to Bob under
deterministic dense coding even when she may use quantum
operators to encode messages. However, in Sec. IV, we
introduce a new dense-coding procedure that allows some
nonmaximally entangled states |�〉 to support, with high prob-
ability, communication of d2 − 1 perfectly distinguishable
messages, with d2 − 2 of the messages encoded by unitary
operations on Alice’s qudit and the final (d2 − 1)-th message
encoded via a (non-trace-preserving) quantum operation. In
fact, for any probability p as close as desired to 1, we
show there is a nonmaximally entangled state |�〉 that will
support, with probability exceeding p, communication of
d2 − 1 messages under our protocol. Our protocol is designed
so that Bob will never misinterpret a message; rather, there is
a small chance he will receive no message. He will receive
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no message only when Alice wishes to send the (d2 − 1)-th
message and her encoding procedure fails. We conclude the
article with a detailed example illustrating how Alice and
Bob can, with probability exceeding 97%, use a two-qubit
system in state |�〉 = 9

4
√

10
|00〉 +

√
79

4
√

10
|11〉 as a resource for

the communication of three perfectly distinguishable messages
(via a two-dimensional noiseless quantum channel). In this
example, the probability of success rises to more than 98% if
Alice and Bob are willing to tolerate a small chance of Bob’s
incorrectly interpreting a message.

We note that the d = 2 case of the result of Sec. III of this
article appears in Appendix A of [6].

II. BACKGROUND

A. Initial state

Let H = HA ⊗ HB be the state space of the two-qudit sys-
tem that Alice and Bob share, where (|0〉A, |1〉A, . . . , |d − 1〉A)
is an orthonormal basis for HA and (|0〉B, |1〉B, . . . , |d − 1〉B)
is an orthonormal basis for HB . Note H has orthonormal basis
B = {|ij 〉 : 0 � i, j � d − 1}, where we have used |ij 〉 as a
convenient substitute for |i〉A|j 〉B . We assume that the initial
state |�〉 of Alice and Bob’s two-qudit system has the Schmidt
representation

|�〉 =
d−1∑
j=0

√
λj |jj 〉, (1)

where the Schmidt coefficients
√

λ0,
√

λ1, . . . ,
√

λd−1 have
squares summing to 1 (which assures normalization) and
where we assume, without loss of generality, that

λ0 � λ1 � · · · � λd−1 � 0. (2)

We frequently describe the initial state in terms of its density
operator |�〉〈�|.

Wu et al. ([4], Sec. IV.B) establish that when |�〉 of
Eq. (1) allows Alice to send to Bob L perfectly distinguishable
messages (using any encoding scheme), then

λ0 � d

L
. (3)

Suppose, for example, that L > d(d − 1); then the preceding
inequality yields λ0 < 1/(d − 1). Because

√
λ0 is the largest

Schmidt coefficient of |�〉 and
∑d−1

j=0 λj = 1, it follows that
if λ0 < 1/(d − 1), then every Schmidt coefficient in Eq. (1)
is nonzero. In particular, if we assume Alice is able to
deterministically send L = d2 − 1 messages, then, because
d2 − 1 > d(d − 1), all Schmidt coefficients of |�〉 must be
nonzero. For the remainder of this article, we assume all
Schmidt coefficients of |�〉 are nonzero.

B. Encoding operations

For any vector space W , we let L(W ) denote the vector
space of all linear operators on W .

Recall that Alice encodes messages for Bob, physically
speaking, by applying a unitary operation to either (i) her
qudit or, more generally, (ii) to her qudit paired with an
ancillary particle, perhaps measuring the ancilla afterward.
In either case, Alice’s encoding action may be represented

mathematically by a quantum operator applied to |�〉〈�| ∈
L(H ):

|�〉〈�| �→
N−1∑
j=0

(K (j ) ⊗ IB)|�〉〈�|(K (j ) ⊗ IB)†, (4)

where N is a positive integer and the K (j )’s are Kraus operators
in L(HA) satisfying

N−1∑
j=0

(K (j ))†K (j ) � IA. (5)

In case (i), the sum on the right of relation (4) has only one
summand and K (0) = U , where U is a unitary operator on HA.
Thus, in case (i) the inequality (5) is an equality. It is also
an equality in case (ii) (see, e.g., Appendix B) provided Alice
does not measure the ancilla.

As we explain in Sec. II E, it is easy to see that Alice’s
ability to measure the ancilla can never be used to increase the
number of messages she can send to Bob through deterministic
dense coding. Thus, for now, we assume that Alice does not
measure the ancillary particle, which means that in either case
(i) or (ii), Alice’s encoding action is described by a quantum
operator E having the operator sum representation

E(ρ) =
N−1∑
j=0

(K (j ) ⊗ IB)ρ(K (j ) ⊗ IB)†, ρ ∈ L(H ), (6)

where the K (j )’s satisfy

N−1∑
j=0

(K (j ))†K (j ) = IA, (7)

making E trace preserving.
The quantum operator E of Eq. (6) has many different

operator sum representations (see, e.g., [5], Theorem 8.2).
Among these representations, there is one for which the
number N of Kraus-operator elements assumes its minimum
possible value m. This number m is the Kraus rank of E , and it
is easy to see that any group of exactly m Kraus-operator
elements representing E must be linearly independent in
L(HA) [which is equivalent to the linear independence of
K (0) ⊗ IB , K (1) ⊗ IB , . . . , K (m−1) ⊗ IB in L(H )].

We now state an important lemma for our work; its (short)
proof occupies Appendix A.

Lemma II.1. Suppose that all the Schmidt coefficients
of |�〉 in the representation (1) are nonzero and that
K (0),K (1), . . . , K (m−1) are linearly independent in L(HA);
then (K (0) ⊗ IB)|�〉, (K (1) ⊗ IB)|�〉, . . . , (K (m−1) ⊗ IB)|�〉
are linearly independent vectors in H .

C. Perfect distinguishability

To send L perfectly distinguishable messages to Bob, Alice
must be able to perform L encoding operations on her qudit
(perhaps paired with an ancilla) with each such operation
producing a message that Bob will recognize and never mistake
for a message corresponding to another encoding operation.
Each of the L encoding operations results in a density-operator
description of the two-qudit system that Alice and Bob
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share: ρ0, ρ1, . . . , ρL−1. The perfect distinguishability of the
corresponding messages means that

ρiρj = 0 whenever i �= j ; (8)

that is, the supports of the density operators representing
messages must be orthogonal. (For a formal proof that or-
thogonality of the supports provides perfect distinguishability,
see Ref. ( [7], Theorem 1).)

Observe that the support of the density operator E(|�〉〈�|)
representing the message encoded by the trace-preserving
quantum operator (6) is precisely the linear span of

{(K (0) ⊗ IB)|�〉, (K (1) ⊗ IB)|�〉, . . . , (K (N−1) ⊗ IB)|�〉}.
(9)

Thus, the perfect distinguishability of the messages Alice
produces via her quantum encoding operations amounts to
the following at the Kraus-operator level: Messages produced
by distinct quantum operations E1 and E2 are perfectly
distinguishable if and only if whenever K1 is a Kraus
operator for E1 and K2 is a Kraus operator for E2, then
〈�|(K1 ⊗ IB)†(K2 ⊗ IB)|�〉 = 0.

