
PHYSICAL REVIEW A 81, 022304 (2010)

Low-temperature coherence properties of Z2 quantum memory
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We investigate low-temperature coherence properties of the Z2 quantum memory which is capable of storing
the information of a single logical qubit. We show that the memory has superposition of macroscopically distinct
states for some values of a control parameter and at sufficiently low temperature and that the code states of this
memory have no instability except for the inevitable one. However, we also see that the coherence power of this
memory is limited by space and time. We also briefly discuss the resonating valence bond memory, which is an
improvement of the Z2 quantum memory, and the relations of our results to the obscured symmetry breaking in
statistical physics.
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I. INTRODUCTION

Quantum memory [1,2], which stores the coherent infor-
mation of logical qubits, is an essential ingredient of quantum
information processing and plays crucial roles in almost
all fields of quantum information science [3]. Basically, a
quantum memory consists of macroscopically many physical
qubits which encode the state of a few logical qubits. Each
logical basis should be encoded on macroscopically distinct
physical states since otherwise the indistinguishability of
logical bases is easily destroyed by local errors. On the other
hand, in order to store quantum coherent superposition of these
logical bases, the memory must be able to have superposition
of macroscopically distinct states of physical qubits. To
maintain such superposition is very difficult. First, if the size
of the memory is infinite, such macroscopic superposition is
impossible since superposition of different phases is just a
classical mixture of them in an infinite system [4–6]. Second,
even in finite systems, such macroscopic superposition is
usually very unstable [5]. Therefore, how to balance those
two contradictory demands (i.e., classical information must be
encoded on macroscopically distinct states but we also need
superposition of them) is one of the most challenging problem
in the implementation of quantum memory.

The code space of a quantum memory is often realized as
the lowest-energy eigenspace of a many-body Hamiltonian.
One of the most beautiful examples is Kitaev’s toric code [1].
Kitaev introduced a four-body Hamiltonian which exhibits a
topological phase transition. The ground states are degenerated
and energetically isolated from the excited states. Each of these
ground states corresponds to different topological phases in the
thermodynamic limit, and therefore logical bases encoded on
these degenerate ground states are immune to local errors.
Logical qubit operations are performed by applying long
strings of Pauli operators on physical qubits, which means
that logical operations are nonlocal.

Although Kitaev’s toric code is highly sophisticated and
indeed has inspired plenty of successive studies [2,6–13], it is
not easy to implement a scalable toric code in a laboratory since
nonlocal operations are required. A complementary approach
is therefore also important from the practical point of view.
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In this article, we study the less elaborate but more feasible
quantum memory, namely, the Z2 quantum memory. Although
the Z2 quantum memory is too primitive to be a complete
and universal quantum memory, it is still valuable to study it,
since the simple structure of this memory means feasibility
in a laboratory and the possibility of capturing the essence of
theoretical aspects of quantum memory. In general, a quantum
memory must have a large coherence for some values of a
control parameter in order to store coherent information of
logical qubits. Therefore, we analyze the coherent properties
of the Z2 quantum memory at low temperature by using the
method, developed in Refs. [5,14–16], of detecting superpo-
sition of macroscopically distinct states. We show that the Z2

quantum memory can have superposition of macroscopically
distinct states for some values of a control parameter and at
sufficiently low temperature and that the code states have no
instability except for the inevitable one. However, we also see
that the power of superposition of macroscopically distinct
states in this memory is limited by space and time. These
results suggest that the Z2 quantum memory is of limited use
as a prototype of a small quantum memory.

This article is organized as follows. In the next section,
we briefly review the method of detecting superposition of
macroscopically distinct states. In Sec. III, we study the
zero-temperature case. We next study the finite-temperature
case in Sec. IV. Finally, in Sec. V we briefly discuss the
resonating valence bond (RVB) quantum memory, which is an
improvement of the Z2 quantum memory, and in Sec. VI we
discuss the relation of our results to the concept of symmetry
breaking in statistical physics.

II. INDEX p AND VARIANCE-COVARIANCE MATRIX

In this section, we briefly review the method of detecting
superposition of macroscopically distinct states in quantum
many-body states [5,14–16].

