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Beam-shape effects in nonlinear Compton and Thomson scattering
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We discuss intensity effects in collisions between beams of optical photons from a high-power laser and
relativistic electrons. Our main focus is on the modifications of the emission spectra due to realistic finite-beam
geometries. By carefully analyzing the classical limit we precisely quantify the distinction between strong-field
QED Compton scattering and classical Thomson scattering. A purely classical, but fully covariant, calculation of
the bremsstrahlung emitted by an electron in a plane-wave laser field yields radiation into harmonics, as expected.
This result is generalized to pulses of finite duration and explains the appearance of line broadening and harmonic
substructure as an interference phenomenon. The ensuing numerical treatment confirms that strong focusing of
the laser leads to a broad continuum while higher harmonics become visible only at moderate focusing, and hence
lower intensity. We present a scaling law for the backscattered photon spectral density which facilitates averaging
over electron beam phase space. Finally, we propose a set of realistic parameters such that the observation of
intensity-induced spectral red shift, higher harmonics, and their substructure becomes feasible.
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I. INTRODUCTION

Intensity (or strong-field) effects on QED scattering pro-
cesses have been investigated since the 1960s following the
invention of the laser. The pioneering studies considered
both strong-field pair creation [1] and the crossed process,
electron-photon scattering [2–8] where the use of laser beams
has already been suggested. Since then there has been a wealth
of theoretical papers and we refer the reader to the reviews
[9–14] for an overview of the literature relevant for the present
subject. From an experimental point of view the situation is
less straightforward. There have only been a few clear-cut
observations of intensity-dependent effects. Probably the best
known experiment is SLAC E-144 probing strong-field QED
using a (by now moderately) intense laser beam in conjunction
with high-energy electrons [15]. By colliding a laser (L) of
intensity 1018 W/cm2 with the 46.6-GeV electron beam the
observation of the nonlinear Compton scattering process

e + �γL → e′ + γ (1)

has been reported in [16]. Note that without an external
field (here provided by the laser) an electron could not
spontaneously emit photons as this is forbidden by energy
and momentum conservation. However, absorption of � laser
photons γL induces the production of a high-energy (30-GeV)
γ quantum, which thus takes away a large fraction of the
incoming electron energy. This high-energy photon has then
been used to produce electron-positron pairs [17] via collision
with the laser, employing the multiphoton Breit-Wheeler
reaction [18], γ + �′γL → e+ + e−. Hence, using a high-
energy setting with a large linac, SLAC E-144 has produced
“matter from light” for the first time [17].

It is convenient to describe electron energy and laser
intensity in terms of dimensionless parameters. The former is
of course measured in terms of the relativistic gamma factor,
γ = Ep/m ≡ cosh ζ, where ζ denotes rapidity. A convenient
measure of laser intensity is the dimensionless laser amplitude

a0 ≡ eEλ̄

m
= eE

mω
≡ eE

m2ν
, (2)

with E being the root-mean-square electric field and λ̄ =
1/ω = 1/mν the laser wavelength. a0 is thus a purely classical
quantity, the energy gain of an electron across a wavelength
measured in units of its rest mass. We mention in passing that
quantum field theory imposes an upper limit on a0 [19], which
becomes manifest upon writing

a0 = eE

m2

1

ν
≡ E

ES

1

ν
. (3)

Here ES = m2/e = 1.3 × 1018 V/m is the QED critical field
first discussed by Sauter [20] beyond which any laser becomes
unstable due to pair creation from the vacuum via the
Schwinger mechanism [21]. For an optical laser this implies
the bound a0 < 1/ν � 106.

The definition (2) can be made explicitly Lorentz and gauge
invariant [22]. When a0 becomes of order unity the quiver
motion of the electron in the laser beam becomes relativistic.
SLAC E-144, for instance, had a0 � 0.6 and γ = 105 (i.e.,
low intensity and high energy for the purposes of this paper).

From a classical (nonlinear optics) point of view the
process (1) corresponds to the generation of the �th harmonic in
the γ radiation spectrum. The production of higher harmonics
has been observed in several experiments colliding laser and
electron beams: low-intensity laser photons (a0 = 0.01) with
low-energy (∼1 keV) electrons from an electron gun [23],
a0 = 2 photons with plasma electrons from a gas jet [24],
and, more recently, subterawatt laser photons (a0 = 0.35)
with 60-MeV electrons from a linac [25]. Using linearly
polarized photons the authors of the latter two papers have
analyzed the characteristic azimuthal intensity distributions,
confirming quadrupole and sextupole patterns for the second
and third harmonics, respectively. The energy spectrum of
the scattered radiation, to the best of our knowledge, has
been measured only once, in an all-optical setup using laser
accelerated electrons [26]. While this “table-top” setup is
certainly attractive as it does not require a linac, the electron
beam has a rather broad and random energy distribution, which
in turn is inherited by the scattered photons. As a result,
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the γ spectrum recorded in [26] is rather difficult to analyze
theoretically.