D. Decoding messages

Suppose that Alice is able to encode L perfectly dis-
tinguishable messages, represented by density operators
ρ0, ρ1, . . . , ρL−1. For each j = 0, 1, . . . , L − 1, let Sj be the
support of ρj , so that by Eq. (8), {Sj }L−1

j=0 is a collection of
pairwise orthogonal subspaces of H . To send message j to
Bob, Alice performs the quantum operation E that creates
the state ρj and sends her qudit to Bob through a noiseless
channel, keeping any ancillary particle she may have used in
executing E . To decode Alice’s message, Bob simply performs
a projective measurement described by the observable

L−1∑
j=0

jPSj
,

which is equivalent to the observable
∑L−1

j=0 j (PSj
⊗ Ia), where

Ia is the identity on the Hilbert space Ha of the ancilla. The
pairwise orthogonality of the subspaces Sj ensures Bob will
measure j precisely when message j has been sent, that is,
precisely when Alice has created the “message state” ρj .

E. Ancilla measurement

Suppose that Alice pairs her qudit A with an ancillary N -
level particle a. The Hilbert space for the Aa pair is HA ⊗ Ha ,
with orthonormal basis {|i〉A|j 〉a : i = 0, 1, 2, . . . , d − 1; j =
0, 1, 2, . . . , N − 1}. Assume, as before, that Alice’s particle
A is entangled with Bob’s particle B and that their two-qudit
system is in state |�〉 given by Eq. (1). Assume that a is in
state |0〉a . Suppose Alice performs a unitary operation U on
the pair Aa. The effect of Alice’s unitary operator U on the
state |�〉|0〉a may be described as follows (see Appendix B):

|�〉|0〉a �→
N−1∑
j=0

(K (j ) ⊗ IB)|�〉 ⊗ |j 〉a, (10)

where the K (j )’s are Kraus operators that satisfy Eq. (7).

Forming the density operator corresponding to relation (10)
and taking the partial trace over the ancillary system produces
the density operator on the right of relation (4), which describes
the message state that Alice creates using U . Denote by E the
corresponding trace-preserving quantum operation onL(H )—
it has the form (6), and the density operator E(|�〉〈�|) for the
encoded message has support equal to the linear span of the
set (9). Suppose that Alice applies U and then performs a
measurement of the ancilla a described by the collection {Mx}
of measurement operators. Assuming y is the outcome of the
measurement and recalling that the application of U to the
state |�〉|0〉a yields the state (10), we see the state of the ABa

system after measurement is

c

N−1∑
j=0

(K (j ) ⊗ IB)|�〉 ⊗ My |j 〉a, (11)

where c is a normalizing constant. Because My |j 〉a =∑N−1
i=0 α

(y)
ij |i〉a for some collection of scalars α

(y)
ij , expression

(11) may be written

c

N−1∑
i=0

⎡
⎣N−1∑

j=0

α
(y)
ij (K (j ) ⊗ IB)|�〉

⎤
⎦⊗ |i〉a,

which corresponds to a density operator ρ on L(H ) whose
support will be contained in that of E(|�〉〈�|), because the
support of ρ consists of linear combinations of vectors of
the form

∑N−1
j=0 α

(y)
ij (K (j ) ⊗ IB)|�〉, each one of which is in

the support of E(|�〉〈�|). Hence if Alice measures the ancilla
before she sends her message to Bob, then he will still receive
the intended message. Equally important is that because the
measurement operators {Mx} satisfy the completeness relation∑

x M
†
xMx = Ia , Alice cannot predetermine some proper

subspace S of the support of E(|�〉〈�|) and use measurement
of the ancilla to produce with certainty a state of the AB system
whose density-operator description ρ has support contained in
S. It follows that Alice cannot use measurement of ancillary
particles during the encoding process to increase the number of
messages she may send to Bob via deterministic dense coding.

We now turn to our main results.

III. ALICE CANNOT ENCODE d2 − 1 MESSAGES WHEN
|�〉 IS NOT MAXIMALLY ENTANGLED

We suppose that Alice can use quantum operators
E0, E1, . . . , Ed2−2 to encode d2 − 1 perfectly distinguishable
messages for Bob and prove that their initial two-qudit state
|�〉 must be maximally entangled. We have established that
we may assume, without loss of generality, that Alice’s
encoding quantum operators are trace-preserving. For j =
0, 1, . . . , d2 − 2, let mj be the Kraus rank of Ej . Thanks to
Lemma II.1 and the discussion following Eq. (3), the support
of the density operator Ej (|�〉〈�|) must have dimension
mj . We know that perfect distinguishability of messages
means that the supports of the density operators E0(|�〉〈�|),
E1(|�〉〈�|), . . . , Ed2−2(|�〉〈�|) must be pairwise orthogonal.
These supports are subspaces of the d2 dimensional space
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H = HA ⊗ HB . Thus,

d2−2∑
j=0

mj � d2. (12)

Because mj � 1 for each j , the preceding inequality shows
that mj = 1 for all but 1 of the j ’s, and for the remaining
j value, either mj = 1 or mj = 2. Note that if mj = 1, then
because Ej is trace preserving [i.e., its Kraus-operator elements
satisfy (7)], we see that Ej is an original-protocol unitary
encoding operation. Thus, if mj = 1 for every j , then Alice
can send to Bob d2 − 1 messages via original-protocol unitary
encoding, and, as we indicated earlier, Ji et al. have shown
that in this case |�〉 must be maximally entangled. Thus, to
complete the argument, we must show that |�〉 must also be
maximally entangled in case mj = 2 for some j and the rest
of the mj ’s equal 1.

Without loss of generality, we assume that md2−2 = 2 so
that Ed2−2 may be expressed in the form

Ed2−2(ρ) = (K (0) ⊗ IB)ρ(K (0) ⊗ IB)†

+ (K (1) ⊗ IB)ρ(K (1) ⊗ IB)†,

where K (0) and K (1) are linearly independent Kraus operators
satisfying

(K (0))†K (0) + (K (1))†K (1) = IA. (13)

Each of the remaining encoding operators E0, E1, . . . , Ed2−3 is
an original protocol unitary operation:

Ej (ρ) = (U (j ) ⊗ IB)ρ(U (j ) ⊗ IB)†,

where for j = 0, 1, . . . , d2 − 3, U (j ) is a unitary operator on
HA. Perfect distinguishability of the messages produced by
E0, . . . , Ed2−3, that is, pairwise orthogonality of support sets
of the corresponding density operators, means that

{(U (0) ⊗ IB)|�〉, (U (1) ⊗ IB)|�〉, . . . , (U (d2−3) ⊗ IB)|�〉}
(14)

is an orthogonal set in H . Moreover, the support of
Ed2−2(|�〉〈�|), representing the “final message,” must be
orthogonal to the subspace of H spanned by the vectors in
the set (14). Equivalently, each of

|φ0〉 ≡ (K (0) ⊗ IB)|�〉 and |φ1〉 ≡ (K (1) ⊗ IB)|�〉 (15)

is orthogonal to every vector in the set (14).
In fact, we can even assume the two vectors |φ0〉 and |φ1〉

representing the (d2 − 1)-th message are orthogonal to each
other. We justify this claim in Appendix C. Thus, henceforth
we assume that the two Kraus states |φ0〉 and |φ1〉 representing
the the (d2 − 1)-th message are orthogonal to each other as
well as to each element of the set (14). Note well that |φ0〉 and
|φ1〉 are linearly independent vectors (by Lemma II.1); thus,
in particular, neither is the zero vector.

