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Decoy states have been proven to be a very useful method for significantly enhancing the performance of
quantum key distribution systems with practical light sources. Although active modulation of the intensity of
the laser pulses is an effective way of preparing decoy states in principle, in practice passive preparation might
be desirable in some scenarios. Typical passive schemes involve parametric down-conversion. More recently,
it has been shown that phase-randomized weak coherent pulses (WCP) can also be used for the same purpose
[M. Curty et al., Opt. Lett. 34, 3238 (2009).] This proposal requires only linear optics together with a simple
threshold photon detector, which shows the practical feasibility of the method. Most importantly, the resulting
secret key rate is comparable to the one delivered by an active decoy-state setup with an infinite number of
decoy settings. In this article we extend these results, now showing specifically the analysis for other practical
scenarios with different light sources and photodetectors. In particular, we consider sources emitting thermal
states, phase-randomized WCP, and strong coherent light in combination with several types of photodetectors,
like, for instance, threshold photon detectors, photon number resolving detectors, and classical photodetectors.
Our analysis includes as well the effect that detection inefficiencies and noise in the form of dark counts shown
by current threshold detectors might have on the final secret key rate. Moreover, we provide estimations on the
effects that statistical fluctuations due to a finite data size can have in practical implementations.
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I. INTRODUCTION

Quantum key distribution (QKD) is the first quantum
information task that reaches the commercial market to offer
efficient and user-friendly cryptographic systems providing
an unprecedented level of security [1]. It allows two distant
parties (typically called Alice and Bob) to establish a secure
secret key despite the computational and technological power
of an eavesdropper (Eve), who interferes with the signals [2].
This secret key is the essential ingredient of the one-time-pad
or Vernam cipher [3], the only known encryption method that
can deliver information-theoretic secure communications.

Practical implementations of QKD are usually based on
the transmission of phase randomized weak coherent pulses
(WCP) with a typical average photon number of 0.1 or
higher [4]. These states can be easily prepared using only
standard semiconductor lasers and calibrated attenuators. The
main drawback of these systems, however, arises from the fact
that some signals may contain more than one photon prepared
in the same quantum state. When this effect is combined
with the considerable attenuation introduced by the quantum
channel (about 0.2 dB/km), it opens an important security
loophole. Eve can perform, for instance, the so-called Photon
Number Splitting attack on the multiphoton pulses [5]. This
attack provides her with full information about the part of the
key generated with the multiphoton signals, without causing
any disturbance in the signal polarization. As a result, it turns
out that the standard BB84 protocol [6] with phase-randomized
WCP can deliver a key generation rate of order O(η2),
where η denotes the transmission efficiency of the quantum

channel [7,8]. This poor performance contrasts with the one
expected from a QKD scheme using a single-photon source,
where the key generation rate scales linearly with η.

A significant improvement of the achievable secret key
rate can be obtained if the original hardware is slightly
modified. For instance, one can use the so-called decoy-state
method [9–12], which can basically reach the performance of
single-photon sources. The essential idea behind decoy-state
QKD with phase-randomized WCP is quite simple: Alice
varies, independently and randomly, the mean photon number
of each signal state she sends to Bob by employing different
intensity settings. This is typically realized by means of a
variable optical attenuator (VOA) together with a random
number generator. Eve does not know a priori the mean photon
number of each signal state sent by Alice. This means that her
eavesdropping strategy can only depend on the actual photon
number of these signals, but not on the particular intensity
setting used to generate them. From the measurement results
corresponding to different intensity settings, the legitimate
users can obtain a better estimation of the behavior of the quan-
tum channel. This fact translates into an enhancement of the
resulting secret key rate. The decoy-state technique has been
successfully implemented in several recent experiments [13]
that show the practical feasibility of this method.

Although active modulation of the intensity of the pulses
suffices to perform decoy-state QKD in principle, in practice
passive preparation might be desirable in some scenarios.
For instance, in those experimental setups operating at high
transmission rates. Passive schemes might also be more
resistant to side channel attacks than active systems. For
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example, if the VOA, which changes the intensity of Alice’s
pulses, is not properly designed, it may happen that some
physical parameters of the pulses emitted by the sender depend
on the particular setting selected. This fact could open a
security loophole in the active schemes.

Known passive schemes rely typically on the use of a
parametric down-conversion (PDC) source together with a
photon detector [14–16]. The main idea behind these proposals
comes from the photon number correlations that exist between
the two output modes of a PDC source. By measuring the
photon number distribution of one output mode it is possible
to infer the photon number statistics of the other mode. In
particular, Ref. [14] considers the case where Alice measures
one of the output modes by means of a time-multiplexed
detector (TMD), which provides photon number resolution
capabilities [17]; Ref. [15] analyzes the scenario where the
detector used by Alice is just a simple threshold detector,
while the authors of Ref. [16] generalize the ideas introduced
by Mauerer et al. in Ref. [14] to QKD setups using triggered
PDC sources. All these schemes nearly reach the performance
of a single-photon source.

More recently, it has been shown that phase-randomized
WCP can also be used for the same purpose [18]; that is, one
does not need a nonlinear optics network preparing entangled
states. The crucial requirement of a passive decoy-state setup
is to obtain correlations between the photon number statistics
of different signals; hence it is sufficient that these correlations
are classical. The main contribution of Ref. [18] is rather
simple: When two phase-randomized coherent states interfere
at a beam splitter (BS), the photon number statistics of the
outcome signals are classically correlated. This effect contrasts
with the one expected from the interference of two pure
coherent states with fixed phase relation at a BS. In this
last case, it is well known that the photon number statistics
of the outcome signals is just the product of two Poissonian
distributions. Now the idea is similar to that of Refs. [14–16]:
By measuring one of the two outcome signals of the BS,
the conditional photon number distribution of the other signal
varies depending on the result obtained [18]. In the asymptotic
limit of an infinite long experiment, it turns out that the secret
key rate provided by such a passive scheme is similar to the
one delivered by an active decoy-state setup with infinite decoy
settings [18]. A similar result can also be obtained when Alice
uses heralded single-photon sources showing non-Poissonian
photon number statistics [19].

In this article we extend the results presented in Ref. [18],
now showing specifically the analysis for other practical
scenarios with different light sources and photodetectors.
In particular, we consider sources emitting thermal states
and phase-randomized WCP in combination with threshold
detectors and photon number resolving (PNR) detectors.
In the case of threshold detectors, we include as well the
effect that detection inefficiencies and dark counts present in
current measurement devices might have on the final secret
key rate. For simplicity, these measurement imperfections
were not considered in Ref. [18]. On the other hand, PNR
detectors allow us to obtain ultimate lower bounds on the
maximal performance that can be expected from these kinds
of passive setups. We also present a passive scheme that
employs strong coherent light and does not require the use

of single-photon detectors, but can operate with a simpler
classical photodetector. This fact makes this setup especially
interesting from an experimental point of view. Finally, we
provide an estimation on the effects that statistical fluctuations
due to a finite data size can have in practical implementations.

The article is organized as follows. In Sec. II we review
very briefly the concept of decoy-state QKD. Next, in Sec. III
we present a simple model to characterize the behavior of a
typical quantum channel. This model will be relevant later
on, when we evaluate the performance of the different passive
schemes that we present in the following sections. Our starting
point is the basic passive decoy-state setup introduced in
Ref. [18]. This scheme is explained very briefly in Sec. IV.
Then, in Sec. V we analyze its security when Alice uses a
source of thermal light. Sec. VI and Sec. VII consider the case
where Alice employs a source of coherent light. First, Sec. VI
investigates the scenario where the states prepared by Alice
are phase-randomized WCP. Then, Sec. VII presents a passive
decoy-state scheme that uses strong coherent light. In Sec.
VIII we discuss the effects of statistical fluctuations. Finally,
Sec. IX concludes the article with a summary.