Let us consider an N -site lattice (1 � N < ∞) where
the dimension of the Hilbert space on each site is an
N -independent constant, such as a chain of N spin-1/2
particles. Throughout this article, f (N ) = O(Nk) means

lim
N→∞

f (N )

Nk
= const. �= 0.
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For a given pure state |ψ〉, the index p (1 � p � 2) is
defined by

max
Â

[〈ψ |Â2|ψ〉 − 〈ψ |Â|ψ〉2] = O(Np),

where the maximum is taken over all Hermitian additive
operators Â. Here, an additive operator,

Â =
N∑

l=1

â(l),

is a sum of local operators {â(l)}Nl=1, where â(l) is a local
operator acting on site l. For example, if the system is a chain
of N spin-1/2 particles, â(l) is a linear combination of three
Pauli operators, σ̂x(l), σ̂y(l), σ̂z(l), and the identity operator
1̂(l) acting on site l. In this case, the x component of the total
magnetization,

M̂x ≡
N∑

l=1

σ̂x(l),

and the z component of the total staggered magnetization,

M̂st
z ≡

N∑
l=1

(−1)l σ̂z(l),

are, for example, additive operators. The index p takes the
minimum value 1 for any product state

N⊗
l=1

|φl〉,

where |φl〉 is a state of site l (this means that p > 1 is an
entanglement witness for pure states). If p takes the maximum
value 2, the state contains superposition of macroscopically
distinct states because in this case the relative fluctuation of
an additive operator does not vanish in the thermodynamic
limit,

lim
N→∞

√
〈ψ |Â2|ψ〉 − 〈ψ |Â|ψ〉2

N
�= 0,

and because the fluctuation of an observable in a pure state
means the existence of a superposition of eigenvectors of that
observable corresponding to different eigenvalues.

For example, the N -qubit Greenberger-Horne-Zeilinger
(GHZ) state

|GHZ〉 ≡ 1√
2

(|0⊗N 〉 + |1⊗N 〉),

which obviously contains superposition of macroscopically
distinct states, has p = 2, since

〈GHZ|M̂2
z |GHZ〉 − 〈GHZ|M̂z|GHZ〉2 = O(N2).

It was shown in Ref. [5] that a state having p = 2 is
unstable against a local noise from the environment and
a local measurement, whereas a state having p = 1 is
stable.

There is an efficient method of calculating index p [14,15].
For simplicity, we assume that the Hilbert space on each site is

a two-dimensional one. Generalizations to higher dimensional
cases are immediate.

For a given pure state |ψ〉, let us define the 3N × 3N

Hermitian matrix called the variance-covariance matrix
(VCM) by

Vαl,βl′ ≡ 〈ψ |σ̂α(l)σ̂β(l′)|ψ〉 − 〈ψ |σ̂α(l)|ψ〉〈ψ |σ̂β(l′)|ψ〉,
where α, β = x, y, z; l, l′ = 1, 2, . . . , N ; and σ̂x(l), σ̂y(l), and
σ̂z(l) are Pauli operators on site l. Since the VCM is Hermitian,
all eigenvalues are real. Let e1 be the largest eigenvalue of the
VCM. Then

e1 = O(Np−1)

is satisfied [14,15], which means that we have only to calculate
e1 to obtain the value of index p. Since a matrix of a polynomial
size can be diagonalized within a polynomial step, e1 is
obtained efficiently by numerical calculations.

III. ZERO TEMPERATURE

Let us first study the zero-temperature case. We consider the
one-dimensional periodic chain of N qubits. The code space of
the Z2 quantum memory is stabilized by the “bond operators”
(l = 1, 2, . . . , N) [8]

B̂l ≡ σ̂z(l)σ̂z(l + 1),

which act on the “virtual qubits” (or “dual qubits”) embedded
on bonds, where σ̂z(N + 1) = σ̂z(1). Since

B̂N =
N−1∏
l=1

B̂l,

stabilizers of the Z2 quantum memory are generated by N − 1
bond operators {B̂1, B̂2, . . . , B̂N−1}, which means that the code
space is 2N−(N−1) = 21 dimensional subspace. The centralizers
of these stabilizers are generated by

X̂ ≡
N∏

l=1

σ̂x(l), (1)

and

Ẑ ≡ σ̂z(1).

