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An important quantum search algorithm based on the quantum random walk performs an oracle search on a
database of N items with O(

√
phN ) calls, yielding a speedup similar to the Grover quantum search algorithm. The

algorithm was implemented on a quantum information processor of three-qubit liquid-crystal nuclear magnetic
resonance (NMR) in the case of finding 1 out of 4, and the diagonal elements’ tomography of all the final density
matrices was completed with comprehensible one-dimensional NMR spectra. The experimental results agree
well with the theoretical predictions.
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I. INTRODUCTION

Quantum computation has attracted much attention for
the past decade as it is believed that quantum computers
can efficiently solve problems that are intractable to classical
computers. The computation tasks are rendered by algorithms.
Since Shor’s remarkable factoring algorithm [1], many quan-
tum algorithms have been proposed. The algorithms presented
earlier have been mainly based on the quantum Fourier
transform [1] and Grover’s search algorithm [2]. Later, two
alternative trends entered into the field: the adiabatic quantum
algorithms [3] and quantum random walk [4–12]. In this paper,
we focus on the quantum-walk-based search algorithm.

Since the classical random walk is a useful tool for
developing classical algorithms, the quantum random walk has
been introduced as a potential method to formulate quantum
algorithms. There are two distinct models, the continuous-
time model and discrete-time model. The continuous-time
model defines a Hamiltonian that acts continuously on the
system to drive the quantum random walk. The discrete-time
model requires an extra coin register and defines a two-step
procedure consisting of a quantum coin flip followed by a
coin-controlled walk step. Investigations show that quantum
random walks have features that are notably different from
their classical counterparts [4,5]. These features may be used
for designing quantum algorithms. Some relevant algorithms
have been discovered with remarkable speedup over classical
computation [8,13]. The quantum search algorithm based
on the quantum random walk proposed by Shenvi, Kempe,
and Whaley (the SKW algorithm) [13] is one of the novel
algorithms for performing an oracle search on a database of N

items with O(
√

phN ) calls, where N is the size of the search
space. Despite a speedup similar to Grover’s quantum search
algorithm, the SKW algorithm is important because there
are situations when the diffusion step of Grover’s algorithm
cannot be implemented efficiently. Various optimizations and
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improvements of the SKW algorithm have also been proposed
in recent years [14–18], which reduce the complexity and
increase the search capability to a certain extent.

Some experiments involving quantum random walk have
been implemented in various physical systems under both
continuous- and discrete-time conditions [19–22], but no
experiments about the algorithms based on quantum random
walk have been reported. In this paper, we experimentally
demonstrate the 1 out of 4 case of the SKW algorithm [13] and
show its superiority over classical algorithms. The experiments
are performed on a quantum-information processor of liquid-
crystal nuclear magnetic resonance, with a strongly dipolar
coupled Hamiltonian [23–25]. More details are described in
Sec. III.

II. ALGORITHM

First we give an overview of the original algorithm.
Consider the following unstructured search problem: given
a function f (x), f (x) = 1 if x = a; otherwise f (x) = 0. The
goal is to find a, where 0 � a � 2n − 1. It is equivalent to
search for a single marked node among the N = 2n nodes on
the n cube.

The discrete-time random walk can be described by the re-
peated application of a unitary evolution operator U . The oper-
ator U can be divided into two parts, U = SC, where S is a per-
mutation matrix, which performs a controlled shift based on the
state of the coin space, and C is a unitary matrix corresponding
to “flipping” the quantum coin. To search for the node, the
SKW algorithm introduces an oracle whose function is deter-
mined by the coin operator. The oracle acts by applying a mark-
ing coin C1 to the marked node and the original coin C0 to the
unmarked nodes. This new coin operator is named C ′. Then the
perturbed unitary evolution operator U ′ is given by U ′ = SC ′

(see Fig. 1). After applying U ′ for tf = π
2

√
2n times, we gain

the marked state with probability 1
2 − O(n) by measurement.

