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We give a general definition for the transition time in the Landau-Zener model. This definition allows us to
compute numerically the Landau-Zener transition time at any sweeping rate without ambiguity in both diabatic
and adiabatic bases. With this new definition, analytical results are obtained in both the adiabatic limit and the
sudden limit.
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I. INTRODUCTION

Tunneling is one of many fundamental quantum processes
that have no classical counterparts. It exists ubiquitously
in quantum systems and is a key to understanding many
quantum phenomena [1–12]. Discussions on tunneling can
be found in all textbooks on quantum mechanics. However,
these discussions are mainly focused on the probability of
tunneling from one quantum state to another or from one side
of a potential barrier to the other. In contrast, there are few
extensive and in-depth discussions in the literature on another
aspect of tunneling, the time of tunneling, that is, how long it
takes a particle to tunnel through a potential barrier. [13–22].
This disparity is partly caused by the difficulty of properly
defining tunneling times in many situations.

The difficulty of having a proper definition for tunneling
time has its root in the wave or probabilistic nature of quantum
mechanics and is best demonstrated in the example of a
wave packet tunneling through a potential barrier. In this
case, one would intuitively define the tunneling time as the
time spent by the peak (or centroid) of the wave packet
under the barrier. However, as pointed out by Landauer and
Martin [19], if this definition is used, a packet could leave the
barrier before entering it. To overcome this difficulty, many
different definitions have been suggested [19–22], and no clear
consensus has been reached so far [19]. As a result, due to this
lack of a general definition for tunneling time, one usually has
to define the tunneling time case by case.

The focus of this study is on the transition time in the
Landau-Zener (LZ) model [23,24], which describes a transi-
tion between two quantum states under a linearly changing
external field. In fact, for the LZ model, because there is
no tunneling in space, the “tunneling time” is usually called
transition time [25–27]. We shall follow this convention in
this paper. The transition in the LZ model is much simpler
than the wave packet and barrier system because there is no
complication of the wave packet distortion by the barrier.
Nevertheless, a proper definition of transition time in this
model is still missing in spite of the studies in the past by many
authors. Mullen et al. [25] discussed the LZ transition time in
the diabatic basis for the two limiting cases, the adiabatic
limit and the sudden limit. They found that, for large � (the
adiabatic limit), the transition time scales with �/α and for
small � (the sudden limit), the transition time is about

√
h̄/α,

where � is the minimal energy gap between the two eigenstates
in the LZ model and α is the sweeping rate. However, Mullen
et al. did not give a general definition for the transition time.

Vitanov [26,27] has made a much more thorough study on the
LZ transition time and gave a definition for the transition time
in both the diabatic basis and the adiabatic basis. However, his
definition fails generally in the adiabatic basis.

In this paper we give a general definition for the transition
time in the LZ model. We show both analytically and
numerically that this definition yields reasonable results at any
sweeping rate in both adiabatic basis and diabatic basis. With
this general definition, we are able to reproduce the previous
results obtained by Mullen et al. [25] and Vitanov [26,27].
Furthermore, we are able to compute analytically the transition
time in the adiabatic basis at the adiabatic limit, which is
proportional to �/α. This, to our best knowledge, has not
been obtained before.

Besides its theoretical significance, our work has also
potential applications. In the Monte Carlo simulation of
quantum flipping of spins in molecular magnets, the authors
in Ref. [28] have used an empirical formula for the LZ
transition time. This formula, given by

√
�2/α2 + 2h̄/α and

interpolating the two limiting results in Ref. [25], is not well
founded. With this newly proposed definition, one no longer
needs this empirical formula to do the Monte Carlo simulation.

We note here that it is important to study the transition time
in both the diabatic basis and the adiabatic basis. For the case
of the flipping of spin under a sweeping magnetic field [28],
the diabatic basis is a better choice. For the transition between
Bloch bands under a constant force, it is better to use the
adiabatic basis [29].

Our paper is organized as follows. In Sec. II and Sec. III, we
introduce our definition of the transition probability function
and transition time in the LZ model and we analyze the
effectiveness of our definition. In Sec. IV, we present our
results of the transition times, which include the analytical
results at the adiabatic limit and the sudden limit and the
numerical results for the general case. Our results are given
in both the diabatic basis and the adiabatic basis. In the last
section, we discuss our results and conclude.