They work as the logical bit flip and logical phase, respec-
tively. The code space is also specified as the lowest-energy
eigenspace of the two-body Hamiltonian

Ĥ0 = −
N∑

l=1

B̂l .

It is obvious that two degenerate separable ground states of this
Hamiltonian are macroscopically distinct from each other, and
therefore the indistinguishability of logical bases, |0̃〉 and |1̃〉,
is not destroyed by local errors.

Ideally, the logical Hadamard operation

|0̃〉 → 1√
2

(|0̃〉 + |1̃〉),

|1̃〉 → 1√
2

(|0̃〉 − |1̃〉),
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FIG. 1. (Color online) e1 versus N for |E0(λ)〉 with various λ.
From the bottom, λ =1.5, 1.4, 1.3, 1.2, 1.1, 1.0, 0.9, 0.8, 0.7, 0.6, and
0.5, respectively. Lines are guides to the eye.

which is the essential ingredient of various quantum informa-
tion processing, is realized by using the logical X̂ operation,
Eq. (1). However, such nonlocal operation is not easy to
experimentally implement. Therefore, it is reasonable to try
to manipulate the quantum memory in the local way:

Ĥ = Ĥ0 + λ

N∑
l=1

σ̂x(l), (2)

where λ is an external control parameter.
From the Perron-Frobenius theorem [17], the ground state

of this Hamiltonian is nondegenerate if λ �= 0. It is also known
that this Hamiltonian exhibits the quantum phase transition
at λ = 1 [18]. Let us denote the exact ground state of Ĥ

corresponding to the external parameter λ by |E0(λ)〉 and
evaluate index p of |E0(λ)〉 for various λ. In Fig. 1, the largest
eigenvalue e1 of the VCM versus N is plotted by changing the
value of λ. This figure shows that

(i) |E0(λ � 1)〉 has p < 2,
(ii) |E0(λ < 1)〉 has p = 2,

which means that the Z2 quantum memory has superposition of
macroscopically distinct states for values λ < 1 of the control
parameter λ.

In order to see the structure of the superposition, the
probability distribution P (Mz) of M̂z in |E0(0.5)〉 is plotted
in Fig. 2 for N = 13. This figure suggests that the ground state
is, in a rough picture, a superposition of two macroscopically
distinct states:

|E0(0.5)〉 � |φ+〉 + |φ−〉, (3)

where |φ±〉 are some states satisfying 〈φ±|M̂z|φ±〉 � ±N ,
respectively.

By seeing the eigenvector of the VCM corresponding to
the largest eigenvalue e1, we can also know that the additive
operator which gives the maximum fluctuation in |E0(λ < 1)〉
is

M̂z ≡
N∑

l=1

σ̂z(l).
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FIG. 2. The probability distribution P (Mz) of M̂z in |E0(0.5)〉
with N = 13. Similar structures are obtained for other values of N .

According to Ref. [5], this means that |E0(λ < 1)〉 is un-
stable against the local noise described by the interaction
Hamiltonian

Ĥint ≡
N∑

l=1

f (l)σ̂z(l), (4)

where f (l) is a noise parameter of a long wavelength. Although
this noise is inevitable since we need the superposition of
macroscopically distinct logical bases, we can still show that
|E0(λ < 1)〉 has no other instability than this inevitable one.
In Fig. 3, we plot the second largest eigenvalue e2 of the VCM
versus N for |E0(0.5)〉. From this figure we obtain

e2 � O(N0),

which means that |E0(0.5)〉 is stable against all noises of the
type

Ĥint ≡
N∑

l=1

f (l)â(l)

except for the case of Eq. (4).
In short, we have seen that the Z2 quantum memory can

have superposition of macroscopically distinct states and it
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FIG. 3. e2 versus N for |E0(0.5)〉.
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FIG. 4. ln �E versus N for λ = 0.5.

is stable against any local noise except for the inevitable
one.

As is seen in Fig. 4, the energy gap �E ≡ E1 − E0

between the exact ground state and the first excited state
for λ = 0.5 decays exponentially fast as N → ∞. Therefore,
it is physically allowed to take a linear combination of the
exact ground state and the first excited state for sufficiently
large N .