II. DECOY-STATE QKD

In decoy-state QKD Alice prepares mixtures of Fock states
with different photon number statistics and sends these states
to Bob [9–12]. The photon number distribution of each signal
state is chosen, independently and at random, from a set of
possible predetermined settings. Let pl

n denote the conditional
probability that a signal state prepared by Alice contains n

photons given that she selected setting l, with l ∈ {0, . . . , m}.
For instance, if Alice employs a source of phase-randomized
WCP then pl

n = e−µl µn
l /n!, and she varies the mean photon

number (intensity) µl of each signal. Assuming that Alice has
chosen setting l, such states can be described as

ρl =
∞∑

n=0

pl
n|n〉〈n|, (1)

where |n〉 denote Fock states with n photons.
The gain Ql corresponding to setting l, that is the proba-

bility that Bob obtains a click in his measurement apparatus
when Alice sends him a signal state prepared with setting l,
can be written as

Ql =
∞∑

n=0

pl
nYn, (2)

where Yn denotes the yield of an n-photon signal (i.e., the
conditional probability of a detection event on Bob’s side
given that Alice transmitted an n-photon state. Similarly, the
quantum bit error rate (QBER) associated to setting l, which
we shall denote as El , is given by

QlEl =
∞∑

n=0

pl
nYnen, (3)

with en representing the error rate of an n-photon signal.
Now the main idea of decoy-state QKD is very simple. From

the observed data Ql and El , together with the knowledge
of the photon number distributions pl

n, Alice and Bob can
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estimate the value of the unknown parameters Yn and en just
by solving the set of linear equations given by Eqs. (2) and (3).
For instance, in the general scenario where Alice employs
an infinite number of possible decoy settings then she can
estimate any finite number of parameters Yn and en with
arbitrary precision. On the other hand, if Alice and Bob are
only interested in the value of a few probabilities (typically Y0,
Y1, and e1), then they can estimate them by means of only a
few different decoy settings [10–12].

In this article we shall consider that Alice and Bob treat
each decoy setting separately, and they distill the secret key
from all of them. We use the security analysis presented in
Ref. [10], which combines the results provided by Gottesman-
Lo-Lütkenhaus-Preskill (GLLP) in Ref. [8] (see also Ref. [20])
with the decoy-state method. Specifically, the secret key rate
formula can be written as

R �
m∑

l=0

max{Rl, 0}, (4)

where Rl satisfies

Rl � q
{−Qlf (El)H (El)+pl

1Y1[1 − H (e1)]+pl
0Y0

}
. (5)

The parameter q is the efficiency of the protocol (q = 1/2 for
the standard BB84 protocol [6], and q ≈ 1 for its efficient ver-
sion [21]); f (El) is the efficiency of the error correction proto-
col as a function of the error rate El [22], typically f (El) � 1
with Shannon limit f (El) = 1; e1 denotes the single-photon
error rate; H (x) = −x log2 (x) − (1 − x) log2 (1 − x) is the
binary Shannon entropy function.

To apply the secret key rate formula given by Eq. (5) one
needs to solve Eqs. (2) and (3) in order to estimate the quantities
Y0, Y1, and e1. For that, we shall use the procedure proposed in
Ref. [12]. This method requires that the probabilities pl

n satisfy
certain conditions. It is important to emphasize, however, that
the estimation technique presented in Ref. [12] only constitutes
a possible example of a finite setting estimation procedure
and no optimality statement is given. In principle, many other
estimation methods are also available for this purpose, such as
linear programming tools [23], which might result in sharper,
or for the purpose of QKD, better bounds on the considered
probabilities.

III. CHANNEL MODEL

In this section we present a simple model to describe the
behavior of a typical quantum channel. This model will be
relevant later on, when we evaluate the performance of the
passive decoy-state setups that we present in the following
sections. In particular, we shall consider the channel model
used in Refs. [10,12]. This model reproduces a normal
behavior of a quantum channel (i.e., in the absence of
eavesdropping). Note, however, that the results presented in
this article can also be applied to any other quantum channel, as
they only depend on the observed gains Ql and error rates El .

A. Yield

There are two main factors that contribute to the yield of
an n-photon signal: the background rate Y0, and the signal
states sent by Alice. Usually Y0 is, to a good approximation,

independent of the signal detection. This parameter depends
mainly on the dark count rate of Bob’s detection apparatus,
together with other background contributions, such as stray
light coming from timing pulses that are not completely filtered
out in reception. In the scenario considered, the yields Yn can
be expressed as [10,12]

Yn = 1 − (1 − Y0)(1 − ηsys)
n, (6)

where ηsys represents the overall transmittance of the system.
This quantity can be written as

ηsys = ηchannelηBob, (7)

where ηchannel is the transmittance of the quantum channel,
and ηBob denotes the overall transmittance of Bob’s detection
apparatus; that is, ηBob includes the transmittance of any
optical component within Bob’s measurement device and the
detector efficiency. The parameter ηchannel can be related with
a transmission distance d measured in km for the given QKD
scheme as

ηchannel = 10− αd
10 , (8)

where α represents the loss coefficient of the channel (e.g., an
optical fiber) measured in dB/km.

B. Quantum bit error rate

The n-photon error rate en is given by [10,12]

en = Y0e0 + (Yn − Y0)ed

Yn

, (9)

where ed is the probability that a signal hits the wrong detector
on Bob’s side due to the misalignment in the quantum channel
and in his detection setup. For simplicity, here we assume that
ed is a constant independent of the distance. Moreover, from
now on we shall consider that the background is random (i.e.,
e0 = 1/2).

IV. PASSIVE DECOY-STATE QKD SETUP

The basic setup is rather simple [18]. It is illustrated in
Fig. 1. Suppose two Fock diagonal states

ρ =
∞∑

n=0

pn|n〉〈n|,
(10)

σ =
∞∑

n=0

rn|n〉〈n|,

BS

t

ρ
a

b

ρ
out

Photo-detector

σ

FIG. 1. Basic setup of a passive decoy-state QKD scheme:
interference of two Fock diagonal states, ρ and σ , at a beam splitter
(BS) of transmittance t ; a and b represent the two output modes.
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interfere at a BS of transmittance t. If the probabilities pn and rn

are properly selected, then it turns out that the photon number
distributions of the two outcome signals can be classically
correlated. By measuring the signal state in mode b, therefore,
the conditional photon number statistics of the signal state in
mode a vary depending on the result obtained.

In the following sections we analyze the setup represented
in Fig. 1 for different light sources and photodetectors. We start
by considering a simple source of thermal states. Afterward,
we investigate more practical sources of coherent light.

V. THERMAL LIGHT

Suppose that the signal state ρ, which appears in Fig. 1, is
a thermal state of mean photon number µ. Such a state can be
written as

ρ = 1

1 + µ

∞∑
n=0

(
µ

1 + µ

)n

|n〉〈n|, (11)

and let σ be a vacuum state. In this scenario, the joint
probability of having n photons in output mode a and m

photons in output mode b (see Fig. 1) has the form

pn,m = 1

1 + µ

(
n + m

m

)(
µ

1 + µ

)n+m

tn(1 − t)m, (12)

that is, depending on the result of Alice’s measurement in mode
b, the conditional photon number distribution of the signals in
mode a varies.

In particular, we have that whenever Alice ignores the result
of her measurement, the total probability of finding n photons
in mode a can be expressed as

pt
n =

∞∑
m=0

pn,m = 1

1 + µt

(
µt

1 + µt

)n

. (13)

Next, we consider the case where Alice uses a threshold
detector to measure mode b.

A. Threshold detector

Such a detector can be characterized by a positive operator
value measure (POVM) that contains two elements, Fvac and
Fclick, given by [24]

Fvac = (1 − ε)
∞∑

n=0

(1 − ηd)n|n〉〈n|,
(14)

Fclick = 1 − Fvac.

The parameter ηd denotes the detection efficiency of the
detector, and ε represents its probability of having a dark count.
Equation (14) assumes that ε is, to a good approximation,
independent of the incoming signals. The outcome of Fvac

corresponds to “no click” in the detector, whereas the operator
Fclick gives precisely one detection “click”, which means at
least one photon is detected.

The joint probability for seeing n photons in mode a and
no click in the threshold detector, which we shall denote as

(a) (b)

0 1 2 3 4 5
0

0.2

0.4

0.6

Pr
ob

ab
ili

ty

Photon number

qn
c

qn
c

ε=0, η =1
d

0 1 2 3 4 5
0

0.2

0.4

0.6

Photon number

Pr
ob

ab
ili

ty qn
c

qn
c

ε=3.2×10 , η =0.12
d

-7

FIG. 2. Conditional photon number distribution in mode a (see
Fig. 1): qc̄

n (black) versus qc
n (gray) when ρ is given by Eq. (11),

and σ is a vacuum state. We use µ = 1 and t = 1/2, and we study
two situations: (a) a perfect threshold photon detector (i.e., ε = 0
and ηd = 1), and (b) ε = 3.2 × 10−7 and ηd = 0.12. These last data
correspond to the experiment reported by Gobby et al. in Ref. [25].

pc̄
n, has the form

pc̄
n = (1 − ε)

∞∑
m=0

(1 − ηd)mpn,m = (1 − ε)

r

(
µt

r

)n

, (15)

with the parameter r given by

r = 1 + µ[t + (1 − t)ηd]. (16)

If the detector produces a click, the joint probability of finding
n photons in mode a is given by

pc
n = pt

n − pc̄
n. (17)

Figure 2 shows the conditional photon number statistics of
the outcome signal in mode a depending on the result of the
threshold detector (click and not click): qc

n = pc
n/(1 − Nth)

and qc̄
n = pc̄

n/Nth, with

Nth =
∞∑

n=0

pc̄
n = 1 − ε

1 + µηd(1 − t)
. (18)

B. Lower bound on the secret key rate

We consider that Alice and Bob distill secret key both from
click and no-click events. The calculations to estimate the
yields Y0 and Y1, together with the single-photon error rate e1,
are included in Appendix A.