Though they are orthogonal, |φ0〉 and |φ1〉 are not normal-
ized. Because 〈φ0|φ0〉 + 〈φ1|φ1〉 = 1 [via Eq. (13)], if we set

x = 〈φ0|φ0〉, (16)

then 0 < x < 1 (both |φ0〉 and |φ1〉 are nonzero) and the pair
of “Kraus states” spanning the support of Ed2−2(|�〉〈�|) are

|φ0〉/
√

x and |φ1〉/
√

1 − x.

We assume, without loss of generality, that 0 < x � 1/2
(otherwise we can just switch labels on |φ0〉 and |φ1〉).

We complete the proof by establishing that the existence
of the following orthonormal subset of H forces all Schmidt
coefficients of |�〉 to have the same value, so that |�〉 is
maximally entangled:

{(U (0) ⊗ IB)|�〉, (U (1) ⊗ IB)|�〉, . . . , (U (d2−3) ⊗ IB)|�〉,
|φ0〉/

√
x, |φ1〉/

√
1 − x}. (17)

We view the operators K (q) of relation (15) as well as the
operators U (n) of (14)—all of which are operators on the d-
dimensional Hilbert space HA—as d × d matrices with respect
to the basis (|0〉A, |1〉A, . . . , |d − 1〉A), and we let u

(n)
ij and k

(q)
ij

denote the entries of these matrices. For j = 0, 1, 2, . . . , d − 1
and q = 0, 1, let

jK
(q)

denote the j -th column of the d × d matrix K (q). Note well
that the initial column of K (q) is 0K

(q). From Eq. (13), we
conclude 〈

i
K (0)

∣∣
j
K (0)〉+ 〈

i
K (1)

∣∣
j
K (1)〉 = δij . (18)

Define d × d matrices as

E = 1√
x

K (0) and W = 1√
1 − x

K (1). (19)

We now order the basis for the Hilbert space HA ⊗ HB of the
Alice-Bob system:

B = (|00〉, |10〉, |2, 0〉, . . . , |d − 1, 0〉, |01〉, |11〉, . . . ,
|d − 1, 1〉, . . . , |d − 1, d − 1〉). (20)

Thus the basis elements are listed in d groups of d elements
with the ordering of the groups determined by the second of
the pair |ij 〉 and the ordering within the groups determined
by the first of the pair. This is the ordering used by Gerjuoy
et al. in [8] to form an augmented message matrix for an
original-protocol unitary encoding of messages. Gerjuoy et al.
use the augmented message matrix (for example) to present an
alternate proof of the result of Ji et al. establishing that d2 −
1 messages cannot be produced by original-protocol unitary
encoding. We use a similar matrix M later.

View |φ0〉/
√

x and |φ1〉/
√

1 − x as column vectors con-
sisting, respectively, of the coordinates of |φ0〉/

√
x and

|φ1〉/
√

1 − x with respect to the basis B:[ |φ0〉√
x

]
ij

=
√

λj√
x

k
(0)
ij and

[ |φ1〉√
1 − x

]
ij

=
√

λj√
1 − x

k
(1)
ij .

The natural ordering for the entries of these vectors is provided
by the ordering of the basis pairings in B. Thus, 00 is the initial
entry (followed by 10; 20; . . . ; d − 1, 0), the d + 1 entry is
01, and the final entry is d − 1, d − 1. Thus the first d entries
of |φ0〉/

√
x constitute the column (

√
λ0/

√
x)(0K

(0)), the next
d constitute (

√
λ1/

√
x)(1K

(0)), and so on. Similarly, the first d

entries of |φ1〉/
√

1 − x constitute (
√

λ0/
√

1 − x)(0K
(1)), the

next d constitute (
√

λ1/
√

1 − x)(1K
(1)), and so on.
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Form the d2 × d2 matrix M whose first d2 − 2 columns are,
in order, the coordinates with respect to B of (U (n) ⊗ IB)|�〉,
n = 0, 1, . . . , d2 − 3, and whose final two columns are
|φ0〉/

√
x (penultimate) and |φ1〉/

√
1 − x. Thus M is the natu-

ral d2 × d2 matrix corresponding to the orthonormal set (17).
Because the columns of M constitute an orthonormal basis of
Cd2

, M is unitary.
Using the structure of M , we now prove that if 0 � i, j �

d − 1 and i �= j , then√
λiλj

x

〈
i
K (0)

∣∣
j
K (0)〉+

√
λiλj

1 − x

〈
i
K (1)

∣∣
j
K (1)〉 = 0. (21)

Because the matrix M is unitary, the inner product of each pair
of distinct rows of M is 0. Thus if i, j are distinct elements of
{0, 1, . . . , d − 1}, then upon taking the inner products of rows
labeled by si and sj and next summing over s, we have

0 =
d−1∑
s=0

⎡
⎣√λiλj

d2−3∑
n=0

(
u

(n)
si

)∗
u

(n)
sj

⎤
⎦+

d−1∑
s=0

√
λiλj

x

(
k

(0)
si

)∗
k

(0)
sj

+
d−1∑
s=0

√
λiλj

1 − x

(
k

(1)
si

)∗
k

(1)
sj

=
d2−3∑
n=0

[√
λiλj

d−1∑
s=0

(
u

(n)
si

)∗
u

(n)
sj

]
+
√

λiλj

x

〈
i
K (0)

∣∣
j
K (0)

〉

+
√

λiλj

1 − x

〈
i
K (1)

∣∣
j
K (1)

〉
=
√

λiλj

x

〈
i
K (0)

∣∣
j
K (0)〉+

√
λiλj

1 − x

〈
i
K (1)

∣∣
j
K (1)〉,

where the final equality holds because for each n ∈
{0, 1, 2, . . . , d2 − 3}, the matrix U (n) is unitary (in particular,
its columns are orthogonal). We have proved Eq. (21).
Continuing to assume i �= j , we now combine Eqs. (21) and
(18) and record the result in matrix-equation form:(

1 1√
λiλj

x

√
λiλj

1−x

)( 〈
i
K (0)

∣∣
j
K (0)

〉〈
i
K (1)

∣∣
j
K (1)

〉
)

=
(

0

0

)
. (22)

The determinant of the matrix of coefficients on the left of the
preceding equation is

√
λiλj {[1/(1 − x)] − (1/x)}. There are

two possibilities: (i) either this determinant is 0, in which case
x = 1/2 (because λiλj is nonzero), or (ii) this determinant is
nonzero, in which case Eq. (22) shows that we must have〈

i
K (0)

∣∣
j
K (0)

〉 = 0 and
〈
i
K (1)

∣∣
j
K (1)

〉 = 0 (23)

for all pairs of distinct i and j in {0, 1, 2, . . . , d − 1}. We
show that in both cases (i) and (ii), |�〉 must be a maximally
entangled state, completing the argument.