In this paper we discuss the prospects of experimentally
analyzing nonlinear Compton or Thomson scattering at a
comparatively low center-of-mass energy of the order of the
electron mass,

√
s � 0.5 MeV, but rather high laser intensity,

I � 100 TW. Such an experiment is currently possible at the
Forschungszentrum Dresden-Rossendorf (FZD), Germany,
with the 40-MeV linac ELBE [27] and the 100-TW laser
DRACO [28], so γ = 80 and a maximum value of a0 = 20
can be obtained. The linac provides a well-defined electron
beam with high brilliance and low emittance so that a detailed
study of intensity effects on the radiation spectrum should
become feasible. In addition, new technology developed for
ELBE enables the delivery of “bunches” containing 1–10
electrons only. This could provide further new insights into
the interaction of electrons with high-intensity lasers.

Our paper is organized as follows. To make the presentation
self-contained Sec. II briefly recapitulates the QED analysis
of nonlinear Compton scattering. In Sec. III this is compared
with its classical limit (Thomson scattering). Section IV briefly
discusses how to obtain the spectrum from a classical radiation
point of view. Effects caused by the finite temporal and spatial
extent of the laser and electron pulses are discussed in Sec. V.
Section VI contains our conclusions and summary. Some
calculational details are relegated to Appendices A and B.

II. NONLINEAR COMPTON SCATTERING

A. Kinematics

Nonlinear Compton scattering [i.e., the processes (1) with
� > 1] is treated in the text [29] following [6] and has been
reanalyzed in [30]. In this section we briefly collect the main
results of the latter reference for later comparison, at the same
time streamlining notation and normalization conventions.
Because of the large intensities involved one has to account
for the possibility that many harmonic numbers � contribute to
the total cross section. In other words, nonlinear Compton
scattering is nonperturbative in both the electromagnetic
coupling α and laser intensity a0 in that one has to sum over all
individual processes (1). In terms of Feynman diagrams this is
depicted in Fig. 1.

On the right-hand side we have displayed one term of
the sum, the �-photon contribution, a tree-level diagram

eV

e′V

γ

γe

e′

nγL

= . . . + + . . .

FIG. 1. Feynman diagram for nonlinear Compton scattering (left-
hand side) in terms of dressed electron lines (subscript V ). This
diagram may be expanded in an infinite series of standard QED
diagrams in which the �th term corresponds to the absorption of �

laser photons γL (right-hand side).

with dotted lines representing laser photons, solid lines for
electrons, and wiggly lines for the emitted photons. The non-
perturbative sum is depicted on the left-hand side, the double
lines denoting effective or dressed electrons corresponding to
the Volkov solution of the Dirac equation in a plane wave
[31]. We are thus adopting a Furry picture [32] where the
interaction with the classical laser background is shuffled into
the “free part” of the Hamiltonian having the Volkov states
as its “unperturbed” eigenstates. Schematically, the associated
Volkov wave functions may be written as

�p = exp{iS[e; A]} 	[e; A] up, (4)

where up is a free Dirac spinor, 	[e; A] is a field-dependent
combination of Dirac matrices, and S[e; A] is the classical
Hamilton-Jacobi action functional for a charge e in a plane-
wave field A [29]. This suggests that the Volkov wave function
is a WKB type solution of the Dirac equation. As expected
from the Furry picture argument it contains all powers of the
electromagnetic coupling e.

Throughout this section we assume the laser photons to
be circularly polarized, which, for a harmonic plane wave,
corresponds to the electromagnetic four-potential1

Aµ = Aµ(k · x) = a
(
ε

µ

1 cos k · x + ε
µ

2 sin k · x
)
, (5)

where k2 = 0 = εi · k and εi · εj = −δij . Assuming a head-on
collision and summing over polarization and spin states we
thus expect the emission probabilities to be axially symmetric
as there is no preferred direction other than the beam axis.
Note that this is different for linear polarization, implying the
azimuthal intensity patterns recorded in [24,25]. On a more
speculative level, preferred directions along with azimuthal
dependence may be induced by Lorentz-violating physics such
as noncommutative space-times [33].