For simulation purposes we use the channel model de-
scribed in Sec. III. After substituting Eqs. (6)–(9) into the
gain and QBER formulas we obtain that the parameters Qc̄,
Ec̄, Qt , and Et can be written as

Qc̄ = Nth − (1 − ε)(1 − Y0)

r − (1 − ηsys)µt
,

Qc̄Ec̄ = (e0 − ed )Y0Nth + edQ
c̄,

(19)

Qt = Y0 + µtηsys

1 + µtηsys
,

QtEt = (e0 − ed )Y0 + edQ
t ,

where Qc = Qt − Qc̄ and QcEc = QtEt − Qc̄Ec̄.
The resulting lower bound on the secret key rate is

illustrated in Fig. 3 (dashed line). We employ the experi-
mental parameters reported by Gobby et al. in Ref. [25]:
Y0 = 1.7 × 10−6, ed = 0.033, α = 0.21 dB/km, and Bob’s
detection efficiency ηBob = 0.045. We further assume that
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ε=3.2×10  , η =0.12
d

-7
Threshold detector

PNR detector

FIG. 3. Lower bound on the secret key rate R given by Eq. (4) in
logarithmic scale for the passive decoy-state setup illustrated in Fig. 1
with two intensity settings. The signal state ρ is given by Eq. (11), and
σ is a vacuum state. We consider two possible scenarios: (Case A) a
perfect threshold detector (i.e., ε = 0 and ηd = 1), and (Case B) ε =
3.2 × 10−7 and ηd = 0.12 [25]. Both cases provide approximately
the same final key rate and they cannot be distinguished with the
resolution of this figure (dashed line). The solid line represents a
lower bound on R when Alice employs a PNR detector instead of a
threshold detector (see Appendix B1).

q = 1, and f (Ec) = f (Ec̄) = 1.22. These data are used as
well for simulation purposes in the following sections. We
study two different scenarios: (Case A) a perfect threshold
detector, (i.e., ε = 0 and ηd = 1), and (Case B) ε = 3.2 × 10−7

and ηd = 0.12 [25]. In both cases we find that the values of
the mean photon number µ and the transmittance t , which
maximize the secret key rate formula, are quite similar and
almost constant with the distance. In particular, µ is quite
strong (around 200 in the simulation), while t is quite weak
(around 10−3). This result is not surprising. When µ � 1 and
t � 1, Alice’s threshold detector produces a click most of
the time. Then, in the few occasions where Alice actually
does not see a click in her measurement device, she can
be quite confident that the signal state that goes to Bob is
quite weak. Note that in this scenario the conditional photon
number statistics qc̄

n satisfy qc̄
0 ≈ 1 and qc̄

n�1 ≈ 0. Similarly to
the one weak decoy-state protocol proposed in Ref. [12], this
fact allows Alice and Bob to obtain an accurate estimation of
Y1 and e1, which results in an enhancement of the achievable
secret key rate and distance. The cutoff point where the secret
key rate drops down to zero is l ≈ 126 km.

One can improve the resulting secret key rate further by
using a passive scheme with more intensity settings. For
instance, Alice may employ a PNR detector instead of a
threshold detector, or she could use several threshold detectors
in combination with beam splitters. (In this context, see also
Ref. [16]). Figure 3 also illustrates this last scenario, for the
case where Alice uses a PNR detector (solid line). As expected,
it turns out that now the legitimate users can estimate the
actual value of the relevant parameters Y0, Y1, and e1 with
arbitrary precision (see Appendix B1). The cutoff point where
the secret key rate drops down to zero is l ≈ 147 km. This result
shows that the performance of the passive setup represented
in Fig. 1 with a threshold detector is already close to the best

performance that can be achieved with such a scheme and the
security analysis provided in Refs. [8,20].

VI. WEAK COHERENT LIGHT

Suppose now that the signal states ρ and σ that appear in
Fig. 1 are two phase-randomized WCP emitted by a pulsed
laser source, that is

ρ = e−µ1

∞∑
n=0

µn
1

n!
|n〉〈n|,

(20)

σ = e−µ2

∞∑
n=0

µn
2

n!
|n〉〈n|,

with µ1 and µ2 denoting, respectively, the mean photon
number of the two signals. In this scenario, the joint probability
of having n photons in output mode a and m photons in output
mode b can be written as [18]

pn,m = υn+me−υ

n!m!

1

2π

∫ 2π

0
γ n(1 − γ )mdθ, (21)

where the parameters υ, γ , and ξ , are given by

υ = µ1 + µ2,

γ = µ1t + µ2(1 − t) + ξ cos θ

υ
, (22)

ξ = 2
√

µ1µ2(1 − t)t .

This result differs from the one expected from the interference
of two pure coherent states with fixed phase relation, |√µ1e

iφ1〉
and |√µ2e

iφ2〉, at a BS of transmittance t . In this last case, pn,m

is just the product of two Poissonian distributions. Whenever
Alice ignores the result of her measurement in mode b, then the
probability of finding n photons in mode a can be expressed
as

pt
n =

∞∑
m=0

pn,m = υn

n!

1

2π

∫ 2π

0
γ ne−υγ dθ, (23)

which turns out to be a non-Poissonian probability
distribution [18]. Let us now consider the case where Alice
uses a threshold detector to measure output mode b.

A. Threshold detector

The analysis is completely analogous to the one presented
in Sec. V A. In particular, the joint probability for seeing n

photons in mode a and no click in the threshold detector now
has the form

pc̄
n = (1 − ε)

∞∑
m=0

(1 − ηd)mpn,m

= (1 − ε)
υne−ηdυ

n!

1

2π

∫ 2π

0
γ ne−(1−ηd)υγ dθ. (24)

On the other hand, if the detector produces a click, the joint
probability of finding n photons in mode a is given by Eq. (17).
Figures 4(a) and 4(b) show the conditional photon number
statistics of the outcome signal in mode a depending on the
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FIG. 4. Conditional photon number distribution in mode a (see
Fig. 1): qc

n (black) versus qc̄
n (gray) when the signal states ρ and

σ are two phase-randomized WCP given by Eq. (20). We consider
that µ1 = µ2 = 1 and t = 1/2, and we study two situations: (a) a
perfect threshold photon detector (i.e., ε = 0 and ηd = 1 [18]), and
(b) ε = 3.2 × 10−7 and ηd = 0.12. These last data correspond to the
experiment reported by Gobby et al. in Ref. [25]. (c) and (d) represent
qc

n (black) versus a Poissonian distribution of the same mean photon
number for the two scenarios described above (perfect and imperfect
threshold photon detector).

result of the detector (click and no click): qc
n = pc

n/(1 − Nw)
and qc̄

n = pc̄
n/Nw, with

Nw =
∞∑

n=0

pc̄
n = (1 − ε)e−ηd[µ1(1−t)+µ2t]I0,ηdξ , (25)

and where Iq,z represents the modified Bessel function of the
first kind [26]. This function is defined as [26]

Iq,z = 1

2πi

∮
e(z/2)(t+1/t)t−q−1dt. (26)

Figures 4(c) and 4(d) include as well a comparison between qc
n

and a Poissonian distribution of the same mean photon number.
Both distributions, qc

n and qc̄
n, are also non-Poissonian.

B. Lower bound on the secret key rate

To apply the secret key rate formula given by Eq. (5), with
l ∈ {c, c̄}, we need to estimate the quantities Y0, Y1, and e1. For
that, we follow the same procedure explained in Appendix A.
This method requires that pt

n and pc̄
n satisfy certain conditions

that we confirmed numerically. As a result, it turns out that
the bounds given by Eqs. (A10)–(A16) are also valid in this
scenario.