A. Case (i): x = 1/2

Unitarity of M implies each of its rows has length one;
thus, for every i and j in {0, 1, 2, . . . , d − 1}, we have∑d2−1

n=0 |Mij,n|2 = 1; equivalently,

λj

⎛
⎝d2−3∑

n=0

∣∣u(n)
ij

∣∣2 +
∣∣k(0)

ij

∣∣2
x

+
∣∣k(1)

ij

∣∣2
1 − x

⎞
⎠ = 1. (24)

Restricting attention to diagonal entries, we see that Eq. (13)
reveals

d−1∑
i=0

(∣∣k(0)
ij

∣∣2 + ∣∣k(1)
ij

∣∣2) = 1

for each j ∈ {0, 1, . . . , d − 1}. Thus, if we set

bj =
d−1∑
i=0

∣∣k(0)
ij

∣∣2, then
d−1∑
i=0

∣∣k(1)
ij

∣∣2 = 1 − bj . (25)

Now sum both sides of Eq. (24) from i = 0 to d − 1 and
use the unitarity of U (n) for each n to see that

λj

(
d2 − 2 + bj

x
+ 1 − bj

1 − x

)
= d (26)

for each j . Because we are assuming x = 1/2 for case (i), the
expression in parentheses on the left of the preceding equation
simplifies to d2, and the equation yields λjd

2 = d for every j ,
that is, λj = 1/d for every j . We have shown in this case that
|�〉 is maximally entangled.

B. Case (ii): 0 < x < 1/2

Equation (23) holds in this case so that distinct columns of
the Kraus matrix K (0) are orthogonal, and the same is true of
K (1). Thus, recalling the definitions of the matrices E and W

from Eqs. (19) as well as the notation introduced in relation
(25), we have

E†E =

⎛
⎜⎜⎜⎝

b0
x

0 0 · · · 0
0 b1

x
0 · · · 0

...
...

...
...

...
0 0 · · · 0 bd−1

x

⎞
⎟⎟⎟⎠ (27)

and

W †W =

⎛
⎜⎜⎜⎝

1−b0
1−x

0 0 · · · 0
0 1−b1

1−x
0 · · · 0

...
...

...
...

...
0 0 · · · 0 1−bd−1

1−x

⎞
⎟⎟⎟⎠ . (28)

We need to exploit further the structure of the unitary matrix
M . Note that Eq. (24) may be rewritten as

d2−3∑
n=0

∣∣u(n)
ij

∣∣2 + ∣∣k(0)
ij

∣∣2/x + ∣∣k(1)
ij

∣∣2/(1 − x) = 1

λj

. (29)

Fix i in Eq. (29) and sum both sides from j = 0 to j = d − 1;
use the fact that the rows of each U (n) matrix all have length
one to obtain

1

x

d−1∑
j=0

∣∣k(0)
ij

∣∣2 + 1

1 − x

d−1∑
j=0

∣∣k(1)
ij

∣∣2 =
d−1∑
j=0

1

λj

− (d2−2). (30)

Note well that it follows from the preceding equation that the
diagonal entries of the matrix

EE† + WW † (31)

all have the common value
∑d−1

j=0
1
λj

− (d2 − 2). We claim that

every off-diagonal entry of EE† + WW † is 0.
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Let p and q be distinct integers in {0, 1, 2, . . . , d − 1}. Fix
j ∈ {0, 1, 2 . . . , d − 1} and take the inner product of rows q, j

and p, j of M to obtain

0 = λj

⎡
⎣d2−3∑

n=0

u
(n)
pj

(
u

(n)
qj

)∗ + 1

x
k

(0)
pj

(
k

(0)
qj

)∗ + 1

1 − x
k

(1)
pj

(
k

(1)
qj

)∗⎤⎦
so that

0 =
d2−3∑
n=0

u
(n)
pj

(
u

(n)
qj

)∗ + 1

x
k

(0)
pj

(
k

(0)
qj

)∗ + 1

1 − x
k

(1)
pj

(
k

(1)
qj

)∗
.

Now sum both sides of the preceding equation from j = 0 to
j = d − 1 and use the orthogonality of row p of U (n) and row
q of U (n) for each n to obtain

0 =
d−1∑
j=0

[
1

x
k

(0)
pj

(
k

(0)
qj

)∗ + 1

1 − x
k

(1)
pj

(
k

(1)
qj

)∗]

= (EE† + WW †)pq,

and it follows that EE† + WW † is a diagonal matrix. Using our
earlier observation that all the diagonal entries of EE† + WW †

have common value γ ≡∑d−1
j=0

1
λj

− (d2 − 2), we see that

EE† + WW † = γ I. (32)

The conclusion of our argument relies upon the following
observation arising from the polar decomposition (see, e.g.,
Theorem 2.3 on page 78 of [5]). For any n × n matrix Y , we
know there is a unitary matrix U such that

Y = U
√

Y †Y =
√

YY †U.

Thus √
YY † = U

√
Y †YU †,

and squaring both sides of the preceding equation yields

YY † = UY †YU †.

Thus YY † and Y †Y are unitarily equivalent, and they have the
same eigenvalues counting multiplicities. In fact, suppose that
λ is an eigenvalue for YY † with corresponding eigenvector v.
Then

0 = (YY † − λI )v = (UY †YU † − λI )v

= U (Y †Y − λI )U †v.

We see that 0 = U (Y †Y − λI )U †v, and multiplying both sides
on the left by U † yields

0 = (Y †Y − λI )U †v.

Thus U †v is an eigenvector for Y †Y with eigenvalue λ. The
bottom line is that Y †Y and YY † always have the same
eigenvalues counting multiplicities. We apply this fact to the
pairs E†E and EE† and W †W and WW †.

Equation (27) shows us that the set of eigenvalues of E†E
is

{b0/x, b1/x, . . . , bd−1/x}
and Eq. (28) shows us that the set of eigenvalues of W †W is{

1 − b0

1 − x
,

1 − b1

1 − x
, . . . ,

1 − bd−1

1 − x

}
. (33)

Because for j = 0, 1, 2, . . . , d − 1, bj/x is an eigenvalue of
E†E, it is also an eigenvalue of EE†. Let vj be an eigenvector
for EE† with corresponding eigenvalue bj/x. By applying
both sides of Eq. (32) to vj and doing a bit of rearranging, we
obtain

WW †vj =
(

γ − bj

x

)
vj .

Thus γ − (bj/x) is an eigenvalue of WW †. In fact, it is easy
to see the set of eigenvalues of WW † is precisely{

γ − b0

x
, γ − b1

x
, . . . , γ − bd−1

x

}
.

From Eq. (26), we have

d2 − 2 + bj

x
+ 1 − bj

1 − x
= d

λj

,

so that

bj = − x

1 − 2x
+ x(1 − x)

1 − 2x

(
d

λj

+ 2 − d2

)
. (34)

Because the sequence λj decreases with j , the preceding
equation shows that bj increases with j :

b0 � b1 � · · · � bd−1. (35)

Thus, the work of the preceding paragraph shows that

γ − b0

x

must be the largest eigenvalue of WW †; equivalently, the
largest eigenvalue of W †W (because WW † and W †W share
the same eigenvalues). Hence, recalling our earlier listing (33)
of the eigenvalues and (35), we must have

1 − b0

1 − x
= γ − b0

x
.

By rearranging and using γ =∑d−1
j=0

1
λj

− (d2 − 2), we see
that the preceding equation yields

d−1∑
j=0

1

λj

− (d2 − 2) = 1 − b0

1 − x
+ b0

x
.