When n = 2, three qubits are needed to demonstrate the
algorithm. One qubit is used as the “coin” (referred to as the
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FIG. 1. Quantum network for the algorithm of 1 out of 4
searching, with the target state being |00〉12. Qubit 0 is the “coin
qubit,” while qubit 1 and 2 are “database qubits.” The Hadamard
gates are applied to produce an equal superposition over all the
computational bases. The solid circle represents a 1-control gate
whereas the open circle represents the opposite. The purpose of C ′

is to implement C1 = R0
x(π/2) (rotating qubit 0 around the x axis

by angle π

2 ) when the “database” is |00〉12 and C0 = R0
x(3π/2)

otherwise. It is equivalent to being replaced by R1 = R0
x(3π/2)

and R2 = R0
x(−π ). The two controlled-NOT gates invert qubit 1 if

qubit 0 is |1〉0 and invert qubit 2 if qubit 0 is |0〉0, respectively. The
measurement is all the populations’ diagonal-element reconstruction.
Similar circuits can be obtained in a straightforward manner for other
target states. For instance, if the goal is |10〉12, we need only change
the controlled condition of the three-body-interaction gate to state
|10〉12.

“coin qubit,” labeled by qubit 0), whereas the other two are
used as the database (referred to as the “database qubits,”
labeled by qubits 1 and 2). The target state is |τσ 〉12 =
|τ 〉1 ⊗ |σ 〉2 (τ, σ = 0, 1) out of the four computational bases
|00〉12, |01〉12, |10〉12, and |11〉12. The 1 out of 4 algorithm
is implemented as the network shown in Fig. 1. Suppose the
initial state is |000〉.

(i) Prepare the state

|ψi〉 = |0〉0 + |1〉0√
2

⊗ |0〉1 + |1〉1√
2

⊗ |0〉2 + |1〉2√
2

, (1)

which is an exactly equal superposition over all the computa-
tional bases. It is simple to do this by applying a Hadamard
operation to every qubit.

(ii) Perform the unitary operation on the coin qubit
depending on the state of database qubits, namely, C1 =
R0

x(π/2) = e−iπσx/4 if the database qubits are on the target
state |τσ 〉12, and C0 = R0

x(3π/2) = e−i3πσx/4 otherwise. (In
Fig. 1, this controlled operation is simplified through R1 =
R0

x(3π/2) = e−i3πσx/4 and R2 = R0
x(−π ) = eiπσx/2, equiva-

lently.) Therefore, the whole coin operation is

C ′ = C0 ⊗ (E12 − |τσ 〉12 12〈τσ |)
+C1 ⊗ |τσ 〉12 12〈τσ |, (2)

where E12 is the identity operator on the database qubits. Then
the database qubits undergo the shift operation S conditioned
on the state of the coin qubit:

|0〉0|00〉12 ⇐⇒ |0〉0|01〉12,

|0〉0|10〉12 ⇐⇒ |0〉0|11〉12,
(3)

|1〉0|00〉12 ⇐⇒ |1〉0|01〉12,

|1〉0|01〉12 ⇐⇒ |1〉0|11〉12.

(iii) Repeat step (ii) twice to reach the final state:

|ψf 〉 = (SC ′)2|ψi〉. (4)

(iv) Measure the diagonal elements of the final density
matrix to obtain the populations of the database qubits. For
example, in the case of finding |00〉12, we can calculate that
the probabilities of |00〉12, |01〉12, |10〉12, and |11〉12 are 0.5,
0.25, 0.25, and 0, respectively, after tracing qubit 0 out.

For other target states, similar circuits can easily be given
with the controlled condition changed. The theoretical results
have an analogy with the aforementioned algorithm.

