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Coherent-state phase concentration by quantum probabilistic amplification
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We propose a probabilistic measurement-induced amplification for coherent states. The amplification scheme
uses a counterintuitive architecture: a thermal noise addition (instead of a single-photon addition) followed
by a feasible multiple-photon subtraction using a realistic photon-number-resolving detector. It allows one to
substantially amplify weak coherent states and simultaneously reduce their phase uncertainty, which is impossible
when using a deterministic Gaussian amplifier.
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I. INTRODUCTION

Quantum optics has an extraordinary capability to combine
observations of both the wave and the particle phenomena.
Information can be encoded both into the intensity and into
the phase of an optical field. Although the intensity approach,
involving photons, may inherently seem more “quantum” than
the phase approach, neither can be described by classical
physics in full [1]. In this article, it is the phase aspect of
the optical field we are going to focus on. The main aim of the
quantum phase information processing is to reduce noise in the
system and to compensate for the loss. The classical processing
methods, mostly based on measurement and repreparation, are
of limited usefulness [2] because of the inherent noise present
in all quantum systems. This problem is especially pronounced
for optical signals with low intensities, possibly occurring
as a consequence of loss. In general, we seek to enhance
an unknown phase of an optical signal by deterministic or
probabilistic methods, where the main benefit of probabilistic
methods lies in their ability to qualitatively overcome the limits
of deterministic operations.

A coherent state |α〉, the approximation of a light from a
stabilized laser, is a natural medium for the phase encoding
of information. Coherent states are nonorthogonal and very
strongly overlapping if the amplitude is small, which can
easily happen after a strong attenuation. Therefore, it is highly
desirable to reamplify the states in a way that improves
the phase information, ideally performing the transformation
|α〉 → |gα〉, where g > 1. One might naturally think of the
displacement operation, but keep in mind we seek to amplify
a coherent state with an unknown phase and therefore we lack
the knowledge needed for the correct displacement. Another
option is the Gaussian parametric amplification [3,4], which
is phase insensitive and it can be applied to an unknown state.
However, in this case the phase information of the state does
actually get worse due to the fundamental quantum noise
penalty [5].

The ideal amplification |α〉 → |gα〉 is nonphysical, but for
small values of |α| it can be implemented approximatively. One
approach relies on the quantum scissors paradigm, limiting
the dimension of the used Hilbert state [6]. The input coherent
state is split into M weak copies, which can be approximated
by (|0〉 + α/M|1〉 + · · ·)⊗M and probabilistically amplified
to (|0〉 + gα/M|1〉)⊗M . For a small value of |α|/M the
subsequent Gaussifying concentration yields a finite Hilbert
space approximation of |gα〉. However, the procedure requires

multiple indistinguishable single-photon sources and high in-
terferometric stability of the multipath interferometer. Another
approach is based on a still highly sophisticated cross-Kerr
nonlinearity at a single-photon level followed by homodyne
detection [7]. This kind of amplification has already been
suggested, in Ref. [8], to concentrate entanglement.

In this article we propose a scheme for concentration of
an unknown phase of coherent states using a probabilistic
highly nonlinear amplifier. Our method is based on the addition
of thermal noise to the unknown coherent state, followed
by a multiple-photon subtraction using a photon-number-
resolving detector. This procedure probabilistically amplifies
the coherent state, increasing its mean photon number and
simultaneously substantially reducing the phase noise. It leads
to a probabilistic concentration of phase information, which
cannot be obtained by Gaussian operations alone. Remarkably,
the scheme requires neither single-photon sources nor high
interferometric stability—the resource for the highly nonlinear
amplification is the continual thermal noise injected into the
signal mode.