Now substitute the left-hand side of the preceding equation for
the right-hand side in Eq. (26) in the j = 0 case:

λ0

⎧⎨
⎩d2 − 2 +

⎡
⎣d−1∑

j=0

1

λj

− (d2 − 2)

⎤
⎦
⎫⎬
⎭ = d,

so that

d−1∑
j=0

λ0

λj

= d.

We know that λ0 � λj for j = 0, 1, 2, . . . , d − 1, so that
λ0/λj � 1 for each j . From the preceding equation, we
conclude that λ0/λj = 1 for all j ; that is, all Schmidt
coefficients of |�〉 are equal, which means |�〉 must be
maximally entangled, as was to be proved.
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IV. ALICE CAN ENCODE d2 − 1 MESSAGES WITH HIGH
PROBABILITY FOR CERTAIN NONMAXIMALLY

ENTANGLED STATES

We continue to assume that Alice and Bob share a
two-qudit system in state |�〉 of (1) with largest Schmidt
coefficient

√
λ0. In this section, we show that for certain

nonmaximally entangled states (those for which λ0 is small
but still exceeds 1/d), Alice can encode d2 − 2 perfectly dis-
tinguishable messages via original-protocol unitary encoding
and, with high probability, can use a non-trace-preserving
quantum operation to encode a (d2 − 1)-th message perfectly
distinguishable from those encoded according to the original
protocol.

We assume throughout this section that |�〉 of (1) is not
maximally entangled (λ0 > 1/d) yet it is entangled enough to
permit Alice to send to Bob d2 − 2 perfectly distinguishable
messages via unitary encoding operators U (n) on HA, n =
0, 1, . . . , d2 − 3. The result (3) of Wu et al. shows that λ0 �
[d/(d2 − 2)]. We assume that λ0 is strictly less than d/(d2 −
2) and hence λj < d/(d2 − 2) for j = 0, 1, 2, . . . , d − 1. It
follows that all Schmidt coefficients of |�〉 must be nonzero
(consistent with our standing assumption); in addition, we have
for all j that

Rj ≡ d − (d2 − 2)λj (36)

is positive. Note well that Rj increases with j : R0 � R1 �
· · · � Rd−1.

We continue to assume that the natural basis B for the
Alice-Bob system is ordered as in Eq. (20).

We construct a d2 × d2 matrix M as follows. Just as in the
preceding section, the coordinate vectors of (U (n) ⊗ IB)|�〉,
n = 0, 1, . . . , d2 − 3, relative to the basisB, give the first d2 −
2 columns of M . By adding two appropriately chosen columns,
we can extend these d2 − 2 orthonormal columns to form a
d2 × d2 unitary matrix M . Let v be the penultimate column and
w be the final column of this unitary matrix M . Label the entries
of v and w according to the ordering of B (just as we labeled
the entries of the column vectors for |φ0〉/

√
x and |φ1〉

√
1 − x

in the preceding section) so that, for example, the entries
of v are v00, v10, v20, . . . , vd−1,0, v01, v11, . . . , vd−1,1, . . . ,

vd−1,d−1.
Form a d × d matrix T such that

tij =
√

λd−1√
λj

√
Rd−1

vij ,

where Rj is defined by relation (36). For example, if d = 3,
we have

T =

⎛
⎜⎜⎜⎝

√
λ2√

R2λ0
v00

√
λ2√

R2λ1
v01

1√
R2

v02
√

λ2√
R2λ0

v10

√
λ2√

R2λ1
v11

1√
R2

v12
√

λ2√
R2λ0

v20

√
λ2√

R2λ1
v21

1√
R2

v22

⎞
⎟⎟⎟⎠ .

Similarly, define the d × d matrix Y by

yij =
√

λd−1√
λj

√
Rd−1

wij .

Claim. T †T + Y †Y � I , that is, I − T †T − Y †Y is a
positive matrix.

(Here I is the d × d identity matrix.) We now justify this
claim. Using the structure of the matrix M , we sum the squared
magnitudes of rows 0, j through d − 1, j to get

(d2 − 2)λj +
d−1∑
i=0

|vij |2 +
d−1∑
i=0

|wij |2 = d,

where we have used the facts that the rows of M have length
one and that the entries 0, j through d − 1, j in any one of the
first d2 − 2 columns of M constitute the column of a unitary
matrix. Thus,

d−1∑
i=0

|vij |2 +
d−1∑
i=0

|wij |2 = d − (d2 − 2)λj = Rj . (37)

Note that for j = 0, 1, . . . , d − 1,

(T †T + Y †Y )jj = λd−1

λj

1

Rd−1

(
d−1∑
i=0

|vij |2 +
d−1∑
i=0

|wij |2
)

= λd−1

λj

Rj

Rd−1
.

Because λj decreases with j while Rj increases with j and
both are positive, we see that

1 � (T †T + Y †Y )jj > 0

for each j ; moreover,

1 = (T †T + Y †Y )d−1,d−1.

Thus, the diagonal entries of I − T †T − Y †Y are nonnega-
tive with the final entry being 0. We assert that the off-diagonal
entries of I − T †T − Y †Y are all zeros, equivalently, that the
off-diagonal entries of T †T + Y †Y are all zeros. Let r and s

be distinct elements of {0, 1, . . . , d − 1}. Because the matrix
M is unitary, the inner product of each pair of distinct rows of
M is 0. Thus, the inner product of the ir and is rows of the
matrix M vanishes, as therefore does the sum over i of these
inner products (where we are assuming of course that r �= s).
Accordingly, recalling our explanation earlier in this section
of how the matrix M is constructed, we obtain

0 =
d−1∑
i=0

⎡
⎣√λrλs

d2−3∑
n=0

(
u

(n)
ir

)∗
u

(n)
is

⎤
⎦+

d−1∑
i=0

v∗
irvis +

d−1∑
i=0

w∗
irwis

=
√

λrλs

d2−3∑
n=0

d−1∑
i=0

(
u

(n)
ir

)∗
u

(n)
is +

d−1∑
i=0

v∗
irvis +

d−1∑
i=0

w∗
irwis

=
d−1∑
i=0

v∗
irvis +

d−1∑
i=0

w∗
irwis,

where the final equality holds because for each n ∈
{0, 1, 2, . . . , d2 − 3}, the matrix U (n) is unitary (in particular,
its columns are orthogonal). We have 0 =∑d−1

i=0 v∗
irvis +∑d−1

i=0 w∗
irwis so that

0 = λd−1

Rd−1
√

λrλs

(
d−1∑
i=0

v∗
irvis +

d−1∑
i=0

w∗
irwis

)

= (T †T + Y †Y )rs ,

as desired.
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We have shown I − T †T − Y †Y is positive: it is a diagonal
matrix with nonnegative entries along the diagonal.

We view T and Y as operators on HA. It is easy to
see that (T ⊗ IB)|�〉 and (Y ⊗ IB)|�〉 are each orthogonal
to the messages (U (n) ⊗ IB)|�〉, n = 0, 1, . . . , d2 − 3. The
coordinate vector of (T ⊗ IB)|�〉 relative to B is just

√
λd−1√
Rd−1

v,

and that for (Y ⊗ IB)|�〉 is
√

λd−1√
Rd−1

w. Because v and w are each

orthogonal to the first d2 − 2 columns of M , so are these scalar
multiples of v and w. Note that neither of the vectors

√
λd−1√
Rd−1

v

or
√

λd−1√
Rd−1

w is the zero vector (so that neither T nor Y is the
zero matrix; in fact, it is easy to see T and Y are linearly
independent).