III. EXPERIMENTAL IMPLEMENTATION

A. System

To implement the algorithm we used the three 1H spins in
a sample of 1-bromo-2,3-dichlorobenzene oriented in liquid-
crystal solvent (ZLI-1132). All experiments were conducted on
a Bruker Avance 500-MHz spectrometer at room temperature.
The molecular structure is shown in Fig. 2(a). The internal
Hamiltonian of this system can be described as

H =
3∑

j=1

2πνj I
j
z +

∑
j,k,j<k�3

2πJjk

(
I j
x I k

x + I j
y I k

y + I j
z I k

z

)

+
∑

j,k,j<k�3

2πDjk

(
2I j

z I k
z − I j

x I k
x − I j

y I k
y

)
, (5)

where νj is the resonance frequency of the jth spin, and
Djk and Jjk are the dipolar coupling strengths and scalar
coupling strengths between spins j and k, respectively. In the
experiment, weak J couplings are assumed. The sums are
restricted to the spins within one molecule. Since there exist
nondiagonal elements in the Hamiltonian, the eigenstates are
not Zeeman product states but linear combinations of them,
and the eigenbasis is no longer the computational basis.
We still use the computational basis to store and read
information, while using the transformation matrix between
the computational basis and eigenbasis for more obvious and
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FIG. 2. (Color online) (a) Molecular structure of 1-bromo-2,3-
dichlorobenzene in which the three protons form a three-qubit system.
(b) Spectrum of the thermal equilibrium state followed by a π/2
hard pulse. All the observable transitions are labeled according to
descending orders of the frequencies. (c) Diagram of corresponding
transitions in the eigenbasis. Only nine transitions are assigned. Lines
1 and 9, 2 and 8, and 3 and 7 express the transitions of qubits 1, 2,
and 3 in the HL picture, respectively.
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TABLE I. Parameters for fitting the spectrum of 1-bromo-2,3-
dichlorobenzene (hertz). The diagonal elements are chemical shifts
of the three protons, the upper-right off-diagonal elements are dipolar
coupling strengths, and the lower-left ones are scalar coupling
strengths.

H1 H2 H3

H1 1945.5 −1633.3 −1341.7
H2 8 2094.8 −339.35
H3 8 1.4 2147.2

convenient reading of nuclear magnatic resonance (NMR)
spectra.

The spectrum of the thermal equilibrium state ρth =∑3
i=1 σ i

z followed by a π/2 hard pulse is shown in Fig. 2(b).
Using some initially guessed parameters to assume the molec-
ular geometry, we iteratively fit the calculated and observed
spectra through the parameters’ perturbation [26]. All the
calculated values are listed in Table I: H2, H1, and H3 are used
as coin qubit 0 and database qubits 1 and 2 in the experiment,
respectively.

The eigenstates |φi〉 (where i is an integer and 1 � i � 8)
and eigenvalues Ei in this system can be solved easily
once the Hamiltonian is confirmed. The intensity Iij of all
possible transitions between |φi〉 and |φj 〉 can be obtained
since

Iij ∝ 〈φi |I+|φj 〉2, (6)

where I+ = ∑3
k=1(I k

x + iI k
y ). The corresponding transition

frequencies are

ωij = Ei − Ej . (7)

In this system there are 15 possible transitions, for which 6 of
them are less than 1% in amplitude compared to transition 1.
In Fig. 2(b) we just focus on the nine observable transitions as
signal-to-noise ratio issues.

B. Population measurement

With the system Hamiltonian confirmed, we consider the
procedure of diagonalizing the Hamiltonian. It is not difficult
to find a feasible unitary matrix U to equalize

HL = UHSU
†, (8)

where HS is the system Hamiltonian and HL is a diagonal
Hamiltonian (i.e., the Hamiltonian in the eigenbasis). Partic-
ularly for the aforementioned system Hamiltonian, since U is
not unique, we chose the transformation U to be
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0.801 0.512 0 −0.303 0 0 0
0 0.375 −0.823 0 −0.420 0 0 0
0 0 0 0.810 0 0.126 0.559 0
0 −0.467 0.223 0 −0.856 0 0 0
0 0 0 0.458 0 −0.730 −0.508 0
0 0 0 0.344 0 0.672 −0.656 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

5000 0 (Hz) 5000 0 (Hz)

FIG. 3. (Color online) Simulation of the PPS’s observation.
(a) Spectra with the readout pulses UR

y

1 (π/2), UR
y

2 (π/2)Ry

3 (π ), and
UR

y

3 (π/2); (b) spectra with the traditional readout pulses R
y

1 (π/2),
R

y

2 (π/2), and R
y

3 (π/2). We can see that the spectra in part (a) are
more comprehensible than those of part (b).