The only relevant statistics to evaluate Eqs. (A10)–(A16)
are pt

n and pc̄
n, with n = 0, 1, 2. These probabilities can be

obtained by solving Eqs. (23) and (24). They are given in
Appendix C. Note that pc

n can be directly calculated from
these two statistics by means of Eq. (17). After substituting
Eqs. (6)–(9) into the gain and QBER formulas we obtain

Qc̄ = Nw − (1 − ε)(1 − Y0)e(ηd−ηsys)ω−ηdυ

× I0,(ηd−ηsys)ξ ,

Qc̄Ec̄ = (e0 − ed )Y0Nw + edQ
c̄,

Qt = 1 − (1 − Y0)e−ηsysωI0,ηsysξ ,

QtEt = (e0 − ed )Y0 + edQ
t , (27)

with the parameter ω given by

ω = µ1t + µ2(1 − t). (28)

The resulting lower bound on the secret key rate is
illustrated in Fig. 5. We assume that t = 1/2 (i.e., we consider
a simple 50 : 50 BS). Again, we study two different situations:
(Case A) ε = 0 and ηd = 1 [18], and (Case B) ε = 3.2 × 10−7

and ηd = 0.12 [25]. In both cases the optimal values of the
intensities µ1 and µ2 are almost constant with the distance.
One of them is quite weak (around 10−4), while the other one
is around 0.5. The reason for this result can be understood
as follows. When the intensity of one of the signals is really
weak, the output photon number distributions in mode a are
always close to a Poissonian distribution (for click and no-click
events). This distribution is narrower than the one arising when
both µ1 and µ2 are of the same order of magnitude. In this case,
a better estimation of Y1 and e1 can be derived, and this fact
translates into a higher secret key rate. It must be emphasized,
however, that from an experimental point of view this solution
might not be optimal, especially because in this scenario the
two output distributions pc

n and pc̄
n might be too close to each

other for being distinguished in practice. This effect could be
especially relevant when one considers statistical fluctuations
due to finite data size (see Sec. VIII); for instance, small
fluctuations in a practical system could overwhelm the tiny
difference between the decoy state and the signal state in
this case. Figure 5 includes as well the secret key rate of
an active asymptotic decoy-state QKD system with infinite
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FIG. 5. Lower bound on the secret key rate R given by Eq. (4)
in logarithmic scale for the passive decoy-state setup illustrated in
Fig. 1 with two intensity settings. The signal states ρ and σ are
two phase-randomized WCP given by Eq. (20). The transmittance
of the BS is t = 1/2. We consider two possible scenarios: (Case A)
ε = 0 and ηd = 1 [18] (i.e., a perfect threshold photon detector),
and (Case B) ε = 3.2 × 10−7 and ηd = 0.12 [25]. Both cases
provide approximately the same final key rate and they cannot be
distinguished with the resolution of this figure (dashed line). The
solid line represents a lower bound on R for an active asymptotic
decoy-state system with infinite decoy settings [10]. This last result
coincides approximately with the case where Alice employs a PNR
detector (see Appendix B2), and the secret key rate in both scenarios
cannot be distinguished with the resolution of this figure.

022310-6



PASSIVE DECOY-STATE QUANTUM KEY DISTRIBUTION . . . PHYSICAL REVIEW A 81, 022310 (2010)

decoy settings [10]. The cutoff points where the secret key rate
drops down to zero are l ≈ 128 km (passive setup with two
intensity settings) and l ≈ 147 km (active asymptotic setup).
From these results we see that the performance of the passive
scheme with a threshold detector is comparable to the active
one, thus showing the practical interest of the passive setup.

As in Sec. V, one can improve the performance of the
passive scheme further by using more intensity settings.
The case where Alice uses a PNR detector is analyzed in
Appendix B2. The result is also shown in Fig. 5. It reproduces
approximately the behavior of the asymptotic active setup and
the secret key rate in both scenarios cannot be distinguished
with the resolution of this figure (solid line). This result is
not surprising, since in both situations (passive and active)
we apply Eq. (5) with the actual values of the parameters
Y0, Y1, and e1. The only difference between these two setups
arises from the photon number distribution of the signal states
that go to Bob. In particular, while in the passive scheme the
relevant statistics are given by Eq. (B9), in the active setup
these statistics have the form given by Eq. (B12).

C. Alternative implementation scheme

The passive setup illustrated in Fig. 1 requires that Alice
employ two independent sources of signal states. This fact
might become especially relevant when she uses phase-
randomized WCP since, in this situation, none of the signal
states entering the BS can be the vacuum state. Otherwise, the
photon number distributions of the output signals in mode a

and mode b would be statistically independent.
Alternatively to the passive scheme shown in Fig. 1, Alice

could as well employ, for instance, the scheme illustrated
in Fig. 6. This setup has only one laser diode, but follows
a similar spirit as the original scheme in Fig. 1, where a
photodetector is used to measure the output signals in mode b.
It includes, however, an intensity modulator (IM) to block
either all the even or all the odd pulses in mode a. This
requires, therefore, an active control of the functioning of the
IM, but note that no random number generator is needed here.
The main reason for blocking half of the pulses in mode a

is to suppress possible correlations between them; that is,
the action of the IM guarantees that the signal states that
go to Bob are tensor products of mixtures of Fock states.
Then, one can directly apply the security analysis provided in
Refs. [8,10,20]. Thanks to the one-pulse delay introduced by
one arm of the interferometer, together with a proper selection
of the transmittance t1, it can be shown that both setups in

BS

t

ρ ρ
out

|vacuum〉

BS

t 2 b
a

Photo-detector

IM

1

FIG. 6. Alternative implementation scheme with only one pulsed
laser source. The delay introduced by one arm of the interferometer
is equal to the time difference between two pulses. The intensity
modulator (IM) blocks either all the even or all the odd optical pulses
in mode a.
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BS

t

|vacuum〉
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ρ

out

1 2

Classical threshold 
detector

σ

FIG. 7. Basic setup of a passive decoy-state QKD scheme with
strong coherent light. The mean photon number of the signal states
ρ and σ is now quite high; for instance, ≈108 photons. t1 and t2
represent the transmittances of the two BS’s, and a, b, and c denote
output modes.

Figs. 1 and 6 are completely equivalent, except from the
resulting secret key rate. More precisely, the secret key rate
in the active scheme is half the one of the passive setup, since
half of the pulses are now discarded.

VII. STRONG COHERENT LIGHT

Let us now consider the passive decoy-state setup illustrated
in Fig. 7. This scheme presents two main differences with
respect to the passive system analyzed in Sec. VI. In particular,
the mean photon number (intensity) of the signal states ρ and σ

is now very high; for instance, ≈108 photons. This fact allows
Alice to use a simple classical photodetector to measure the
pulses in mode b, which makes this scheme specially suited for
experimental implementations. Moreover, it has an additional
BS of transmittance t2 to attenuate the signal states in mode a

and bring them to the QKD regimen.
Due to the high intensity of the input signal states ρ and σ ,

we can describe the action of the first BS in Fig. 7 by means of a
classical model. Specifically, let I1 (I2) represent the intensity
of the input states ρ (σ ), and let Ia(θ ) [Ib(θ )] be the intensity
of the output pulses in mode a (b). Here the angle θ is just a
function of the relative phase between the two input states. It
is given by

θ = φ1 − φ2 + π/2, (29)

where φ1 (φ2) denotes the phase of the signal ρ (σ ). As in
Sec. VI, we assume that these phases are uniformly distributed
between 0 and 2π for each pair of input states. This can be
achieved, for instance, if Alice uses two pulsed laser sources
to prepare the signals ρ and σ . With this notation, we have that
Ia(θ ) and Ib(θ ) can be expressed as

Ia(θ ) = t1I1 + r1I2 + 2
√

t1r1I1I2 cos θ,
(30)

Ib(θ ) = r1I1 + t1I2 − 2
√

t1r1I1I2 cos θ,

where t1 denotes the transmittance of the BS, and r1 = 1 − t1.