II. PHASE AND AMPLIFICATION

The quality of information carried by the phase is dif-
ficult to assess, as the phase is not a quantum mechanical
observable and therefore it cannot be directly and ideally
measured. However, each measurement devised to obtain
the phase of the state can be characterized by a real
positive-semidefinite matrix H , which is used in comput-
ing the phase distribution P (θ ) = Tr[ρF (θ )], where F (θ ) =
(1/2π )

∑∞
m,n=0 exp[iθ (m − n)]Hmn|m〉〈n| [9], and |m〉 stands

for the photon number Fock state. The actual form of the
matrix H depends on the process used to extract the phase
information. For example, for a phase obtained by the most
common heterodyne measurement, consisting of a balanced
beam splitter and a pair of homodyne detectors measuring
conjugate quadratures, the matrix elements are Hmn = �[(n +
m)/2 + 1]/

√
n!m!. Ultimately, for the ideal canonical phase

measurement Hmn = 1 and F (θ ) is a projector on the idealized
phase state |θ〉 = ∑∞

n=0 eiθn|n〉. To obtain a single parameter
characterizing the quality of phase encoding, we can use the
distribution P (θ ) to calculate the phase variance V = |µ|−2 −
1, where µ = 〈exp(iθ )〉 and subscripts H and C will be
used to distinguish between the heterodyne and the canonical
measurements, respectively. For calculations of an arbitrary
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measurement we can simply use the formula 〈exp(iθ )〉 =∫ π

−π
P (θ ) exp(iθ )dθ = Tr(

∑∞
n=0 Hn,n+1|n〉〈n + 1|ρ).

The coherent states can be expressed as |α〉 =
exp(−|α|2/2)

∑∞
n=0 αn/

√
n!|n〉. For these states, the quality of

phase encoding is fully given by the mean number of coherent
photons N = |α|2, and the phase variances, obtained with the
help of [9]

µC = e−|α|2α
∞∑

n=0

|α|2n

n!
√

n + 1
,

(1)

µH = e−|α|2α 1F1

(
3

2
; 2; |α|2

)
�

[
3
2

]
�[2]

,

are both monotonically decreasing functions of the mean
photon number N . For weak coherent states with N < 1, the
variances can be well approximated by

VC(N ) ≈ N−1 + 1 −
√

2 + O(N2),
(2)

VH (N ) ≈ 4/(πN ) + (−1 + 2/π ) + O(N2),

if we take only the dominating terms into account. In the
following, we focus primarily on the canonical phase variance.

For coherent states the phase variance is directly related
to the amplitude |α|. The ideal noiseless amplifier, which
increases the amplitude while keeping the state coherent,
would be therefore a suitable amplification device, if its
implementation were not so complicated. On the other hand,
the deterministic phase-insensitive (Gaussian) amplifier [3,4]
is experimentally quite feasible, but unfortunately it actually
worsens the phase variance of the coherent state. To show this,
we can use a method similar to the one used in [10] to calculate

µC = α∗

π

∫ 1
G

0

exp(−xGN )√
− ln 1−Gx

1−(G−1)x

dx, (3)

where G = g2 is the linear amplification gain. We can now
use (3) to obtain the phase variance and numerically verify its
increase.

III. AMPLIFICATION BY PHOTON ADDITION
AND SUBTRACTION

However, there is another mechanism that can be em-
ployed for amplification and phase improvement. Consider a
single-photon addition (described by a†|n〉 = √

n + 1|n + 1〉)
followed by a single-photon subtraction (described by a|n〉 =√

n|n − 1〉) applied to a weak coherent state (approximately,
|α〉 = |0〉 + α|1〉). This corresponds to aa†(|0〉 + α|1〉) →
a(|1〉 + √

2α|2〉) → |0〉 + 2α|1〉. For low N this reduces the
phase variance roughly by a factor of 4. Note, the canonical
variance actually decreases in both the creation and the
annihilation process.

For a coherent state transformed in this way, aa†|α〉,
the total mean photon number 〈N〉 = N (4 + 5N + N2)/(1 +
3N + N2) increases and the canonical variance

µC = exp(−N )

√
N

1 + 3N + N2

∞∑
n=0

Nn(n + 1)(n + 2)

n!
√

n + 1
(4)

is always lower than the Holevo variance from (1). For a lower
N < 1, the canonical phase variance after the probabilistic

procedure approaches the phase variance for the coherent
state with N = 〈N〉. For a larger N this effect tends to be
less pronounced as the relative influence of single-photon
operations diminishes. In this scenario it is convenient to
consider a generalization, a collective M-photon addition
followed by an M-photon subtraction. The phase variance is
then determined by

µC = e−N

√
N

N

×
∞∑

n=0

Nn

n!
√

n + 1

(n + M)!

n!
(n + 1 + M)(n + 1)!,

N = e−N

∞∑
n=0

Nn

n!