Through this labeling scheme all the transitions are between
two eigenstates from |000〉L to |111〉L with |000〉L = |000〉S ,
|111〉L = |111〉S , where the subscripts L and S represent
the eigenbasis and computational basis. The nine observable
transitions in the thermal equilibrium spectrum are marked in
the transition diagram [Fig. 2(c)].
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FIG. 4. (Color online) One-dimensional NMR spectra for mea-
suring the diagonal elements of spin 1. The blue spectra (thick line)
are the experimental results, while the red spectra (thin line) are the
results by simulation. As shown in Table. II, we just concentrate
on transition 9 (marked by the ellipse) to read out P (1) − P (5),
P (2) − P (6), P (3) − P (7), and P (4) − P (8), with the four operators
listed in the figure. The top spectrum is the observation of the PPS
|000〉, which is used as the benchmark. The theoretical values of the
four population subtractions are 0.375, 0, −0.125, and 0.125, while
the experimental results are 0.383, 0.050, −0.061, and 0.093.
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TABLE II. Readout pulses and corresponding values of P (i) − P (j ). The results are shown for transitions 9, 8, and 7. Combined
with the normalized condition

∑8
i=1 P (i) = 1, all the diagonal elements can be solved.

Spin 1 UR1
y (π/2) UR1

y (π/2) R2
y(π ) UR1

y (π/2) R3
y(π ) UR1

y (π/2) R2,3
y (π )

Transition 9 P (1) − P (5) P (3) − P (7) P (2) − P (6) P (4) − P (8)
Spin 2 UR2

y (π/2) UR2
y (π/2) R1

y(π ) UR2
y (π/2) R3

y(π ) UR2
y (π/2) R1,3

y (π )
Transition 8 P (2) − P (4) P (6) − P (8) P (1) − P (3) P (5) − P (7)
Spin 3 UR3

y (π/2) UR3
y (π/2) R1

y(π ) UR3
y (π/2) R2

y(π ) UR3
y (π/2) R1,2

y (π )
Transition 7 P (1) − P (2) P (5) − P (6) P (3) − P (4) P (7) − P (8)

Without loss of generality, we focused on the three right-
most transitions (7, 8, and 9), considering a simple case
for which ρS is a pure state (|000〉〈000|)S . In the isotropic
weak-coupling liquid system, if the transition of qubit 1 is
excited [a selective pulse R1

y(π/2) is enough], a single peak
can be obtained in the spectrum. This is a universal way
to test the created pseudo-pure state (PPS) in liquid-state
NMR. However, in the liquid-crystal system, a single qubit
rotation leads not to a single peak but to a combination of
some relative peaks [see Fig. 3(b)]. The complicated spectrum
is obviously not convenient to read out the information
of the density matrix. A straightforward idea to solve the
problem is to use the eigenbasis where the Hamiltonian is
diagonal. From Eq. (8) we can clearly see that adding the
pulse from implementing transformation matrix U after the

readout pulse in the sequence is suitable. Figure 3(b) shows the
spectra of (|000〉〈000|)S with three readout pulses UR

y

1 (π/2),
UR

y

2 (π/2)Ry

3 (π ), and UR
y

3 (π/2). The second pulse needs
an R

y

3 (π ) rotation because transition 8 represents |001〉L →
|011〉L, not |000〉L → |010〉L. The simulating spectra accord
well with the expected results, similarly to the liquid system.