II. TWO DEFINITIONS OF THE TRANSITION
PROBABILITY FUNCTION

A. Transition probability function in the diabatic picture

The LZ model is a two-level system and is described by
[23,24]

ih̄
d

dt

(
a(t)

b(t)

)
= H(γ )

(
a(t)

b(t)

)
, (1)
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where

H(γ ) =
(

γ /2 �/2

�/2 −γ /2

)
, (2)

with γ = αt changing with time linearly with sweeping rate α.
We describe the transition probability in both the diabatic basis
and the adiabatic basis [26,27]. Provided the system is initially
in state (1, 0), in the diabatic basis, the transition probability
is

Pd (t) = |b(t)|2. (3)

This is the projection of the state vector |ψ(t)〉 = (a, b) to
the base vector (0, 1). Similarly, by projecting the state vector
|ψ(t)〉 to the second instantaneous eigenstate |e2(t)〉 of H, we
have the transition probability in the adiabatic basis,

Pa(t) = |〈ψ(t)|e2(t)〉|2. (4)

Note that in all of our discussion the initial state is always
a(−∞) = 1, b(−∞) = 0.

B. Transition probability function in the adiabatic picture

The LZ model in Eq. (8) is in fact written in the diabatic
basis. It can be equivalently written in the adiabatic basis. To
do so, we diagonlaize H(t) in Eq. (2) [30],

S+(t)H(t)S(t) = H (t) =
(

E1(t) 0

0 E2(t)

)
, (5)

where the unitary transformation matrix is given by

S(t) =
(

cos θ (t) sin θ (t)

− sin θ (t) cos θ (t)

)
, (6)

and E1,2(t) = ∓ 1
2

√
α2t2 + �2 are two instantaneous energy

levels of the Hamiltonian H(t). In addition, tan 2θ (t) =
−�/αt (0 � 2θ < π ). For a state expressed in the adibatic
picture

|ψ(t)〉 = ϑ1(t)|e1(t)〉 + ϑ2(t)|e2(t)〉, (7)

where |e1(t)〉 and |e2(t)〉 are two adiabatic instantaneous
eigenstates of the Hamiltonian in Eq. (2) corresponding to
energy levels E1(t) and E2(t), respectively. The time evolution
is given by

ih̄
d

dt

(
ϑ1(t)

ϑ2(t)

)
= HA(t)

(
ϑ1(t)

ϑ2(t)

)
. (8)

The Hamiltonian HA is given by [30,31]

HA(t) = H (t) − ih̄S+(t)
dS(t)

dt
=

(
E1(t) m∗(t)

m(t) E2(t)

)
, (9)

where

m(t) = ih̄
�α

2(�2 + α2t2)
. (10)

In the adiabatic picture, we can similarly define the transition
probability. The transition probability function in the diabatic
basis is defined as

Pd (t) = |〈ψ2|ψ(t)〉|2, (11)

where |ψ2〉 = (0, 1). And the transition probability in the
adiabatic basis is defined as

Pa(t) = |ϑ2(t)|2. (12)

The diabatic and adiabatic pictures presented here are
equivalent mathematically. In our following discussion, we
shall use mostly the diabatic picture because the LZ model is
commonly written in the diabatic basis. However, as we shall
see, the adiabatic picture sometimes offers great insights into
the results.

III. DEFINITION OF THE TRANSITION TIME

In our discussion, we use the subscripts d and a to indicate
the diabatic basis and adiabatic basis, respectively. When our
discussion is independent of the basis, we will remove the
subscripts and simply use P for both Pd and Pa . Both ana-
lytical and numerical approaches will be used. The analytical
approach is used for two limiting cases, the adiabatic limit and
the sudden limit. We introduce a “quickness” parameter

η ≡ 2h̄α

�2
; (13)

the adiabatic limit is η � 1 while η 	 1 corresponds to the
sudden limit.

The time evolution of the transition probability function
P (t) can be found by numerically solving Eq. (8). A typical
result of P (t) is shown in Fig. 1, where we see a sharp transition
occurs around t = 0 and is followed by decaying oscillations.
This observation suggests an intuitive (or natural) definition for
the transition time. One may first fit the P curve with a smooth
steplike function [dashed line in Fig. 1(a)], and then define the
half-width of its time derivative [dashed line in Fig. 1(b)] as
the transition time. However, like its counterpart in the wave
packet and barrier system, this kind of intuitive definition of
transition time fails because of its two shortcomings. First,
there are numerous methods to find the fitting steplike function
in Fig. 1(a); there is no obvious criterion by which one can
judge which method is better than the other. Second, at the
adiabatic limit, the P curve looks drastically different from
the typical case in Fig. 1(a). As shown in Fig. 2, P is a
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FIG. 1. (a) Time evolution of the transition probability function
Pd (t) (solid line) and its steplike function fit (dashed line). (b) The
time derivative of the two functions in (a) and η = 0.2565. t is in
units of seconds.
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FIG. 2. (a) Time evolution of transition probability Pa(t) and
(b) its time derivative dPa(t)/dt at the adiabatic limit for η = 0.1425.
t is in units of seconds in both figures and dPa(t)/dt is in units of
inverse seconds.