(
(n + M)!

n!

)2

, (5)

and it decreases as M grows. Simultaneously, this also leads
to an increase of the mean photon number. For sufficiently low
values of N , the canonical variance approaches the result of
the ideal noiseless amplifier and we can use the approximation

VC(N ) ≈ 1

(M + 1)2N
+ 1 − M + 2√

2(M + 1)
+ O(N2). (6)

Comparison to the analogous formula for the noiseless
amplifier (2) with N → g2N reveals that M + 1 can play a
role of the amplification gain g.

For the construction of such a probabilistic phase-
insensitive amplifier, the photon addition operation is required.
Furthermore, the photons have to be added coherently, per-
fectly interfering with the incoming coherent state. This task
can be performed using a nondegenerate optical parametric
amplifier with an avalanche photodiode monitoring the output
idler port [11]. This approach has already been used to verify
the validity of commutation relations for the annihilation oper-
ator [12], and it is therefore fully capable of demonstrating the
probabilistic amplification for M = 1. However, the procedure
is not trivial and adding and subsequently subtracting more
than two photons is currently unfeasible, mainly due to low
success rates.

IV. AMPLIFICATION WITH NOISE ADDITION

Fortunately, the amplification can be made simpler. Instead
of adding single photons separately, we can add a phase-
insensitive thermal noise, which is characterized by its mean
number of thermal photons Nth. The second step is then
the same as already discussed—the probabilistic subtraction
of M photons. Now the photon subtraction is an operation
which can improve the phase properties, but the noise addition
is clearly purely destructive. Why does it work then? The
main point is that the photon subtraction does nothing when
applied to a coherent state. However, for a mixed state the
photon subtraction serves as a probabilistic filter, improving
the weight of the high amplitude coherent states within the
mixture. The first step of the amplification could be explained
as a displacement in a random direction. This creates a
phase-insensitive mixture of coherent states slightly displaced
in the direction given by the initial phase. The second step,
the photon subtraction, then “picks” states with the highest
intensity and these states are mostly those for which the
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displacement had (purely by chance) the same phase as the
initial signal. The state after the subtraction is still mixed,
with the same mean phase as the initial coherent state, but the
overall amplitude has been increased by the amplification.

Formally, the density operator of the initial coherent state
after the noise addition and M photon subtraction can be
represented as ρamp = ∑

n,m ρn,m|n − M〉〈m − M|, where

ρn,m = 1

N

√
n!

m!
exp

(
− |α|2

Nth + 1

)
(α∗)m−nNn

th

(Nth + 1)m+1

× Lm−n
n

(
− |α|2

Nth(Nth + 1)

) √
n!m!

(n − M)!(m − M)!

(7)

for m � n and ρm,n = ρ∗
n,m otherwise. Lm

n (x) denotes the
associated Laguerre polynomial. The normalization factor
representing the success rate is

N =
∑

k

exp

(
− |α|2

Nth + 1

)
Nk+M

th

(Nth + 1)k+M+1

× L0
k+M

(
− |α|2

Nth(Nth + 1)

)
(k + M)!

k!
. (8)

It may be surprising that such an incoherent operation
preserves and even improves the phase of the initial coherent
state. To show that this is really the case we express the density
matrix elements (7) as ρm,n = ρ̃m,n(|α|)eiφ(m−n), where we
have introduced φ as the mean phase of the initial coherent
state, α = |α|eiφ . If we formally represent the amplification
operation by a mapping A such that ρamp = A[|α〉〈α|], we
can see that it commutes with the unitary phase shift operator
Uθ = eiθa†a ,

UθA[|α〉〈α|]U †
θ = A[Uθ |α〉〈α|U †

θ ]. (9)

Consequently, the mean phase of the amplified state is fully
given by the phase of the initial coherent state. Also note that
the amplification effects are completely covered by the density
matrix given by ρ̃m,n(|α|). In this sense, the amplification
procedure is universal with respect to the phase of the initial
state. To analyze the phase concentration effect we can
calculate the canonical phase variance:

µC = 1

N
∑

k

√
(k + M)!