A. Classical threshold detector

For simplicity, we shall consider that Alice uses a perfect
classical threshold detector to measure the pulses in mode b.
For each incoming signal, this device tells her whether its
intensity is below or above a certain threshold value IM that
satisfies Ib(π ) > IM > Ib(0); that is, the value of IM is between
the minimal and maximal possible values of the intensity of the
pulses in mode b. Note, however, that the analysis presented in
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ε=0, η =1
d

ε=3.2×10  , η =0.12
d
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I (  )b π

π 2π0
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θ th θ th2π-

FIG. 8. Graphical representation of the intensity Ib(θ ) in mode
b (see Fig. 7) versus the angle θ . IM represents the threshold value
of the classical threshold detector, and θth is its associated threshold
angle.

this section can be straightforwardly adapted to cover also the
case of an imperfect classical threshold detector, or a classical
photodetector with several threshold settings. Figure 8 shows
a graphical representation of Ib(θ ) versus the angle θ , together
with the threshold value IM . The angle θth, which satisfies
Ib(θth) = IM , is given by

θth = arccos

(
r1I1 + t1I2 − IM

2
√

t1r1I1I2

)
. (31)

Whenever the classical threshold detector provides Alice
with an intensity value below IM , it turns out that the
unnormalized signal states in mode c can be expressed as

ρ
<IM

out = 1

2π

∞∑
n=0

{∫ θth

0

e−Ia (θ)t2 [Ia(θ )t2]n

n!
|n〉〈n|dθ

+
∫ 2π

2π−θth

e−Ia (θ)t2 [Ia(θ )t2]n

n!
|n〉〈n|dθ

}

= 1

π

∞∑
n=0

∫ θth

0

e−Ia (θ)t2 [Ia(θ )t2]n

n!
|n〉〈n|dθ. (32)

This means, in particular, that the joint probability of finding
n photons in mode c and an intensity value below IM in mode
b is given by

p<IM

n = tn2

n!π

∫ θth

0
Ia(θ )ne−Ia (θ)t2dθ. (33)

Similarly, we find that p>IM
n can be written as

p>IM

n = tn2

n!π

∫ π

θth

Ia(θ )ne−Ia (θ)t2dθ. (34)

Figure 9(a) shows the conditional photon number statistics
of the outcome signal in mode c depending on the result of
the classical threshold detector (below or above IM ): q<IM

n =
p<IM

n /Ns and q>IM
n = p>IM

n /(1 − Ns), with

Ns =
∞∑

n=0

p<IM

n = θth

π
. (35)

This figure includes as well a comparison between q<IM
n (b)

and q>IM
n (c) and a Poissonian distribution of the same mean

photon number. It turns out that both distributions, q<IM
n and
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FIG. 9. (a) Conditional photon number distribution in mode c (see
Fig. 7): q<IM

n (black) and q>IM
n (gray) for the case I1 = I2 = IM =

108, t1 = 1/2, and t2 = 0.5 × 10−8. (b) and (c) represent, respectively,
q<IM

n and q>IM
n (black) versus a Poissonian distribution of the same

mean photon number (gray).

q>IM
n , approach a Poissonian distribution when t2 is sufficiently

small.

B. Lower bound on the secret key rate

Again, to apply the secret key rate formula given by Eq. (5),
with l ∈ {< IM,> IM}, we need to estimate the quantities Y0,
Y1, and e1. Once more, we follow the procedure explained in
Appendix A. We confirmed numerically that the probabilities
p<IM

n and p>IM
n satisfy the conditions required to use this

technique. As a result, it turns out that the bounds given by
Eqs. (A10)–(A16) are also valid in this scenario.

For simplicity, we impose I1 = I2 = IM ≡ I . This means
that θth = π/2. The relevant statistics p<IM

n and p>IM
n , with

n = 0, 1, 2, are calculated in Appendix D. After substituting
Eqs. (6)–(9) into the gain and QBER formulas we obtain

Q<IM = Ns − (1 − Y0)e−ηsysκ

2
(I0,ηsysζ − L0,ηsysζ ),

Q<IM E<IM = (e0 − ed )Y0Ns + edQ
<IM ,

Q>IM = (1 − Ns) − (1 − Y0)e−ηsysκ

2
(36)

× (I0,ηsysζ + L0,ηsysζ ),

Q>IM E>IM = (e0 − ed )Y0(1 − Ns) + edQ
>IM ,

where the parameter κ is given by

κ = I t2, (37)

and Lq,z represents the modified Struve function [27] defined
by Eq. (D2).

The resulting lower bound on the secret key rate is
illustrated in Fig. 10. We study two different situations: (Case
A) We impose t1 = 1/2 (i.e., we consider a simple 50 : 50 BS
and we optimize the parameter κ), and (Case B) we optimize
both quantities, t1 and κ . In both scenarios the optimal values
of the parameters are almost constant with the distance. In
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Optimal t 1

t =1/21

FIG. 10. Lower bound on the secret key rate R given by
Eq. (4) in logarithmic scale for the passive decoy-state setup
illustrated in Fig. 7 with two intensity settings. We consider two
possible scenarios: (Case A) We impose t1 = 1/2 [i.e., we consider
a simple 50 : 50 BS and we optimize the parameter κ (dashed line)],
and (Case B) we optimize both parameters, t1 and κ (solid line).

the first case κ is around 0.2, whereas in the second case we
obtain that t1 and κ are, respectively, around 0.06 and 0.25.
The solid line curve (Case B) shows a small discontinuity
in its slope around 114 km. This discontinuity arises from
the two secret key rate terms that are contained in Eq. (4)
(i.e., for click and no-click events). The cutoff point where
the secret key rate drops down to zero is l ≈ 132 km in
both Cases A and B. These results seem to indicate that
this passive scheme can offer a better performance than the
passive setups analyzed in Sec. V and Sec. VI with a threshold
photon detector. This fact arises mainly from the probability
distributions p<IM

n and p>IM
n , which, in this scenario, approach

a Poissonian distribution when t2 is sufficiently small. Again,
one can improve the performance of this system even further
just by using more threshold settings in the classical threshold
detector. Moreover, from an experimental point of view,
this configuration might be more feasible than using PNR
detectors.

To conclude this section, let us mention that (as in Sec. VI C)
Alice could as well employ, for instance, the alternative active
scheme illustrated in Fig. 11. This setup has only one pulsed
laser source, but includes an intensity modulator (IM) to block
either all the even or all the odd pulses in mode c. The
argumentation here goes exactly the same as in Sec. VI C
and we omit it for simplicity. The resulting secret key rate in
the active scheme is half the one of the passive setup.

BS

t

ρ ρ
out

|vacuum〉

BS

t 2 b
a

IM

1

BS

t

|vacuum〉

c
3

Classical threshold 
detector

FIG. 11. Alternative implementation scheme with only one
pulsed laser source. The delay introduced by one arm of the
interferometer is equal to the time difference between two pulses.
The intensity modulator (IM) blocks either the even or the odd optical
pulses in mode c.

VIII. STATISTICAL FLUCTUATIONS

In this section, we discuss briefly the effect that finite data
size in real life experiments might have on the final secret
key rate. For that, we follow the statistical fluctuation analysis
presented in Ref. [12]. This procedure is based on standard
error analysis; that is, we shall assume that all the variables
that are measured in the experiment fluctuate around their
asymptotic values.

Our main objective here is to obtain a lower bound
on the secret key rate formula given by Eq. (5) under
statistical fluctuations. For that, we realize the following four
assumptions:

1. Alice and Bob know the photon number statistics of the
source well and we do not consider their fluctuations
directly. Intuitively speaking, these fluctuations are
included in the parameters measuring the gains and
QBERs.

2. Alice and Bob use a real upper bound on the single-
photon error rate e1, thus no fluctuations have to be
considered for this parameter. In particular, we use the
fact that the number of errors within the single-photon
states cannot be greater than the total number of errors.

3. Alice and Bob use a standard error analysis procedure
to deal with the fluctuations of the variables that are
measured.

4. The error rate of background does not fluctuate (i.e.,
e0 = 1/2).

To illustrate our results, we focus on the passive decoy-state
setup introduced in Sec. VI. Note, however, that a similar
analysis can also be applied to the other passive schemes
presented in this article.

A. Active decoy-state QKD

In order to make a fair comparison between the active and
the passive decoy-state QKD setups with two intensity settings,
from now on we shall consider an active scheme with only one
decoy state [12]. In this last case, the quantities Y1 and e1 can
be bounded as

Y1 � YL
1 = µ2Qνe

ν − ν2Qµeµ − (µ2 − ν2)Y0

µν(µ − ν)
,

(38)

e1 � eU
1 = EµQµeµ − e0Y0

Y l
1µ

,

where µ (ν) denotes the mean photon number of a signal
(decoy) state, Qµ (Qν) and Eµ (Eν) represent, respectively, its
associated gain and QBER, and Y0 is a free parameter. Using
the channel model described in Sec. III, we find that these
parameters can be written as

Qµ = Y0 + 1 − e−µηsys ,

EµQµ = e0Y0 + ed (1 − e−µηsys ),
(39)

Qν = Y0 + 1 − e−νηsys ,

EνQν = e0Y0 + ed (1 − e−νηsys ).