From Eq. (3) and the analogy with the physics of the single
two-level atom system, the rough picture of the first excited
state |E1(0.5)〉 is expected to be

|E1(0.5)〉 � |φ+〉 − |φ−〉, (5)

and therefore the superposition

|E′
0〉 ≡ 1√

2
(|E0(0.5)〉 + |E1(0.5)〉)

of the exact ground state and the first excited state is
expected to have no superposition of macroscopically distinct
states.

Indeed, we plot e1 versus N for |E′
0〉 in Fig. 5. This figure

shows that e1 = O(N0), which means that the superposi-
tion of macroscopically distinct states in quantum memory
disappears for sufficiently large system size. Therefore, the
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FIG. 5. e1 versus N for |E′
0〉.

Z2 quantum memory is of limited use as a small quantum
memory.

It is worth mentioning that such a fast decay of the energy
gap is a natural consequence of the locality of the Hamiltonian.
According to Eqs. (3) and (5), the difference between the exact
ground state and the first excited state is the relative phase of
|φ±〉. If the energy gap does not go to 0 for large N , we can
distinguish the exact ground state and the first excited state by
measuring the energy. If the Hamiltonian is a local one, that
is, it does not contain many-point correlations, this means that
we can know the relative phase by measuring only few-point
correlations, which obviously contradicts the common sense
of decoherence [19].

In addition to the limit of the space, the exponential
decay of the energy gap also gives the limit to the operation
time. Assume that we perform the logical Hadamard gate
by adiabatically increasing the control parameter λ. Then,
according to the theory of adiabatic quantum computation
[20,21], the exponential decay of the energy gap means an
exponentially long operation time:

T � 1

(�E)2
,

where �E is the minimum energy gap. Therefore, the large
Z2 quantum memory also has the limit of the operation time.

IV. FINITE TEMPERATURE

Next let us study the Z2 quantum memory at finite
temperature.

At finite temperature T , a system is generally in the
equilibrium state:

ρ̂ = e−Ĥ /kT

Tr(e−Ĥ /kT )
.

If the state is not necessarily pure, index p cannot detect super-
position of macroscopically distinct states since a fluctuation
is not necessarily equivalent to the coherence in mixed states.

In order to detect superposition of macroscopically distinct
states in mixed states, index q was proposed in Ref. [22]. For
a given many-body state ρ̂, index q (1 � q � 2) is defined by

max

(
N, max

Â

‖[Â, [Â, ρ̂]]‖1

)
= O(Nq),

where ‖X̂‖1 ≡ Tr
√

X̂†X̂ is the 1-norm and maxÂ means the
maximum over all Hermitian additive operators Â. As detailed
in Ref. [22], q takes the minimum value 1 for any separable
state,

∑
i

λi

N⊗
l=1

∣∣φ(i)
l

〉〈
φ

(i)
l

∣∣,
where |φ(i)

l 〉 is a state of site l. On the other hand, if q takes
the maximum value 2, the state contains superposition of
macroscopically distinct states. In particular, for pure states,
p = 2 ⇐⇒ q = 2.

Unlike the case of index p, there is no method of efficiently
calculating index q at the time of writing. However, we can
calculate a lower bound of the value of q. Indeed, let us note
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FIG. 6. e1 versus kT /J for N = 8 (J = 1).

that

‖[Â, ρ̂]‖2
2 = Tr([Â, ρ̂]†[Â, ρ̂])

= Tr(ρ̂[Â, [Â, ρ̂]])

� Tr(ρ̂[Â, [Â, ρ̂]])
‖ρ̂‖∞

� ‖[Â, [Â, ρ̂]]‖1,

where ‖X̂‖2 ≡
√

Tr(X̂†X̂) is the 2-norm and ‖X̂‖∞ is the oper
ator norm. If we define the 3N × 3N Hermitian matrix W by

Wα,l,β,l′ ≡ Tr{[ρ̂, σ̂α(l)][σ̂β(l′), ρ̂]}, (6)

where α, β = x, y, z and l, l′ = 1, 2, . . . , N , it is easy to see
that the order of

max
Â

‖[Â, ρ̂]‖2
2

with respect to N is equal to that of e1N , where e1 is the largest
eigenvalue of W .