(k + M + 1)!
exp

(
− |α|2

NT H + 1

)

× αNk+M
th

(Nth + 1)k+M+2
L1

k+M

(
− |α|2

Nth(Nth + 1)

)

×
√

(k + M)!(k + 1 + M)!

k!(k + 1)!
. (10)

The expression (10) can be calculated numerically and the
results are presented in Fig. 1. The probabilistic amplification
of the initial coherent state (M = 0) results in a visible
reduction of the phase variance. The mean number Nth of
added thermal photons was optimized to minimize the phase
variance and it is saturating for larger M . The reduction
of the phase variance saturates as well, but already for a
somewhat feasible four-photon subtraction the resulting phase
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FIG. 1. (Color online) Phase concentration in a highly probabilis-
tic amplification using thermal noise addition and photon subtraction.
The separate graphs show the canonical phase variance VC (a),
the optimal number of thermal photons added (b), the gain of the
amplification (c), and the purity of the amplified state (d) as a function
of the number of subtracted photons M . The different bars correspond
to the ideal photon subtraction realized by the annihilation operator
(left) and to the realistic photon subtraction employing a beam splitter
with T = 0.9 and a threshold detector with efficiency η = 0.4 (right).
The color coding given in panel (a) is the same for all the panels.

variance corresponds to the phase variance of a coherent
state with N = 0.36 (as opposed to the coherent state with
N = 0.04 before the amplification). This is equivalent to a
strong amplification |α〉 → |gα〉 with gain g = 3. We can also
look at the process from the amplification perspective and find
out how the amplitude of the state increases. If we consider
(without loss of generality, because the amplification is phase
insensitive) the initial mean phase of φ = 0, the gain of the
amplification can be expressed as 〈(a + a†)/2〉/√N and it is
shown in Fig. 1(c) for various M . The addition of thermal
photons is an incoherent process and the resulting state is
therefore not pure. The purity after the amplification can be
seen in Fig. 1(d).

The nonlinear nature of the amplification is clearly visible
from a change of the contour of Wigner function (taken at
full width at a half maximum) in Fig. 2. The contours are

− 1 0 1 2 3
− 2

− 1
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x

p

FIG. 2. Contours of Wigner functions of the states amplified by
the noise addition and the beam splitter tap, similar to conditions
described in Fig. 1. The contours go from left to right as the number
of subtractions increases M = 0, 1, . . . , 6.
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plotted for an initial state with α = 0.2 with a mean phase
value of φ = 0. From the contours of the group of amplified
states we can see that the mean phase of the state is preserved
and the state is displaced in this correct direction. At the same
time the initial circular contour gains a “crescent” shape as
M increases. This is a difference from the ideal noiseless
amplification methods [6,7], which keep the state coherent
(in a suitable limit). However, although the change of shape
of the Wigner function suggests greater phase uncertainty, the
increase of the amplitude of the state results in a smaller phase
variance.

For a physical understanding it is illustrative to consider a
weak coherent state |0〉 + α|1〉 displaced by a weak thermal
noise ρ → ρ + εth(a†ρa + aρa†) and followed by a single-
photon subtraction. The resulting state is N |0〉〈0| + εth(|0〉 +
2α|1〉)(〈0| + 2α∗〈1|) up to a normalization N = N + εth +
4Nεth. The canonical phase variance can be determined
from µ = 2εthα/N , and for small N < 0.1, the reduction
approaches V ∝ 1

4N
, approximating very well the result for

the ideal amplification (2) with g = 2, if εth is low enough.
More generally, if the thermal noise is approximated as an
addition of up to M photons, the M-photon subtraction leads
to phase variance V ∝ 1

(M+1)2N
, which qualitatively matches

the results for the ideal amplification with g = M + 1 (2), as
well as the amplification by coherent addition and subtraction
of M photons (6).