Define C to be the square root of I − T †T − Y †Y . Note C

is a diagonal matrix whose diagonal entries are square roots of
the diagonal entries of I − T †T − Y †Y . We have

T †T + Y †Y + C†C = I. (38)

We have already noted that (C†C)d−1,d−1 = 0. Now, for j =
0, 1, . . . , d − 2, we have

(C†C)jj = 1 − λd−1

λj

Rj

Rd−1

= d(λj − λd−1)

λj [d − (d2 − 2)λd−1]
(39)

� d2(λj − λd−1)

2λj

, (40)

where to obtain the second equality we have used Eq. (36)
and to obtain the final inequality we have used λd−1 � 1/d.
Because λ0 � λj � λd−1 � 1 − (d − 1)λ0, both λj and λd−1

approach 1/d as λ0 approaches 1/d. Thus, the overestimate
(40) for (C†C)jj shows that all diagonal entries of C†C
approach 0 as λ0 approaches 1/d. For j = 0, 1, . . . , d − 1,
let γj = (C†C)jj , so that C is a d × d diagonal matrix with
diagonal entries

√
γ0, . . . ,

√
γd−1, and, as we just discussed,

for each j , γj → 0 as λ0 → 1/d.
Because T , Y , and C satisfy the Kraus-operator condition

(38), a process, described on page 365 of Ref. [5], for example,
establishes that Alice can pair her qudit with an ancillary qutrit
a and perform a unitary operator Ũ on the pair to cast the ABa

triple, in initial state |�〉|0〉a , into the state (10) with N = 3,
K (0) = T , K (1) = Y , and K (2) = C:

(T ⊗ IB)|�〉 ⊗ |0〉a + (Y ⊗ IB)|�〉 ⊗ |1〉a
+ (C ⊗ IB)|�〉 ⊗ |2〉a. (41)

The corresponding reduced-density operator description
of the resulting state of the AB system is E(|�〉〈�|),
where

E(ρ) = TρT † + YρY † + CρC†. (42)

Because we are assuming that |�〉 is not maximally entan-
gled, C cannot be the zero matrix. If it were, this would
contradict the work of Sec. III, because Alice could then
use E of Eq. (42) to encode a (d2 − 1)-th message for
Bob perfectly distinguishable from the unitary messages
represented by (U (n) ⊗ IB)|�〉, n = 0, 1, . . . , d2 − 3 (because
(T ⊗ IB)|�〉 and (Y ⊗ IB)|�〉 are orthogonal to the “unitary
messages”).

We now show that under appropriate conditions, Alice’s
measurement of the ancilla a after applying Ũ to the Aa

pair, can, with high probability, create a (d2 − 1)-th message
for Bob perfectly distinguishable from the initial d2 − 2
messages. Alice and Bob can agree (say, before they part
company) that Bob will decode messages from Alice via the
observable

d2−2∑
j=0

jPSj
(43)

where, for j = 0, 1, . . . , d2 − 3, Sj is the one-dimensional
subspace of H spanned by (U (j ) ⊗ IB)|�〉, and, for j =
d2 − 2, Sj is the two-dimensional subspace on H spanned by
(T ⊗ IB)|�〉 and (Y ⊗ IB)|�〉 (and P stands for projection).
Because the subspaces Sj are pairwise orthogonal, Bob will
receive perfectly distinguishable messages as long as Alice
either encodes via some selected one of the original-protocol
unitaries or else encodes via a quantum operation (in this
case non-trace-preserving) that yields a state of the AB

system described by a density operator whose support is
Sd2−2. Alice has no trouble producing a unitary message
by applying a unitary operation to her qudit alone. She can
thereby produce d2 − 2 perfectly distinguishable messages.
To (attempt to) produce the final (d2 − 1)-th message, Alice
applies the unitary operation Ũ to the qudit-qutrit pair Aa,
as described in the preceding paragraph, casting the ABa

system into the state (41). Then she performs the projective
measurement on ABa corresponding to P|2〉a ≡ (IA ⊗ IB ⊗
|2〉a〈2|a); she will measure 1 (i.e., the state |2〉a) with
probability

p1 = ‖(C ⊗ IB)|�〉‖2

=
∥∥∥∥∥∥

d−1∑
j=0

√
λj

√
γj |jj 〉

∥∥∥∥∥∥
2

=
d−1∑
j=0

λjγj , (44)

where the second equality follows from the fact that C is
a diagonal matrix (with diagonal entries

√
γj and where

we use ‖ · ‖ to denote vector length. Upon substituting our
overestimate (40) for γj into Eq. (44) and using

∑d−1
j=0 λj = 1,

we obtain p1 � (d2/2) − (d3/2)λd−1, which, by applying
λd−1 � 1 − (d − 1)λ0, yields

p1 � d3(d − 1)

2

(
λ0 − 1

d

)
. (45)

Thus, for λ0 sufficiently close to 1/d, the probability p1 that
Alice will measure 1 via the projective measurement P|2〉a
approaches 0. Thus, with probability 1 − p1 (approaching 1
as λ0 → 1/d), the measurement P|2〉a will yield 0, casting the
ABa system into the state

1√
1 − p1

[(T ⊗ IB)|�〉 ⊗ |0〉a + (Y ⊗ IB)|�〉 ⊗ |1〉a] .

(46)
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At this point, Alice can send her qudit to Bob (through
a noiseless quantum channel) and using his observable
modeled by (43), Bob will receive message d2 − 1 with
certainty.

Observe that the reduced-density operator corresponding to
relation (46) for the state of the AB system is

1

1 − p1
[(T ⊗ IB)|�〉〈�|(T ⊗ IB)†

+ (Y ⊗ IB)|�〉〈�|(Y ⊗ IB)†],

which is associated with the non-trace-preserving (because
C �= 0) quantum operator

ρ �→ (T ⊗ IB)ρ(T ⊗ IB)† + (Y ⊗ IB)ρ(Y ⊗ IB)†. (47)

Thus, with probability 1 − p1, Alice can use the non-trace-
preserving quantum operator defined by relation (47) to encode
a (d2 − 1)-th message for Bob, and he will never mistake
this message for any of the original-protocol unitary messages
she may encode. A nice feature of this dense-coding scheme,
which allows Alice to send d2 − 1 perfectly distinguishable
messages to Bob with high probability (and the first d2 − 2 of
those messages with certainty), is that if Alice does measure
the ancilla to be in the undesirable state |2〉a , then she can
choose not to send her qudit to Bob because he would not
be assured of receiving her intended message. If Alice does
wish to send the (d2 − 1)-th message to Bob, we have shown
that the probability of failure p1 of the protocol has the upper
bound (45), which gives an indication of how p1 decreases
to 0 as λ0 approaches 1/d. We note that the overestimate
(45) of p1 does not typically provide a sharp bound on
the probability of failure. Suppose, for example, all Schmidt
coefficients of |�〉, except the largest, are equal, implying
λj = λd−1 = (1 − λ0)/(d − 1) for j = 1, 2, . . . , d − 2. Then,
recalling (C†C)jj = γj , we see that Eq. (39) shows that γj = 0
for j = 1, 2, . . . , d − 1; thus Eq. (39) combined with Eq. (44)
yields

p1 = d2(λ0 − 1/d)

d2(λ0 − 1/d) + 2(1 − λ0)
� d3

2(d − 1)

(
λ0 − 1

d

)
,

(48)

where the inequality holds because d2(λ0 − 1/d) + 2(1 − λ0)
increases with λ0, taking the value 2(d − 1)/d when λ0 = 1/d.
Because λ0 cannot exceed d/(d2 − 2) (as explained at the
opening of this section), the bound on the probability of
failure given by Eq. (48) cannot exceed d2/[(d − 1)(d2 − 2)],
which decreases asymptotically with increasing d as 1/d.
If we assume that λ0 = d/(d2 − 1) [the value of the bound
(3) for L = d2 − 1], so that λ0 − 1/d is roughly 50% of its
maximum allowed value, then the bound (48) yields small error
probabilities even for small d (e.g., 28% for d = 3, dropping
to 8.5% for d = 7).