In Fig. 6, we plot the largest eigenvalue e1 of the matrix
W , Eq. (6), versus kT for the equilibrium state of the
Hamiltonian, Eq. (2), for λ = 0.5 and N = 8. This figure
shows that superposition of macroscopically distinct states at
zero temperature persists at sufficiently low temperature.

V. RVB MEMORY

In this article, we have seen that the Z2 quantum memory
can have superposition of macroscopically distinct states for
values λ < 1 of the control parameter λ, and this superposition
of macroscopically distinct states is stable against any local
noise except for the inevitable one. Let us briefly discuss
a possibility of avoiding this inevitable instability without
introducing too many sophisticated methods.

One of the most simple ways would be to use RVB states:

|	〉 ≡ 1√
2 + 4

( − 1
2

)N/2

[
N/2⊗
l=1

|2l − 1, 2l〉+
N/2⊗
l=1

|2l, 2l + 1〉
]

� 1√
2

N/2⊗
l=1

|2l − 1, 2l〉 + 1√
2

N/2⊗
l=1

|2l, 2l + 1〉

≡ 1√
2
|VB1〉 + 1√

2
|VB2〉,

1 2
3

N

4

1 2
3

4

N

FIG. 7. (Color online) The nearest-neighbor RVB state on a one-
dimensional periodic lattice. Red circles (dashed circles) represent
singlet pairs. Two macroscopically distinct valence bond states are
superposed.

where |i, j 〉 represents the singlet pair between sites i

and j and the periodic boundary condition is assumed
(Fig. 7). This state is realized as a ground state of the
one-dimensional spin ladder model or the Majumdar-Ghosh
model [23].

|	〉 is a superposition of two macroscopically distinct
symmetry-broken states, |VB1〉 and |VB2〉. The advantage of
this state is that, as is shown in the Appendix, there is no
long-range two-point correlation in this state:

〈	|â(l)â(l′)|	〉 − 〈	|â(l)|	〉〈	|â(l′)|	〉 = 0, (7)

for any pair of local operators â(l) and â(l′) with |l − l′| � 2.
Therefore, |	〉 has p = 1 and this means that the state is stable
against any local noise of the type

Ĥint =
N∑

l=1

f (l)â(l).

In order to detect superposition of macroscopically distinct
states in |	〉, we must consider the sum of bilocal operators.
Indeed, let us consider the operator

T̂ ≡
N∑

l=1

(−1)l t̂l,l+1,

where

t̂l,l+1 ≡ |l, l + 1〉〈l, l + 1|
is the projection operator on the singlet state of sites l and
l + 1. Then, we can show that the state |	〉 has superposition
of macroscopically distinct states in the sense of

〈	|T̂ 2|	〉 − 〈	|T̂ |	〉2 = O(N2). (8)

A proof is given in the Appendix.
In summary, we have seen that the stability of the Z2

quantum memory can be improved by introducing local
entanglement between nearest neighbor sites. The RVB state
thus created still has superposition of macroscopically distinct
states.

VI. CONCLUSION AND DISCUSSION

In this article, we have investigated the low-temperature co-
herence properties of the Z2 quantum memory. We have shown
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that (i) the memory can have superposition of macroscopically
distinct states for the values λ < 1 of the control parameter λ

and at sufficiently low temperature, (ii) the code states of this
memory have no instability except for the inevitable one, and
(iii) the power of superposition of macroscopically distinct
states in this memory is limited by space and time. We have
also briefly discussed how the RVB memory improves the Z2

quantum memory.
To conclude this article, let us briefly discuss the re-

lations of our results to symmetry breaking in statistical
physics.

Symmetry breaking is one of the most fundamental
concepts in modern physics [24–26]. According to Landau-
Ginzburg theory [27], the state of the phase is a local minimum
of the effective potential as a function of the order parameter: if
the temperature is high, the potential has the unique minimum
at the origin and therefore the system is in the symmetric phase,
whereas at sufficiently low temperature the effective potential
becomes the double-well type whose local minima correspond
to the symmetry-broken phases.