The addition of a thermal noise can be realized by mixing
the signal with a thermal state on a highly unbalanced beam
splitter. The thermal state can be provided either by a thermal
source, in which case the sufficient spatial and spectral overlap
needs to be ensured by suitable filters, or by creating a mixture
of coherent states by a proper random modulation. The benefit
of the first approach lies in conceptually lower demand on
resources, as there is no need for a coherent source of light.
On the other hand, the second approach allows for generation
of mixed states with various kinds of distributions (not just
thermal), which can be used for a further optimization of the
procedure.

A feasible scheme capable of approximately subtracting
M photons, which is required for a physical implementation
of the procedure, is sketched in Fig. 3. It can be built from
a linear coupling (a beam splitter with transmissivity T ) to
tap a part of the optical signal and a threshold measurement
registering at least M0 photons [13]. The quantum efficiency
of the detector can be modeled by a virtual beam splitter with
transmissivity η inserted in front of the ideal detector. The
quality of the outgoing signal depends on the transmissivity
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FIG. 3. (Color online) Realistic scheme for the probabilistic
amplification of a coherent state.

FIG. 4. (Color online) Comparison between the canonical phase
measurement and the heterodyne phase measurement after the
realistic phase concentration. The respective phase variances are
shown in panel (a), while the optimal numbers of thermal photons
are shown in panel (b).

T values, T < 1 translates as loss, which increases the phase
variance. The limited quantum efficiency of the detector only
affects the success rate. However, η that is too low may require
lower T to achieve sufficiently high success rates.

Generally, the amplified state can be expressed as

ρ ′
amp = 1

PS

∫
	

(
β√
T

)
P�

(
β√
T

)
|β〉〈β|d

2β

T
, (11)

where P�(β) = 〈√η(1 − T )β|�|√η(1 − T )β〉 and � de-
notes the positive-detection positive operator-valued mea-
sure (POVM) element, which in the case of the threshold
detector looks like � = 1 − ∑M0−1

k=0 |k〉〈k|. The initial co-
herent state with the addition of thermal noise is repre-
sented by 	(β) = exp(−|β − α|2/Nth)/πNth. The normal-
ization factor PS gives the probability of the success: PS =∫

	(β/
√

T )P�(β/
√

T )d2β/T .

The density operator (11) fully describes the realistically
amplified coherent state and its numerical evaluation is
straightforward. The results are shown in Fig. 1 and we can see
that, although they are quantitatively worse than those for the
ideal subtraction, they follow the same qualitative pattern. The
realistic multiphoton subtraction, even with the low quantum
efficiency η = 0.4, is therefore a sufficient replacement for the
ideal subtraction. Finally, we can check the difference between
the canonical and the heterodyne phase measurements. The
comparison in Fig. 4 shows a good qualitative agreement and
justifies the use of the canonical measurement for the previous
analysis.

V. SUMMARY

We have proposed a probabilistic amplifier for coherent
states. The amplifier setup, based on a thermal noise addition
(instead of a single-photon addition) followed by a feasible
multiphoton subtraction allows one to substantially reduce the
phase variance of a coherent state. Note that the distribution
of the random-noise-like modulation of the signal could be
optimized to achieve better performance. There are also several
possible applications open for future consideration. In quan-
tum key distribution, the amplifier could be conceivably used
in situations when the loss in the quantum channel prevents
the secure key generation. At the same time, the amplifier
is of no use to the eavesdropper because of its probabilistic
nature—any gain in the rare event when the amplification
succeeds is lost in the noise produced when it does not. As
another possible application one could consider a probabilistic
cloning of coherent states. Finally, the amplification itself need
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not be restricted to traveling wave quantum optics. All
the necessary components, the thermal field, the coherent
field, and the single-photon subtraction are also available
in cavity QED [14] and this direction is open for future
investigation.

Note added. Recently, a publication appeared that proposed
another method for a noiseless amplification of coherent states
based on a multiple-photon addition [15].
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