single-peaked function, which would be difficult to fit it with a
steplike function. These two drawbacks show that this intuitive
definition of the transition time based on curve-fitting is not a
good choice. One has to find an alternative.

In Ref. [27], Vitanov introduced a definition for the LZ
transition time in both bases, which he called jump time. His
definition is

τ = P (∞)

P
′ (0)

, (14)

where the time derivative value P
′
(0) at t = 0 is used to

represent the rate of the transition around t = 0. For the
typical time evolution of the transition probability function
P (t) shown in Fig. 1, this definition works well. However,
Vitanov’s definition does not work in the adiabatic basis in
general because the jump time defined in Eq. (14) tends to
over-represent the transition time. We explain this point in
detail in the following.

For clarity, we consider the transition in the adiabatic limit.
In the diabatic basis, as seen in Fig. 3(a), almost nothing
happens before the transition region around t = 0. This is
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FIG. 3. Time evolution of the transition probability P (t) in the
adiabatic limit in (a) the diabatic basis and (b) the adiabatic basis for
η = 0.1425. t is in units of seconds.
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FIG. 4. Time evolution of the transition probability in (a) the
diabatic basis and (b) the adiabatic basis respectively. η = 1.425. t is
in units of seconds.

followed by a sharp increase around t = 0, which indicates
that the spin flips with a slowly changing magnetic field. The
transition probability function Pd (t) immediately reaches its
saturation value, signaling the end of the transition. With this
in mind, we now look at the transition process in the adiabatic
basis. As shown in Fig. 3(b), before t = 0 the transition
function Pa(t) looks very similar to what occurs in the diabatic
basis: Nothing happens at first then a sharp increase follows.
However, after t = 0, the function Pa(t) starts to drop sharply
and relax to a small value. The reason is simple. Before t = 0
the adiabatic basis is similar to the diabatic basis; in contrast,
after t = 0 the two bases becomes very different, representing
almost opposite spin states.

This evolution of a sharp increase followed by a drop
persists for all the sweeping rates for the transition process
Pa(t) in the adiabatic basis. One example for nonadiabatic
evolution is shown in Fig. 4. Because of this feature, the
transition rate at t = 0 in the adiabatic basis tends to over-
represent the overall transition.

We overcome these difficulties and find a general definition
of the transition time. In the definition, we first find a t ′ < 0
such that

P (t ′) = 1
2Pmax, (15)

where Pmax is the maximum value of P when t � 0. Usually,
Pmax = P (t = 0). This condition will be called the half-width
condition from now on for ease of reference. We then
introduce two more variables

S1 =
∫ 0

−∞

d

dt
P (t)dt = P (0), (16)

S2 =
∫ ∞

0

d

dt
P (t)dt = P (∞) − P (0), (17)

which are the left (t < 0) area and right (t > 0) area of the
dP/dt curve, respectively. With these defined variables, we
define the transition time as

τ = |t ′|
(

1 +
∣∣∣∣S2

S1

∣∣∣∣
)

. (18)

Three quick remarks are in order. (i) The three variables
in the definition can be computed without any ambiguity.
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(ii) For the typical case shown in Fig. 1, we have S1 ≈ S2 and,
therefore, τ = 2|t ′|, which is in agreement of the “intuitive”
definition that we discussed before. (iii) The absolute value is
used because S2 can be negative in certain cases, for example,
the case in Fig. 2. The reason for the appearance of negative S2

is that the transition around t = 0 overshoots the overall transi-
tion P (∞) − P (−∞) and the system needs some time to relax.

For a general case, we have to resort to the numerical
method. We first solve numerically the equation of motion
Eq. (8), then compute the transition probability function P (t),
and finally find the transition time with our definition in
Eq. (18). In our computation, we use � = 1.2 × 10−7kb, where
kb is Boltzmann’s constant, which is a typical value in a
molecular magnet [12].