If we now apply a standard error analysis to these quantities
we obtain that their deviations from the theoretical values are
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given by

�Qµ = uα

√
Qµ/Nµ,

�Qν = uα

√
Qν/Nν,

(40)
�QµEµ = uα

√
2EµQµ/Nµ,

�QνEν = uα

√
2EνQν/Nν,

where Nµ (Nν) denotes the number of signal (weak decoy)
pulses sent by Alice, and uα represents the number of standard
deviations from the central values; that is, the total number of
pulses emitted by the source is just given by N = Nµ + Nν .
Roughly speaking, this means, for instance, that the gain
of the signal states lies in the interval Qµ ± �Qµ except
with small probability, and similarly for the other quantities
defined in Eq. (39). For example, if we select uα = 10, then the
corresponding confidence interval is 1 − 1.5 × 10−23, which
we use later on for simulation purposes. For simplicity, here
we have assumed that Alice and Bob use the standard BB84
protocol (i.e., they keep only half of their raw bits due to the
basis sift). This is the reason for the factor 2 that appears
in the last two expressions of Eq. (40). In this context, see
also Ref. [28] for a discussion on the optimal value of the
parameter q.

B. The background Y0

The bounds given by Eq. (38) depend on the unknown
parameter Y0. When a vacuum decoy state is applied, the value
of Y0 can be estimated. Alternatively, one can also derive a
lower bound on Y1 and an upper bound on e1 that do not
depend on Y0. Specifically, from Eqs. (2) and (3) we obtain

(1 − 2e1)Y1 � A = µ

ν(µ − ν)
Qν(1 − 2Eν)eν

− ν

µ(µ − ν)
Qµ(1 − 2Eµ)eµ. (41)

The gains Qµ and Qν , together with the QBERs Eµ and Eν ,
are directly measured in the experiment, and their statistical
fluctuations are given by Eq. (40). On the other hand, we have

e1 � B

YL
1

, (42)

with the parameter B given by

B = min

{
EνQνe

ν

ν
,
EµQµeµ − EνQνe

ν

µ − ν

}
. (43)

Combining Eqs. (41) and (42) we find

Y1[1 − H (e1)] � A

1 − 2e1

[
1 − H

(
B(1 − 2e1)

A

)]
. (44)

The quantities A and B can be obtained directly from
the variables measured in the experiment. Moreover, if one
considers the secret key rate formula given by Eq. (5) as a
function of the free parameter e1, then one should select an
upper bound on e1, which gives a value (may not be a bound)
for Y1 as

Y t
1 = A + 2B,

(45)
eU

1 = B

A + 2B
,

where the equation for eU
1 comes from solving the two

inequalities given by Eqs. (41) and (42).
Again, using a standard error analysis procedure, we find

that the deviations of the parameters A and B from their
theoretical values can be written as

�A = [(c1�Qν)2 + 4(c1�EνQν)2 + (c2�Qµ)2

+ 4(c2�EµQµ)2]
1
2 ,

(46)

�B = min

{
eµ�EµQµ

µ
,
eν�EνQν

ν
,

√
(eµ�EµQµ)2 + (eν�EνQν)2

µ − ν

}
,

where the coefficients c1 and c2 have the form

c1 = µ

ν(µ − ν)
eν,

(47)
c2 = ν

µ(µ − ν)
eµ,

and the deviations of the gains and the QBERs are given
by Eq. (40).

For simplicity, we assume now that A and B are statistically
independent. Thus, the statistical deviation of the crucial term
Y1[1 − H2(e1)] in the secret key formula can be written as

�Y1[1−H2(e1)] =
{[

�A log2

(
2A + 2B

A + 2B

)]2

+
[
�B log2

(
4B(A + B)

(A + 2B)2

)]2
} 1

2

. (48)

From Eqs. (40), (46), and (48) one can directly calculate
the final secret key rate with statistical fluctuations for an
active decoy-state setup with only one decoy state [12]. The
result is illustrated in Fig. 12 (dashed line). Here we use
again the experimental data reported by Gobby et al. in
Ref. [25]. Moreover, we pick the data size (total number of
pulses emitted by Alice) to be N = 6 × 109. We calculate the
optimal values of µ and ν for each fiber length numerically.
It turns out that both parameters are almost constant with the
distance. One of them is weak (it varies between 0.03 and
0.06), while the other is around 0.48. This figure includes
as well the resulting secret key rate for the same setup
without considering statistical fluctuations (thick solid line).
The cutoff points where the secret key rate drops down to zero
are l ≈ 129.5 km (active setup with statistical fluctuations)
and l ≈ 147 km (active setup without considering statistical
fluctuations). From these results we see that the performance
of this active scheme is quite robust against statistical
fluctuations.

C. Passive decoy-state QKD

The analysis is completely analogous to the previous
section. Specifically, we find that the parameters A and B
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t =1/21

Optimal t 1

ηd
ηd

FIG. 12. Lower bound on the secret key rate R given by
Eq. (4) in logarithmic scale. We consider four possible scenarios: an
active decoy-state setup (with only one decoy state) with statistical
fluctuations (dashed line) [12]; an active decoy-state setup (with only
one decoy state) without considering statistical fluctuations (thick
solid line) [12]; the passive decoy-state scheme with WCP introduced
in Sec. VI now considering statistical fluctuations [in this last case,
moreover, we study two possible situations depending on the value
of ηd: ηd = 1 (thin solid line), and ηd = 0.4 (dash-dotted line)]; the
passive decoy-state scheme with WCP introduced in Sec. VI with
ηd = 1 and without considering statistical fluctuations (dotted line).
In all passive setups the transmittance of the BS is t = 1/2 and
we use ε = 0. Furthermore, we pick the data size (total number
of pulses emitted by Alice) to be N = 6 × 109. The confidence
interval for statistical fluctuations is 10 standard deviations (i.e.,
1 − 1.5 × 10−23).

are now given by

A = pc̄
2Q

t (1 − 2Et ) − pt
2Q

c̄(1 − 2Ec̄)

pc̄
2p

t
1 − pt

2p
c̄
1

,

(49)

B = min

{
Ec̄Qc̄

pc̄
1

,
pc̄

0E
tQt − pt

0E
c̄Qc̄

pc̄
0p

t
1 − pt

0p
c̄
1

}
,

while Eq. (45) is still valid in this scenario. The deviations of
A and B have the form

�A = 1

pc̄
2p

t
1 − pt

2p
c̄
1

[(
pc̄

2�Qt

)2 + 4
(
pc̄

2�EtQt

)2

+(
pt

2�Qc̄

)2 + 4
(
pt

2�Ec̄Qc̄

)] 1
2 , (50)

�B = min

⎧⎨
⎩�EtQt

pt
1

,
�Ec̄Qc̄

pc̄
1

,

√(
pc̄

0�EtQt

)2 + (
pt

0�Ec̄Qc̄

)2

pc̄
0p

t
1 − pt

0p
c̄
1

⎫⎬
⎭.

On the other hand, the deviations of the gains and the QBERs
can now be written as

�Qt = uα

√
Qt/N,

�Qc̄ = uα

√
Qc̄/Nc̄,

(51)
�EtQt = uα

√
2EtQt/N,

�Ec̄Qc̄ = uα

√
2Ec̄Qc̄/Nc̄,

where Nc̄ denotes the number of pulses where Alice obtained
no click in her threshold detector, and N is the total number

of pulses emitted by the source. The deviation of the term
Y1[1 − H2(e1)] is again given by Eq. (48).

The secret key rate for the passive decoy-state scheme with
WCP introduced in Sec. VI with two intensity settings and
considering statistical fluctuations is illustrated in Fig. 12. We
assume that t = 1/2 (i.e., we consider a simple 50 : 50 BS) and
ε = 0. The data size is equal to that of the previous section (i.e.,
N = 6 × 109). We study two different situations depending
on the efficiency of Alice’s threshold detector: ηd = 1 (thin
solid line) and ηd = 0.4 (dash-dotted line). In both cases the
optimal values of the intensities µ1 and µ2 are almost constant
with the distance. One of them is weak (it varies between 0.1
and 0.17), while the other is around 0.5. The reason for the
discontinuity that appears in the slope of these two lines is the
same as in Fig. 10 [i.e., it comes from the two secret key rate
terms that are included in Eq. (4)]. Figure 12 contains as well
the resulting secret key rate for the same setup with ηd = 1 and
without considering statistical fluctuations (dotted line). The
cutoff points where the secret key rate drops down to zero are
l ≈ 53 km (passive setup with statistical fluctuations
and ηd = 0.4), l ≈ 80 km (passive setup with statistical
fluctuations and ηd = 1), and l ≈ 128 km (passive setup
without considering statistical fluctuations; see Sec. VI).
From these results we see that the performance of the passive
schemes introduced in Sec. VI (with statistical fluctuations)
depends on the actual value of the efficiency ηd. In particular,
when Alice’s detector efficiency is low, the photon number
statistics of the signal states that go to Bob (conditioned on
Alice’s detection) become close to each other. This effect
becomes especially relevant when one considers statistical
fluctuations due to finite data size. In this last case, small
fluctuations can easily cover the difference between the signal
states associated, respectively, to click and no-click events on
Alice’s threshold detector. As a result, the achievable secret
key rate and distance decrease.