We conclude with a concrete example presenting a situation
in which Alice has more than a 97% chance of communicating
three perfectly distinguishable messages to Bob using a system
of two less than maximally entangled qubits. Suppose Alice
and Bob share a two-qubit system in state

|�〉 = 9

4
√

10
|00〉 +

√
79

4
√

10
|11〉, (49)

for which λ0 = 81/160 and λ1 = 79/160. For the preceding
state, Alice may choose unitary encoding operations on her
qubit A corresponding to the identity IA = |0〉〈0| + |1〉〈1| and
the shift operator X = |1〉〈0| + |0〉〈1|. Here’s a matrix M for
this situation, whose first two columns, respectively, are the
coordinates of (IA ⊗ IB)|�〉 and (X ⊗ IB)|�〉 relative to B =
(|00〉, |10〉, |01〉, |11〉) and whose remaining columns extend
the first two to an orthonormal basis of C4:

M =

⎡
⎢⎢⎢⎢⎢⎣

9
40

√
10 0 1

40

√
395 1

40

√
395

0 9
40

√
10 1

40

√
395 − 1

40

√
395

0 1
40

√
79

√
10 − 9

40

√
5 9

40

√
5

1
40

√
79

√
10 0 − 9

40

√
5 − 9

40

√
5

⎤
⎥⎥⎥⎥⎥⎦ .

The matrices T , Y , and C are

T =
[

79
162 −1/2
79

162 −1/2

]
, Y =

[
79

162 1/2

− 79
162 −1/2

]
,

C =
[√

320
6561 0

0 0

]
.

Note γ0, the upper left entry of C†C, is 320/6561 whereas
γ1, the lower right entry, is 0 (no surprise). The probability
that Alice will measure the ancillary qutrit a to be in state |2〉a
after applying the unitary Ũ to the Aa system (as described
previously) is λ0γ0 = 81/160 · 320/6561 = 2/81. Thus, the
probability that this measurement will cast the system into
the desirable state (46) is 79/81 ≈ 97.5%. Thus there is
greater than a 97% chance that Alice and Bob can use the
less-than-maximally-entangled state (49) as a resource for the
communication of three perfectly distinguishable messages.
Specifically, Alice can communicate message 0, generated by
applying IA to A, with certainty; message 1, generated by
applying X to A, with certainty; and message 2, generated
by applying Ũ to Aa and then measuring a, with probability
79/81. If in attempting to encode message 2, Alice applies
Ũ to Aa and then observes a to be in the undesirable state
|2〉a , then the state of the system she shares with Bob is
(C ⊗ IB)|�〉/‖C ⊗ IB)|�〉‖ = |00〉, and she should not send
her qubit to Bob because he would misinterpret her intended
message (message 2) as message 0.

If Alice and Bob are willing to tolerate a small chance of
Bob’s misinterpreting a message, they will be better served if
Alice encodes message 2 by simply applying Ũ to Aa and then
sending her qubit to Bob without measuring the ancilla a. In
this example, the projectors that Bob would use for decoding
the message that Alice sends are

PS0 = |�〉〈�|,
PS1 = (X ⊗ IB)|�〉〈�|(X ⊗ IB)†,

and

PS2 = 1

pT

(T ⊗ IB)|�〉〈�|(T ⊗ IB)†

+ 1

pY

(Y ⊗ IB)|�〉〈�|(Y ⊗ IB)†,

where pT = ‖(T ⊗ IB)|�〉‖2 = 79/162 and pY = ‖(Y ⊗
IB)|�〉‖2 = 79/162. Suppose that Alice performs only the
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unitary Ũ on the the Aa qubit-qutrit system and does not
measure the ancilla. If Alice then sends her qubit to Bob
(representing transmission of message 2), then Bob would
measure message 2 with probability

tr
[
PS2 (T ⊗ IB)|�〉〈�|(T ⊗ IB)† + PS2 (Y ⊗ IB)|�〉〈�|

× (Y ⊗ IB)† + PS2 (C ⊗ IB)|�〉〈�|(C ⊗ IB)†
]

= tr[(T ⊗ IB)|�〉〈�|(T ⊗ IB)† + (Y ⊗ IB)|�〉〈�|
× (Y ⊗ IB)† + PS2 (C ⊗ IB)|�〉〈�|(C ⊗ IB)†]

= 79/80 = 98.75%.

Bob will always decode messages 0 and 1 correctly.
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APPENDIX A: PROOF OF LEMMA II.1

Lemma II.1. Suppose that all the Schmidt coefficients
of |�〉 in the representation (1) are nonzero and that
K (0),K (1), . . . , K (m−1) are linearly independent in L(HA);
then (K (0) ⊗ I )|�〉, (K (1) ⊗ I )|�〉, . . . , (K (m−1) ⊗ I )|�〉 are
linearly independent vectors in H .

Proof. Suppose that α0, α1, . . . , αm−1 are scalars such that

m−1∑
p=0

αp(K (p) ⊗ I )|�〉 = 0.

Then, letting k
(p)
ij = 〈i|K (p)|j 〉, we obtain

d−1∑
i,j=0

⎛
⎝√λj

m−1∑
p=0

αpk
(p)
ij

⎞
⎠ |ij 〉 = 0,

which implies, upon taking the inner product of both sides of
the preceding equation with |ij 〉, that for each i and j

m−1∑
p=0

αpk
(p)
ij = 0 (A1)

(because
√

λj is nonzero for each j ). Note that Eq. (A1) says

m−1∑
p=0

αpK (p) = 0,

which implies αp = 0 for all p because K (0),K (1), . . . , K (m−1)

are linearly independent. Thus, (K (0) ⊗ I )|�〉, (K (1) ⊗ I )|�〉,
and (K (m−1) ⊗ I )|�〉 are linearly independent.

APPENDIX B: KRAUS OPERATOR REPRESENTATIONS

Suppose that Alice pairs her qudit A with an ancillary N -
level particle a. The Hilbert space for the Aa pair is HA ⊗ Ha

with orthonormal basisBAa ≡ {|i〉A|r〉a : i = 0, 1, 2, . . . , d −
1; r = 0, 1, 2, . . . , N − 1}. Assume, that Alice’s particle A is
entangled with Bob’s particle B and their two-qudit system is
in state |�〉 given by Eq. (1). Assume that a is in state |0〉a .
Suppose the physical equivalent of a unitary operator U on
HA ⊗ Ha is applied to the pair Aa.