Although such an intuitive picture of the symmetry breaking
has contributed to the progress of physics for a long time, it
has been often pointed out by many researchers that such
a picture is not always correct if the system is of a finite
volume [28–33]. For example, if the many-body Hamiltonian
Ĥ and the order operator Ô do not commute with each other
[Ĥ , Ô] �= 0 (typical examples in condensed matter physics are
the transverse Ising model, the Heisenberg antiferromagnet,
and the Hubbard model), the exact ground state of a finite
volume is often nondegenerate and therefore symmetric.
This symmetric exact ground state is completely different
from the symmetry-broken “mean-field ground states,” which
are inherently separable since the mean-field approximation
neglects the correlations among sites [34].

Such a symmetric exact ground state |E0〉 often has the
peculiar property that the relative fluctuation of a macroscopic
observable Â, which is mostly the order operator Ô, does not
vanish even in the thermodynamic limit:

lim
N→∞

√
〈E0|Â2|E0〉 − 〈E0|Â|E0〉2

N
�= 0,

where N is the number of total sites (alias the volume of
the system). Since this means that a macroscopic observable
does not have a definite value even in the thermodynamic
limit, |E0〉 is an anomalous state [5] from the viewpoint
of thermodynamics where any macroscopic observable is
supposed to have definite value [5,27]. In terms of index
p, |E0〉 has p = 2 and therefore contains superposition of
macroscopically distinct states. In other words, the symmetry
of the ground state is “obscured” by such large quantum
fluctuation. This effect is often called “obscured symmetry
breaking” [28].

However, when the exact ground state has such an
anomalous property, it is often the case that the energy gap
between the exact ground state and the low-lying eigenstates
decays very fast as N → ∞ [28,29]. Then, it is physically
allowed to take a linear combination of the exact ground
state and some of the low-lying eigenstates to form an

approximate ground state |E′
0〉. Thus constructed |E′

0〉 are
believed to break the symmetry and be “ergodic” in the sense
that

lim
N→∞

√
〈E′

0|Â2|E′
0〉 − 〈E′

0|Â|E′
0〉2

N
= 0

for any macroscopic observable Â [28,29]. In terms of index p,
this means that |E′

0〉 has no superposition of macroscopically
distinct states since p < 2.

Indeed, Horsch and von der Linden [29] introduced the
trial state Ô|E0〉, which approximates the first excited state,
and showed that the energy gap between the exact ground state
and the trial state decays as fast as or faster than 1/N . They
also showed that a linear combination of the exact ground
state and the trial state exhibits the desired Z2 symmetry
breaking.

Koma and Tasaki [28] rigorously showed that the linear
combination |ψ〉 of the exact ground state and the trial state is
also the ergodic state in the sense that

1

N2
[〈ψ |Â2|ψ〉 − 〈ψ |Â|ψ〉2] = 0 (9)

for any translationally invariant Â.
As is pointed out in Ref. [10], the low-temperature

coherence properties of quantum memory are closely related to
the obscured symmetry breaking in statistical physics. Indeed,
our results in this article are considered an improvement of
the previous results, since Hamiltonian Eq. (2) is equivalent
to that of the transverse Ising model [35] in condensed matter
physics. (For example, this model was used to describe the
order-disorder transition in some double-well ferroelectric
systems, such as potassium dihydrogen phosphate (KH2PO4)
crystals [36].)

First, by numerical calculations, we have explicitly shown
how the macroscopic coherence properties of the exact
ground state changes when the transverse magnetic field
is changed (Fig. 1). We have also visualized the structure
of the macroscopic superposition in the exact ground state
(Fig. 2) and seen that the exact ground state is approxi-
mately an equal weight superposition of two symmetry-broken
phases.

Second, we have shown that only M̂z fluctuates macro-
scopically in the λ < 1 phase (Fig. 3). Since the ground state
is symmetric, this means that the second moment of M̂z is of
O(N2) in that phase. In terms of statistical physics, this means
that M̂z is the unique order operator in this phase.