IX. CONCLUSION

In this article we have extended the results presented in
Ref. [18], now showing specifically the analysis for other prac-
tical scenarios with different light sources and photodetectors.
In particular, we have considered sources emitting thermal
states and phase-randomized WCP in combination with
threshold detectors and photon number resolving detectors. In
the case of threshold detectors, we have included as well the
effect that detection inefficiencies and dark counts present in
current measurement devices might have on the final secret
key rate. For simplicity, these measurement imperfections
were not considered in the original proposal. On the other
hand, PNR detectors have allowed us to obtain ultimate lower
bounds on the maximal performance that can be expected
from these kinds of passive setups. We have also presented a
passive scheme that employs strong coherent light and does
not require the use of single-photon detectors, but can operate
with a simpler classical photodetector. This fact makes this
setup specially interesting from an experimental point of view.
Finally, we have provided an estimation on the effects that sta-
tistical fluctuations due to a finite data size can have in practical
implementations.
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APPENDIX A: ESTIMATION PROCEDURE

Our starting point is the secret key rate formula given by
Eq. (5). This expression can be lower bounded by

Rl � q
{−Qlf (El)H (El) +(

pl
1Y1 + pl

0Y0
)[

1 − H
(
eU

1

)]}
,

(A1)

where eU
1 denotes an upper bound on the single-photon error

rate e1. Hence, for our purposes it is enough to obtain a lower
bound on the quantities pl

1Y1 + pl
0Y0 for all l, together with

eU
1 . For that, we follow the estimation procedure proposed in

Ref. [12]. Next, we show the explicit calculations for the case
where Alice uses the passive scheme introduced in Sec. V.

A. Lower bound on pl
1Y1 + pl

0Y0

The method contains two main steps. First, we have pl
1Y1 +

pl
0Y0 always satisfies

pl
1Y1 + pl

0Y0 � pl
1Y

L
1 + pl

0Y0, (A2)

for all l ∈ {c, c̄}, and where YL
1 denotes a lower bound on the

yield of a single-photon state. To find YL
1 , note that

pt
2Q

c̄ − pc̄
2Q

t =
∞∑

n=0

(
pt

2p
c̄
n − pc̄

2p
t
n

)
Yn

�
1∑

n=0

(
pt

2p
c̄
n − pc̄

2p
t
n

)
Yn, (A3)

since

pt
2p

c̄
n−pc̄

2p
t
n = (1−ε)(µt)n+2

[(1+µt)r]3

(
1

rn−2
− 1

(1 + µt)n−2

)
� 0,

(A4)

for all n � 2, and where the parameter r is given by Eq. (16).
To see this, note that the first term on the right-hand side of
Eq. (A4) is always greater than or equal to zero, and r � 1 +
µt � 1. Similarly, we have pt

2p
c̄
n − pc̄

2p
t
n � 0 for all n � 1.

Combining both results, we obtain

Y1 � YL
1 = max

{
pt

2Q
c̄ − pc̄

2Q
t − (

pt
2p

c̄
0 − pc̄

2p
t
0

)
Y0

pt
2p

c̄
1 − pc̄

2p
t
1

, 0

}
.

(A5)

Now comes the second step. The term that multiplies Y0 in the
expression pl

1Y
L
1 + pl

0Y0 satisfies

−pl
1
pt

2p
c̄
0 − pc̄

2p
t
0

pt
2p

c̄
1 − pc̄

2p
t
1

+ pl
0 � 0. (A6)

This last statement can be proven as follows. The condition
given by Eq. (A6) is equivalent to

pl
0

(
pt

2p
c̄
1 − pc̄

2p
t
1

)
� pl

1

(
pt

2p
c̄
0 − pc̄

2p
t
0

)
, (A7)

since, as we have seen above, pt
2p

c̄
1 − pc̄

2p
t
1 � 0. After a short

calculation, it turns out that Eq. (A7) can be further simplified
to

pt
1p

c̄
0 − pc̄

1p
t
0 � 0, (A8)

both for l = c and l = c̄. Finally, from the definition of the
probabilities pt

n and pc̄
n given by Eqs. (13)–(15), we find

pt
1p

c̄
n − pc̄

1p
t
n = (1 − ε)(µt)n+1

[(1 + µt)r]2

(
1

rn−1
− 1

(1 + µt)n−1

)
,

(A9)

which is greater than or equal to zero for all n � 1, and negative
otherwise. Note that the first term on the right-hand side of
Eq. (A9) is always greater than or equal to zero, and the sign
of the second term depends on the value of n, since r � 1+
µt � 1.

We obtain, therefore,

pl
1Y1 + pl

0Y0 � max

{
pl

1

(
pt

2Q
c̄ − pc̄

2Q
t
)

pt
2p

c̄
1 − pc̄

2p
t
1

+
[
pl

0 − pl
1
pt

2p
c̄
0 − pc̄

2p
t
0

pt
2p

c̄
1 − pc̄

2p
t
1

]
Yu

0 , 0

}
,

(A10)

for all l ∈ {c, c̄}, and where Yu
0 denotes an upper bound on

the background rate Y0. This parameter can be calculated from
Eq. (3). In particular, we have

QcEc =
∞∑

n=0

pc
nYnen � pc

0Y0e0, (A11)

and similarly for the product Qc̄Ec̄. We find

Y0 � Yu
0 = min

{
EcQc

pc
0e0

,
Ec̄Qc̄

pc̄
0e0

}
. (A12)

B. Upper bound on e1

For this, we proceed as follows:

pc̄
0Q

tEt − pt
0Q

c̄Ec̄ =
∞∑

n=1

(
pt

np
c̄
0 − pc̄

np
t
0

)
Ynen

�
(
pt

1p
c̄
0 − pc̄

1p
t
0

)
Y1e1, (A13)

where the inequality condition comes from the fact that

pt
np

c̄
0 − pc̄

np
t
0 = (1 − ε)(µt)n

(1 + µt)r

(
1

(1 + µt)n
− 1

rn

)
� 0,

(A14)
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for all n � 1. From Eq. (A13) we obtain, therefore, that e1 is
upper bounded by (pc̄

0E
tQt − pt

0E
c̄Qc̄)/[(pt

1p
c̄
0 − pc̄

1p
t
0)YL

1 ],
where YL

1 is given by Eq. (A5) with the parameter Y0 replaced
by Yu

0 .
On the other hand, note that Eq. (3) also provides a simple

upper bound on e1. Specifically,

QcEc =
∞∑

n=0

pc
nYnen � pc

0Y0e0 + pc
1Y1e1, (A15)

and similarly for the product Qc̄Ec̄. Putting all these conditions
together, we find that

e1 � eU
1 = min

{
EcQc − pc

0Y
L
0 e0

pc
1Y

L
1

,
Ec̄Qc̄ − pc̄

0Y
L
0 e0

pc̄
1Y

L
1

,

pc̄
0E

tQt − pt
0E

c̄Qc̄(
pt

1p
c̄
0 − pc̄

1p
t
0

)
YL

1

}
, (A16)

where YL
0 represents a lower bound on the background rate Y0.

To calculate this parameter we use the following inequality:

pt
1Q

c̄ − pc̄
1Q

t = (
pt

1p
c̄
0 − pc̄

1p
t
0

)
Y0 +

∞∑
n=2

(
pt

1p
c̄
n − pc̄

1p
t
n

)
Yn

�
(
pt

1p
c̄
0 − pc̄

1p
t
0

)
Y0, (A17)

since, as we have seen above, pt
1p

c̄
n − pc̄

1p
t
n � 0 for all n � 2.

From Eq. (A17) we obtain, therefore,

Y0 � YL
0 = max

{
pt

1Q
c̄ − pc̄

1Q
t

pt
1p

c̄
0 − pc̄

1p
t
0

, 0

}
. (A18)

APPENDIX B: PNR DETECTOR

In this Appendix we study the case where Alice uses a
perfect PNR detector to measure the signal states in mode b.
The main goal of this analysis is to obtain an ultimate lower
bound on the secret key rate that can be achieved with the
passive decoy-state setups introduced in Sec. V and Sec. VI,
in combination with the security analysis provided in Refs.
[8,20].

A perfect PNR detector can be characterized by a POVM
that contains an infinite number of elements,

Fm = |m〉〈m|, (B1)

with m = 0, 1, . . . ,∞. The outcome of Fm corresponds to the
detection of m photons in mode b.