The transition time will be computed in both the adiabatic
basis and the diabatic basis. For clarity, we shall use τd for the
transition time in the diabatic basis and τa for the transition
time in the adiabatic basis.

The typical transition probability functions P (t) in both
the adiabatic basis and diabatic basis are shown in Fig. 4.
Obviously, the transition includes two different processes:
(1) the time it takes the system to “jump” around t = 0;
(2) the time it takes the system to relax and finally reach its
asymptotic value P (∞). A proper definition of the transition
time should include both the jump time and the relaxation time.
This is particularly important in the adiabatic basis where the
relaxation process is very prominent. In Refs. [26,27], Vitanov
treated the two processes separately. By contrast, our definition
integrates them together.

IV. TRANSITION TIMES IN THE DIABATIC BASIS

We first consider the diabatic basis and follow it with a
discussion on the adiabatic basis in the next section.

A. Analytical results

At the adiabatic limit (η � 1), according to Vitanov [26,27]

Pd (t) ≈ 1

2
+ αt

2
√

α2t2 + �2
, (19)

and the variable t ′ can be obtained from the half-width
condition

Pd (t)|t=t ′ = 1
2 [Pd (t � 0)]max = 1

4 . (20)

The result is

t ′ = −
√

3

3

�

α
. (21)

Since we have S1 = S2 for the transition curve Eq. (19), the
transition time with our definition of Eq. (18) is

τ a
d = 2

√
3

3

�

α
, (22)

which agrees well with the result of Mullen et al. [25].
At the sudden limit η 	 1, it is beneficial to take a

transformation

a(t) = ã(t) exp

(
−i

αt2

4h̄

)
, (23)

b(t) = b̃(t) exp

(
i
αt2

4h̄

)
. (24)

As a result, the diagonal terms in the Hamiltonian are
transformed away and we can expand ã(t) and b̃(t) in powers
of η (effectively, �) [25]. For the initial condition a(−∞) = 1
and b(−∞) = 0, we obtain

a(t) =
[

1 +
∞∑

k=1

(−1)k
1

(2η)k
a2k(y)

]
exp

(
−i

y2

4

)
, (25)

b(t) =
[ ∞∑

k=1

(−1)k+1 1

i(2η)k/2
b2k−1(y)

]
exp

(
i
y2

4

)
, (26)

where

an(y) =
∫ y

−∞
exp

(
ix2

1

/
2
) ∫ x1

−∞
exp

( − ix2
2

/
2
) · · ·

∫ xn−1

−∞
× exp

[
(−1)n+1ix2

n

/
2
]
dx1dx2 · · · dxn−1dxn, (27)

bn(y) =
∫ y

−∞
exp

( − ix2
1

/
2
) ∫ x1

−∞
exp

(
ix2

2

/
2
) · · ·

∫ xn−1

−∞
× exp

[
(−1)nix2

n

/
2
]
dx1dx2 · · · dxn−1dxn, (28)

with y = t/(h̄/α)1/2. At the sudden limit, it is sufficient to keep
Eq. (26) to the lowest order of 1/η. Consequently, we obtain

Pd (t) = |b(t)|2 ≈
∣∣∣∣ 1√

2η

∫ y

−∞
exp

(
−i

x2

2

)
dx

∣∣∣∣
2

= 1

2η

∣∣∣∣ −
√

2π

2
exp

(
i
3π

4

)
+

∫ y

0
exp

(
−i

x2

2

)
dx

∣∣∣∣
2

= π

2η

{[
1

2
+ C

(
y√
π

)]2

+
[

1

2
+ S

(
y√
π

)]2
}

,

(29)

where C(y/
√

π ) and S(y/
√

π ) are the Fresnel integrals [32].
It is very interesting to see that the evolution of the transition
probability Pd (t) in the sudden limit is quite similar to
the transient current function J (x, t) in the particle shutter
problem [33]. Interestingly, he time evolution of the probability
function Pd (t) and the transient current function J (x, t) are
identical in the space region where x 	 λ, where λ is the
wavelength of the particle, given the dimensionless parameter
u → y/

√
π and the phenomenon of time diffraction, which

has been verified by a recent experiment [34].
One can prove that the maximum value of Pd for t � 0 is at

t = 0, where Pd = π/(4η). Thus with the half-width condition

Pd (t ′) = 1

2
Pd (0) = π

8η
, (30)

we find numerically that t ′ ≈ −0.6241
√

h̄
α

. According to
Refs. [23,24], we have

Pd (∞) = 1 − exp

(
−π

η

)
. (31)

Therefore, at the sudden limit (η 	 1), we have∣∣∣∣S2

S1

∣∣∣∣ = Pd (∞) − Pd (0)

Pd (0)
≈ 3. (32)
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FIG. 5. Transition times τd in the diabatic basis. The solid line
is our numerical result and the dashed line is the empirical formula
τd = √

�2/α2 + 2h̄/α used in Ref. [28]. α is in units of �2

2h̄ and τd is
in units of seconds.