We can express U in terms of its action on the the basis
elements in BAa as follows:

U =
d−1∑
i,j=0

N−1∑
r,s=0

uir,js |i〉A|r〉a〈j |A〈s|a

=
d−1∑
i,j=0

N−1∑
r,s=0

uir,js (|i〉A〈j |A ⊗ |r〉a〈s|a) , (B1)

where the scalars uir,js must satisfy the following condition
because of the unitarity of U : for 0 � j, j ′ � d − 1 and 0 �
s, s ′ � N − 1,

d−1∑
i=0

N−1∑
r=0

u∗
ir,jsuir,j ′s ′ = δj,j ′δs,s ′ . (B2)

Letting IB be the identity on Bob’s Hilbert space HB , we
see that the effect of Alice’s unitary operator U on the state
|�〉|0〉a may be described as follows:⎡
⎣ d−1∑

i,j=0

N−1∑
r,s=0

uir,js (|i〉A〈j |A ⊗ IB) ⊗ (|r〉a〈s|a)

⎤
⎦ |�〉 ⊗ |0〉a

=
d−1∑
i,j=0

N−1∑
r,s=0

uir,js (|i〉A〈j |A ⊗ IB) |�〉 ⊗ (|r〉a〈s|a)|0〉a

=
N−1∑
r=0

d−1∑
i,j=0

uir,j0 (|i〉A〈j |A ⊗ IB) |�〉 ⊗ |r〉a

=
N−1∑
r=0

⎡
⎣
⎛
⎝ d−1∑

i,j=0

uir,j0|i〉A〈j |A
⎞
⎠⊗ IB

⎤
⎦ |�〉 ⊗ |r〉a

=
N−1∑
r=0

(K (r) ⊗ IB)|�〉 ⊗ |r〉a,

where K (r) =∑d−1
i,j=0 uir,j0|i〉A〈j |A are Kraus operators that

satisfy
∑N−1

r=0 (K (r))†K (r) = IA:

N−1∑
r=0

(K (r))†K (r) =
N−1∑
r=0

⎛
⎝ d−1∑

i,j=0

u∗
ir,j0|j 〉A〈i|A

⎞
⎠

×
⎛
⎝ N−1∑

i ′,j ′=0

ui ′r,j ′0|i ′〉A〈j ′|A
⎞
⎠

=
N−1∑
r=0

d−1∑
i,j,j ′=0

u∗
ir,j0uir,j ′0|j 〉A〈j ′|A

=
d−1∑

j,j ′=0

d−1∑
i=0

N−1∑
r=0

u∗
ir,j0uir,j ′0|j 〉A〈j ′|A

=
d−1∑

j,j ′=0

δj,j ′ |j 〉A〈j ′|A

=
d−1∑
j=0

|j 〉A〈j |A

= IA,
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where we have used Eq. (B2) to obtain the fourth equality.
Thus, the process of pairing A with the N -level particle a and
applying U to the pair always casts the three-particle system
ABa into a state of the form (10), where the Kraus operators
K (0), . . . , K (N−1) satisfy Eq. (7). The quantum operator E
associated with this process will have the form (6), and N � m,
where m is the Kraus rank of E .

APPENDIX C: ORTHOGONALITY OF KRAUS STATES

Let

E(ρ) = (K (0) ⊗ IB)ρ(K (0) ⊗ IB)†

+ (K (1) ⊗ IB)ρ(K (1) ⊗ IB)†, ρ ∈ L(H ),

where K (0) and K (1) are linearly independent Kraus operators
on L(HA) satisfying Eq. (13). We prove that there are Kraus
operators R(0) and R(1) on L(HA) such that (i) the quantum
operator E is also given by E(ρ) = (R(0) ⊗ IB)ρ(R(0) ⊗ IB)† +
(R(1) ⊗ IB)ρ(R(1) ⊗ IB)†, and (ii) the vectors

(R(0) ⊗ IB)|�〉 and (R(1) ⊗ IB)|�〉 (C1)

are orthogonal vectors in H [where |�〉 is given by Eq. (1) and
all of its Schmidt coefficients are nonzero].

Set |φ0〉 = (K (0) ⊗ IB)|�〉 and |φ1〉 = (K (1) ⊗ IB)|�〉.
Note neither |φ0〉 nor |φ1〉 is the zero vector because they
are linearly independent (by Lemma II.1). Assume that |φ0〉
and |φ1〉 are not orthogonal states. (If they are, then we are
done—set R(0) = K (0) and R(1) = K (1).) For α = 0, 1, define

R(α) =
1∑

β=0

vαβK (β), (C2)

where the vαβ’s are complex numbers that constitute a 2 × 2
matrix V . It is easy to check that if V is unitary, then for any
operator ρ ∈ L(H ),

1∑
j=0

(R(j ) ⊗ IB)ρ(R(j ) ⊗ IB)† =
1∑

j=0

(K (j ) ⊗ IB)ρ(K (j ) ⊗ IB)†.

Thus, to complete our proof, we need show only that there is a
unitary matrix V such that the operators R(0) and R(1) defined
by Eq. (C2) are also such that the vectors (C1) are orthogonal
in H .

Let µ, ν, and θ denote real numbers, and observe that

V =
[

eiµ cos θ −eiν sin θ

e−iν sin θ e−iµ cos θ

]
is unitary. Thus, using definition (C2), with the scalars vαβ

determined by the preceding matrix, we have

(R(0) ⊗ I )|�〉 = (eiµ cos θ )|φ0〉 − (eiν sin θ )|φ1〉
= (eiµ cos θ )[|φ0〉 − (ei(ν−µ) tan θ )|φ1〉] (C3)

(R(1) ⊗ I )|�〉 = (e−iν sin θ )|φ0〉 + (e−iµ cos θ )|φ1〉
= (e−iµ cos θ )[(ei(µ−ν) tan θ )|φ0〉 + |φ1〉].

(C4)

If we can choose the scalars µ, ν, and θ such that
(R(0) ⊗ I )|�〉 and (R(1) ⊗ I )|�〉 are orthogonal in H , our
proof is complete.

Observe from Eqs. (C3) and (C4) that if we desire that
(R(0) ⊗ I )|�〉 and (R(1) ⊗ I )|�〉 be orthogonal, then, because
|φ0〉 and |φ1〉 are not orthogonal, we must have cos(θ ) �= 0,
which justifies our factorization on the right of Eqs. (C3)
and (C4). Using these factored forms from (C3) and (C4)
and writing µ − ν = ξ , we compute the inner product of
(R(0) ⊗ I )|�〉 and (R(1) ⊗ I )|�〉, obtaining the following
necessary and sufficient condition for the inner product
to be 0:

−(e2iξ tan2 θ )〈φ1|φ0〉 + (eiξ tan θ )(〈φ0|φ0〉
− 〈φ1|φ1〉) + 〈φ0|φ1〉 = 0. (C5)

In the preceding equation, the scalar products 〈φα|φβ〉 (α,

β = 0, 1), like the |φα〉’s themselves, can be considered
known. Thus, because 〈φ1|φ0〉 is nonzero, Eq. (C5) is a
quadratic equation in the complex variable z = eiξ tan θ , so
that to produce the desired orthogonal states we simply choose
values of θ and ξ making eiξ tan θ a root of this quadratic.
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