1. Thermal light

Let us begin by considering the passive scheme analyzed in
Sec. V with Alice using a PNR detector. Whenever she finds
m photons in mode b, then the joint probability distribution of
having n photons in mode a is just given by Eq. (12). Figure 13
shows the conditional photon number statistics in mode a given
that mode b contains exactly m photons: pm

n = pn,m/Nm, with

Nm =
∞∑

n=0

pn,m = 1

1 + µ(1 − t)

[
µ(1 − t)

1 + µ(1 − t)

]m

. (B2)

In this scenario, it turns out that Alice and Bob can always
estimate any finite number of yields Yn and error rates en with
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FIG. 13. Conditional photon number distribution in mode a when
Alice uses a PNR detector, ρ is given by Eq. (11), and σ is a vacuum
state: p0

n (black), p1
n (gray), and p2

n (white). We consider that µ = 1,
t = 1/2, and n � 5.

arbitrary precision. In particular, they can obtain the actual
values of the parameters Y0, Y1, and e1. To see this, let Qm

denote the overall gain of the signal states sent to Bob when
mode b contains exactly m photons, and let the parameters Xm

and Vn be defined as

Xm = (1 + µ)m+1Qm

[µ(1 − t)]m
,

(B3)

Vn =
(

µt

1 + µ

)n

Yn.

With this notation, and using the definition of pn,m given by
Eq. (12), we find that Eq. (2) can be rewritten as

Xm =
∞∑

n=0

(
n + m

m

)
Vn, (B4)

that is, the coefficient matrix of the system of linear equations
given by Eq. (B4) for all possible values of m is a symmetric
Pascal matrix [29]. This matrix has determinant equal to one
and, therefore, in principle can always be inverted [29]. Then,
from the knowledge of the coefficients Vn, the legitimate users
can directly obtain the values of the yields Yn by means of
Eq. (B3). A similar argument can also be used to show that
Alice and Bob can obtain as well the values of en.

After substituting Eqs. (6)–(9) into the gain and QBER
formulas we obtain

Qm = Nm − (1 − Y0)[µ(1 − t)]m

{1 + µ[1 − (1 − ηsys)t]}m+1
,

(B5)
QmEm = (e0 − ed )Y0Nm + edQ

m.

In order to evaluate Eq. (5) we need to find the probabilities
p0,m and p1,m for all m. From Eq. (12) we have that these
parameters can be expressed as

p0,m = [µ(1 − t)]m

(1 + µ)m+1
,

(B6)

p1,m = (m + 1)t(1 − t)m

1 + µ

(
µ

1 + µ

)m+1

.

The resulting lower bound on the secret key rate is
illustrated in Fig. 3 (solid line). The optimal values of the
parameters µ and t are quite constant with the distance.
Specifically, in this figure we choose µ around 18.5 and t

around 0.02.
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FIG. 14. Conditional photon number distribution in mode a when
Alice uses a PNR detector: p0

n (black), p1
n (gray), and p2

n (white). The
signal states ρ and σ in Fig. 1 are two phase-randomized WCP given
by Eq. (20). We consider that µ1 = µ2 = 1, t = 1/2, and n � 5.

2. Weak coherent light

Let us now consider the passive scheme illustrated in
Sec. VI with Alice using a PNR detector. Whenever her
detector finds m photons in mode b, the joint probability
distribution of having n photons in mode a is given by
Eq. (21). Figure 14 shows the conditional photon number
statistics in mode a given that mode b contains exactly m

photons: pm
n = pn,m/Nm, with

Nm =
∞∑

n=0

pn,m = υme−υ

m!

1

2π

∫ 2π

0
(1 − γ )meυγ dθ. (B7)

To show that the experimental observations associated with
different outcomes of the PNR detector allow Alice and Bob to
obtain the values of the parameters Y0, Y1, and e1 with arbitrary
precision, one could follow the same procedure explained
in Appendix B1; that is, one could try to prove that the
determinant of the coefficient matrices associated with the
systems of linear equations given by Eqs. (2) and (3) is different
from zero also in this scenario. For simplicity, here we have
confirmed this statement only numerically.

After substituting Eqs. (6)–(9) into the gain and QBER
formulas we obtain

Qm = υme−υ

m!

1

2π

∫ 2π

0
[1−(1−Y0)e−ηsysυγ ](1−γ )meυγ dθ,

(B8)
QmEm = (e0 − ed )Y0Nm + edQ

m.

The relevant probabilities p0,m and p1,m can be calculated
directly from Eq. (21). We find that

p0,m = e−υ(υ − ω)m

�1+m

g

[
1 − m

2
,−m

2
, 1,

ξ 2

(υ − ω)2

]
,

p1,m = ωp0,m − e−υξ 2(υ − ω)m−1

2�m

(B9)

× g

[
1 − m

2
, 1 − m

2
, 2,

ξ 2

(υ − ω)2

]
,

where the Gamma function �z is defined as [26]

�z =
∫ ∞

0
t z−1e−t dt, (B10)

and where g(a, b, c, z) represents the hypergeometric function
[26]. This function is defined as [26]

g(a, b, c, z) = �c

�b�c−b

∫ 1

0

tb−1(1 − t)c−b−1

(1 − tz)a
dt. (B11)

In this case, the lower bound on the resulting secret key
rate reproduces approximately the behavior of the asymptotic
active decoy-state setup illustrated in Fig. 5 (solid line).
Here we have assumed again that t = 1/2. The values of
the intensities µ1 and µ2, which optimize the secret key rate
formula, are, respectively, ≈10−4 and ≈0.95. As already
discussed in Sec. VI, this result is not surprising since the only
difference between both setups (passive and active) arises
from the photon number probabilities of the signal states sent
by Alice. Although in the passive scheme the relevant statistics
are given by Eq. (B9), in the active setup they have the form

p0,m = e−µm,
(B12)

p1,m = e−µmµm,

with µm denoting the mean photon number of the signals
associated with setting m. Still, it turns out that this difference
is not significant enough to be appreciated with the resolution
of Fig. 5 when we optimize the parameters µ1 and µ2.

APPENDIX C: WEAK COHERENT LIGHT:
PROBABILITIES pt

n AND pc̄
n

In this Appendix we provide explicit expressions for the
probabilities pt

n and pc̄
n, with n = 0, 1, 2, for the case of a

passive decoy-state setup with phase-randomized WCP. After
a short calculation, we find that

pt
0 = I0,ξ e

−ω,

pt
1 = (ωI0,ξ − ξI1,ξ )e−ω, (C1)

pt
2 = 1

2 [ω2I0,ξ + (1 − 2ω)ξI1,ξ + ξ 2I2,ξ ]e−ω,

with ω = µ1t + µ2(1 − t). The probabilities pc̄
n have the form

pc̄
0 = τI0,(1−ηd)ξ ,

pc̄
1 = τ [ωI0,(1−ηd)ξ − ξI1,(1−ηd)ξ ],

(C2)

pc̄
2 = τ

2

[
ω2I0,(1−ηd)ξ +

(
1

1 − ηd
− 2ω

)
ξI1,(1−ηd)ξ

+ ξ 2I2,(1−ηd)ξ

]
,

where τ = (1 − ε)e−[ηdυ+(1−ηd)ω].

APPENDIX D: PROBABILITIES p<IM
n AND p>IM

n

In this Appendix we provide explicit expressions for the
probabilities p<IM

n and p>IM
n , with n = 0, 1, 2. For simplicity,

we impose I1 = I2 = IM ≡ I . After a short calculation, we
obtain

p
<IM

0 = e−κ

2
(I0,ζ − L0,ζ ),

p
<IM

1 = e−κ

2
[κ(I0,ζ − L0,ζ ) − ζ (I1,ζ − L−1,ζ )],

(D1)
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p
<IM

2 = e−κ

4

{
κ2(I0,ζ − L0,ζ ) + ζ

[
2

π

(
1 − ζ 2

3

)

+ (1 − 2κ)(I1,ζ − L−1,ζ ) + ζ (I2,ζ − L2,ζ )

]}
,

where κ = I t2, ζ = 2κ
√

t1r1, and Lq,z represents the modified
Struve function [27]. This function is defined as [27]

Lq,z = zq

2q−1
√

π�q+1/2

∫ π/2

0
sinh (z cos θ ) sin θ2qdθ. (D2)

On the other hand, the probabilities p>IM
n have the form

p
>IM

0 = e−κ

2
(I0,ζ + L0,ζ ),

p
>IM

1 = e−κ

2
[κ(I0,ζ + L0,ζ ) − ζ (I1,ζ + L−1,ζ )],

(D3)

p
>IM

2 = e−κ

4

{
κ2(I0,ζ + L0,ζ ) + ζ

[
− 2

π

(
1 − ζ 2

3

)

+ (1 − 2κ)(I1,ζ + L−1,ζ ) + ζ (I2,ζ + L2,ζ )

]}
.
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