Third, we have shown that the equal-weight superposition
of the exact ground state and the first excited state has
p = 1 (Fig. 5). This means that the superposition of the
exact ground state and the first excited state is ergodic.
Although similar results have been obtained, the advantages
of our results are (i) instead of the trial state, we have
directly used the first excited state to show the ergodicity,
(ii) our result that the fluctuation is of O(N ) is stronger
than Eq. (9), and (iii) we have shown the ergodicity for
any additive operator, whereas only translationally invariant
additive operators are considered in the previous studies.
(A disadvantage of our results is that they are less general since
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we have used numerical calculations.) In summary, to consider
index p for the ground states of many-body Hamiltonians in
condensed matter physics is very useful for the study of the
foundation of statistical physics.
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APPENDIX

A. Proof of Eq. (7)

Note that |	〉 is a simultaneous eigenvector of M̂x , M̂y ,
and M̂z corresponding to the eigenvalue 0, since a singlet is
a simultaneous eigenvector of x, y, and z components of the
total magnetization corresponding to the eigenvalue 0. Since
each of the states

σ̂x(l)|	〉, σ̂y(l)|	〉, σ̂x(l)σ̂x(l′)|	〉, σ̂x(l)σ̂y(l′)|	〉,
σ̂x(l)σ̂z(l

′)|	〉, σ̂y(l)σ̂y(l′)|	〉, σ̂y(l)σ̂z(l
′)|	〉,

for |l − l′| � 2, has no component in the eigenspace of M̂z

corresponding to the eigenvalue Mz = 0, they are orthogonal
to 〈	|. In the same way,

σ̂z(l)|	〉, σ̂z(l)σ̂z(l
′)|	〉,

for |l − l′| � 2, are orthogonal to 〈	| since each of them has
no component in the eigenspace of M̂x corresponding to the
eigenvalue Mx = 0. Hence we have shown Eq. (7). �

B. Proof of Eq. (8)

Before showing the equation, let us note some useful
relations. First, the projection operator t̂2,3 “swaps” the
entanglement

t̂2,3| ◦ ◦ • •〉 = − 1
2 | ◦ • • ◦〉,

where singlet pairs are schematically represented: sites repre-
sented by the circle of the same color make a singlet pair (see
Fig. 8).

Second, by using this equation, we obtain

〈◦ • • ◦ | ◦ ◦ • •〉 = 〈◦ • • ◦ |t̂2,3| ◦ ◦ • •〉
= − 1

2 〈◦ • • ◦ | ◦ • • ◦〉
= − 1

2

and

〈◦ ◦ • • |t̂2,3| ◦ ◦ • •〉 = − 1
2 〈◦ ◦ • • | ◦ • • ◦〉

= 1
4 .

Third, by iterating the swap process,

|VB2〉 = (−2)N/2−1
N/2−1∏

l=1

t̂2l,2l+1|VB1〉,

and therefore

〈VB2|VB2〉 = (−2)N/2−1〈VB2|
N/2−1∏

l=1

t̂2l,2l+1|VB1〉,

1 2 3 4

1 2 3 4

t 2,3

FIG. 8. (Color online) The projection operator t̂2,3 swaps the
entanglement. Red (solid) lines represent singlet pairs.

which gives

〈VB2|VB1〉 = (− 1
2

)N/2−1 � 0.

Let us define

|φ1〉 ≡ T̂ |VB1〉 + N

2
|VB1〉 =

∑
l=even

t̂l,l+1|VB1〉

|φ2〉 ≡ T̂ |VB2〉 − N

2
|VB2〉 = −

∑
l=odd

t̂l,l+1|VB2〉.

Then,

〈VBi |φj 〉 � δi,j (−1)i+1 N

8
,

which gives

〈VBi |T̂ |VBj 〉 � δi,j (−1)i
3N

8
.

Therefore,

〈	|T̂ |	〉 � 0.

Also, we can show

〈φi |φj 〉 � δi,j

(
N2

64
+ 3N

32

)
,

which gives

〈VBi |T̂ 2|VBj 〉 � δi,j

(
9N2

64
+ 3N

32

)
.

Therefore,

〈	|T̂ 2|	〉 = O(N2).

Hence we have shown Eq. (8). �
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