Based on our definition in Eq. (18), the transition time is

τ s
d ≈ 4|t ′| = 2.4964

√
h̄

α
. (33)

The fact that τ s
d scales as

√
h̄/α can be seen clearly in Eqs. (23)–

(26) as having been pointed out by Mullen et al. [25].

B. Numerical results

Our numerical results for the transition time τd in the
diabatic basis are plotted on a log-log scale in Fig. 5. In
the figure, we see that the results for the two limiting cases
are connected by a smooth kink. We have also compared these
results with the empirical relation τd =

√
�2/α2 + 2h̄/α that

was used in Ref. [28]; the agreement is quite good.
We have amplified the results at the adiabatic and the sudden

limits and plotted them in Fig. 6. and Fig. 7, respectively. In
these two figures, we have also compared them to the analytical
results and the agreement is excellent.
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FIG. 6. Transition time τd at the adiabatic limit in the diabatic
basis. The circles are the theoretical results given in Eq. (22) and the
solid line is the numerical results. α is in units of �2

2h̄ and τd is in units
of seconds.
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FIG. 7. Transition time τd at the sudden limit in the diabatic basis.
The circles are the theoretical results given in Eq. (33) and the solid
line is the numerical results. α is in units of �2

2h̄ and τd is in units of
seconds.

V. TRANSITION TIMES IN THE ADIABATIC BASIS

As mentioned already, when one applies the LZ model
to describe the transition between Bloch bands, it is more
convenient to use the adiabatic basis. It turns out that the
results in the adiabatic basis are quite different from the ones
in the diabatic basis.

A. Analytical results

As in the case of the diabatic basis, at the adiabatic
limit(η � 1), the transition probability function Pa in the
adiabatic basis has been found by Vitanov [26,27],

Pa(t) ≈ α2h̄2�2

4(α2t2 + �2)3
. (34)

With the half-width condition

Pa(t)|t=t ′ = 1

2
[Pa(t � 0)]max = α2h̄2

8�4
, (35)

we find that

t ′ = −
√

21/3 − 1
�

α
. (36)

Thus, based on our definition in Eq. (18), the transition time is

τ a
a = 2

√
21/3 − 1

�

α
≈ �

α
, (37)

which is very similar to the transition time of Eq. (22) in
the diabatic basis. Our result in Eq. (37) can be viewed
as the first successful attempt to find the transition time at
the adiabatic limit in the adiabatic basis because Vitanov’s
definition Eq. (14) may fail in this case.

We next consider the sudden limit (η 	 1). In terms of
y = t/

√
h̄/α, the instantaneous eigenstates of the Hamiltonian

(2) are

|e2(t)〉 =
(

�1(y)

�2(y)

)
=

⎛
⎜⎜⎜⎝

[
1
2

(
1 + y√

(y2+2/η

)]1/2

[
1
2

(
1 − y√

(y2+2/η)

)]1/2

⎞
⎟⎟⎟⎠ . (38)
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FIG. 8. Transition time τa in the adiabatic basis. α is in units of
�2

2h̄ and τa is in units of seconds.

According to Eq. (25) and Eq. (26), we can obtain the transition
probability up to first order of 1/η as

Pa(y) ≈
∣∣∣∣∣∣(�1(y)�2(y))

⎛
⎝ exp

(
−i

y2

4

)
b1(y) exp

(
i

y2

4

)
⎞
⎠

∣∣∣∣∣∣
2

. (39)

With Eq. (28), we arrive at

Pa(y) ≈ 1

2
+ 1

2

y√
y2 + 2

η

− 1√
η(ηy2 + 2)

cos
y2

2

×
∫ y

−∞
sin

x2

2
dx + 1

2η

⎛
⎝1

2
− 1

2

y√
y2 + 2

η

⎞
⎠ . (40)

It is quite obvious that the last two terms of this equation are
much smaller than the first two terms. Finally, we obtain

Pa(t) ≈ 1

2
+ 1

2

αt√
α2t2 + �2

, (41)

which is surprisingly identical to the result at the adiabatic
limit in the diabatic basis [see Eq. (19)]. As a result, we can
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−6.2

−6

−5.8

−5.6

−5.4

ln(α)

ln
(τ

a)

FIG. 9. Transition time τa at the adiabatic limit in the adiabatic
basis. The circles are the theoretical results given by Eq. (37); the
solid line is the numerical results. α is in units of �2

2h̄ and τa is in units
of seconds.