For reading out the diagonal elements of a general density
matrix ρS , the preceding method is still effective. Defining
the populations of (|000〉〈000|)S to (|111〉〈111|)S are P (1)
to P (8); UR

y

1 (π/2) excites the transitions |000〉L → |100〉L
and |100〉L → |000〉L, displayed in transition 9. Through
this transition, we can obtain the value of P (1) − P (5).
Table II shows all the available values of P (i) − P (j ) through
different readout pulses. Combined with the normalization
condition

∑8
i=1 P (i) = 1, all eight population values can be
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FIG. 5. (Color online) Experimental results of the SKW algorithm. Parts (a)–(d) correspond to the cases of finding |00〉12, |01〉12, |10〉12,
and |11〉12, respectively. The blue (dark) bars represent the theoretical prediction and the gray (light) bars represent the experimental analog,
respectively.
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calculated. Now we have accomplished the diagonal elements’
tomography.

C. Experiment

The experiment was divided into three steps: the pseudo-
pure-state preparation, quantum-random-walk searching pro-
cess, and population measurement. Starting from the thermal
equilibrium state, first we need to create the PPS ρ000 =
1−ε

8 1 + ε|000〉〈000|, where ε represents the polarization of
the system and 1 is the identity matrix. We used strongly mod-
ulating pulses based on the gradient ascent pulse engineering
(GRAPE) algorithm [27–29] and gradient pulses to realize the
PPS preparation, with a numerical simulated fidelity of 0.977.
The top spectrum of Fig. 4 shows the experimental observation
of the PPS about the first qubit in the eigenbasis, which exhibits
a single absorption-shape peak if the small errors are discarded.

The quantum-random-walk searching process actually con-
tains two parts: the preparation of the initial state |+〉⊗3 (|+〉 =
(|0〉 + |1〉)/√2) and two iterations of unitary evolution. We
packed them together and calculated one GRAPE pulse of 20 ms
and 250 segments whose fidelity is higher than 0.990. The
reading-out operators listed in Table II are also performed
when generating the GRAPE pulses of 20 ms with fidelity
0.990. Four spectra observed on transition 9 (marked by the
ellipse) are shown in Fig. 4. The results are extracted from
the spectra through integration of NMR peaks referenced by
the PPS spectrum. The fidelity of the diagonal elements of the
final density matrix is 0.983, with the probabilities of gaining
|00〉, |01〉, |10〉, and |11〉 being 0.513, 0.232, 0.197, and 0.058,
respectively. It demonstrates that we have completed searching
|00〉 based on the SKW algorithm.

Besides |00〉, we altered the target states to |01〉, |10〉,
and |11〉. The experimental results of the SKW algorithm
are plotted in Fig. 5. It can be seen that the experimental
and theoretical results are mostly consistent, with little error.
The slight difference between theory and experiment may
be attributed to decoherence, the rf field inhomogeneity, and
imperfect implementation of GRAPE pulses. In order to judge
the credibility of the experimental spectra, the simulated

spectra are shown in Fig. 4 using the NMR-sim software
of Topspin. Given the Hamiltonian, GRAPE pulses, and pulse
sequence, the software can show the simulated spectra without
the experimental imperfections. The minor difference in
linewidth is caused mainly by the slightly different time (T2)
used in the simulation. Within the acceptable error range, the
simulated and experimental linewidths are consistent.

IV. CONCLUSION

In summary, we experimentally implemented a search
algorithm based on the quantum random walk (the SKW
algorithm) in the case of 1 out of 4. This algorithm performs an
oracle search on a database of N items with O(

√
phN ) calls,

with a speedup similar to the Grover search algorithm. The
experiment was carried out on an NMR quantum information
processor with strongly dipolar coupled spins. We used
GRAPE pulses to realize high-fidelity unitary operations and
provided an effective way to measure the diagonal elements
of the density matrix with one-dimensional NMR spectra.
The experimental results agree well with the theoretical
expectations, which exhibits the superiority of the algorithm.

This method is going to be extended to full tomography and
higher qubits. For further high qubits, the process becomes
very challenging due to the complexity in the calculation
of GRAPE pulses and diagonalization of the Hamiltonian.
However, as the speed and power of computers and schemes
of calculation advance, these obstacles may be alleviated
considerably in the near future. Therefore, this method, as
in the case of low qubits, may still be a useful and effective
method to test many interesting quantum algorithms and
quantum-information tasks.
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