−52.55 −52.5 −52.45 −52.4 −52.35

−16.05

−16

−15.95

−15.9

−15.85

ln(α)

ln
(τ

a)

FIG. 10. Transition time τa at the sudden limit in the adiabatic
basis. The circles are the theoretical results given by Eq. (42); the
solid line is the numerical results. α is in units of �2

2h̄ and τa is in units
of seconds.

similarly obtain the transition time

τ s
a = 2

√
3

3

�

α
, (42)

which agrees very well with Vitanov’s result [26,27].

B. Numerical results

In the adiabatic basis, the numerical results of the transition
time are shown in Fig. 8. We see that the results in the two
limiting cases are also connected by a kink. However, this
kink is not as smooth as the kink in the diabatic basis; the
first derivative of the transition time with respect to α is
not continuous. The numerical results for the two limits, the
adiabatic limit and the sudden limit, are plotted and compared
to the theoretical results in Fig. 9 and Fig. 10, respectively.
Again, we find excellent agreement.

VI. DISCUSSION AND CONCLUSION

We have obtained analytical results for the transition times
in the LZ model at two different limits and in two different
bases. They are, respectively, τ a

d , τ s
d , τ a

a , and τ s
a , which are

listed in Table I. We have found that only τ s
d is proportional

to
√

h̄/α while the rest of the three transition times all scale
as �/α. It is not hard to understand why τ s

d , the transition
time at the sudden limit and in the diabatic basis, does not
scale as �/α. The effect of � is to couple the two bare states,
(1, 0) and (0, 1), which serve as the base vectors in the diabatic
basis. At the sudden limit, the system changes very fast and
its wave function remains almost unchanged. As a result, the
system does not feel the effect of �. It is also not hard to

TABLE I. Transition time in the LZ model.

Basis Adiabatic limit Sudden limit

Diabatic τ a
d = 2

√
3

3 �/α τ s
d = 2.4964

√
h̄

α

Adiabatic τ a
a = �/α τ s

a = 2
√

3
3 �/α
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understand that the two transition times at the adiabatic limit,
τ a
a and τ a

d , scale as �/α. At the adiabatic limit, the effect of
� is fully felt by the system and gets reflected in the transition
time.

The transition time τ s
a at the sudden limit in the adiabatic

basis, unlike the other transition time τ s
d at the sudden limit, is

proportional to �/α. This can be clearly explained by Eq. (9),
in which the width of the coupling function between the two
instantaneous eigenstates is �/α. Moreover, its corresponding
probability function Pa(t) described by Eq. (41) is surprisingly
identical to the probability function Pd (t) in Eq. (19), which
is at the adiabatic limit in the diabatic basis. To understand
this, we have to look into the details of the evolution. At the
adiabatic limit, the system follows its instantaneous eigenstate
as demanded by the quantum adiabatic theorem [35]. Pd (t) in
Eq. (19) is obtained by projecting this instantaneous eigenstate
to the bare state (0, 1). At the sudden limit, the wave function
of the system changes little and remains in the bare state (1, 0).
However, in the adiabatic basis, this wave function needs to
be projected to the instantaneous eigenstate to obtain Pa(t)
described by Eq. (41). As we know, projecting a bare state to

an instantaneous eigenstate is identical to projecting the same
instantaneous eigenstate to the same bare state. This explains
why the probability function Pa(t) in Eq. (41) is the same
as Pd (t) in Eq. (19). Consequently, this also explains why τ s

a

scales as �/α.
In sum, we have presented a general definition of the

transition time for the Landau-Zener model. We have shown
that this definition works for any sweeping rate and can be used
for the numerical computation of the transition time without
any ambiguity. In particular, we have obtained analytical
results for the two limiting cases, the adiabatic limit and the
sudden limit. We have not only reproduced known results
but also found the transition time at the adiabatic limit in
the adiabatic basis, which has not been found before to our
knowledge.
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