Suppressing electron spins the left-hand side of Fig. 1 may
be analytically expressed as the S-matrix element

〈p′; k′, ε′|S[A] |p〉 = −ie

∫
d4x �p′ (x)

eik′ · x
√

2|k′| ε/′ �p(x),

(6)

where ε′
µ is the polarization vector of the emitted photon, k =

(ω, k) and k′ = (ω′, k′) are the momenta of laser and emitted
photons, respectively, and p is the momentum of the incoming
electrons before they actually enter the laser beam (assuming
long but finite wave trains or adiabatic switching at infinite
past and future [8,34]).

As already mentioned in the introduction the analogous
diagram in QED (with “naked” Dirac electrons) vanishes as
one cannot satisfy p + k = k′ with all three particles being
on-shell. This is different in the presence of an external
field, which can transfer additional four-momentum. This
statement seems obvious from the right-hand side of Fig. 1.
There is, however, an additional subtlety associated with
the momentum assignment: In a plane-wave field electrons
acquire a quasi-four-momentum q reflecting the relativistic

1Linear polarization is obtained by simply setting one of the ε’s
to zero. The dimensionless intensities are then a2

0 = e2a2/m2 and
a2

0 = e2a2/2m2 for circular and linear polarization, respectively.
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quiver motion. This may be seen by calculating the proper-
time-averaged “Volkov current,” j

µ

V ≡ 〈�̄pγ µ�p〉 = qµ/p0

as in [29] or by writing the Hamilton-Jacobi action in (4)
as S[e; A] = q · x + O((k · x)2). In either case the resulting
quasi-momentum is the intensity-dependent quantity

q ≡ p + a2
0 m2

2k · p
k, (7)

and analogously for the outgoing electron momentum q ′ (with
p replaced by p′). Working out the S-matrix element (6) then
yields a momentum-conserving delta function with its support
defined through

P ≡ q + �k = q ′ + k′. (8)

The explicit dependence of quasi-momenta on a0 feeds
through to the analog of the Compton formula for the
scattered frequency ω′. This is compactly expressed in terms
of dimensionless scalar products upon writing the relevant
four-momenta as

k ≡ ωn, k′ ≡ ω′n′, p ≡ mu = γm(1,β). (9)

Note that only the velocity u transforms as a four-vector proper
because only m is a world scalar. It is useful to measure
frequencies in units of the electron mass, ω ≡ νm, ω′ ≡ ν ′m.
By employing momentum conservation and the definitions (9)
the (dimensionless) scattered frequency becomes

ν ′
� = �ν n · u

n′ · u +
(

�ν + a2
0

2n · u

)
n · n′

. (10)

For the time being we will focus on head-on collisions where
u = γ (1,−βn) such that one can eliminate n′ · u = n · u −
βγ n · n′ and (10) simplifies to

ν ′
� = �νn · u

n · u + κ�(a0) n · n′ = �ν

1 + κ�(a0) e−ζ (1 + cos θ )
.

(11)

Here, e−ζ = 1/n · u = γ (1 − β) is the usual Doppler factor,
θ is the scattering angle, and

κ�(a0) ≡ �ν − sinh ζ + 1
2a2

0 e−ζ ≡ −n · P/m (12)

is the projection of the total momentum P = q + �k onto the
optical axis, n = k/ω, measured in units of m. The vanishing of
the latter, n · P = −mκ� = 0, defines an intensity-dependent
center-of-mass frame in which the scattered frequencies are
precisely the harmonic multiples, ν ′

� = �ν [30]. For κ� < 0 one
is in the inverse Compton regime where the electrons transfer
energy to the emitted photons, ν ′

� > �ν, thus causing an overall
blue shift. This Doppler upshift, of course, is the physical
basis for Compton-generated X rays. The maximum scattered
frequency (i.e., the Compton edge) occurs upon backscattering
(θ = 0) and is given by

ν ′
�,max = �νe2ζ

1 + 2�νeζ + a2
0

. (13)

The presence of a0 in (13) leads to a red shift of the
n = 1 Compton edge compared to linear Compton scattering

(a0 → 0), which, for γ 	 1, translates into the inequality

ν ′
1,max(a0) � 4γ 2ν

1 + 4γ ν + a2
0

<
4γ 2ν

1 + 4γ ν
� ν ′

1,max(0). (14)

Hence, if one is primarily interested in upshifting the laser
frequency (say, for X-ray generation), the intensity a0 should
certainly not exceed unity. For large a0 the Doppler upshift
may even be completely compensated due to the “stiffness”
of the laser beam whereupon one leaves the inverse scattering
regime. As shown in [30], for γ 	 1, this happens when a0

exceeds a critical value of 2γ .

B. Emission rates and cross sections

The S-matrix element (6), represented by the Feynman
diagram of Fig. 1 (left-hand side), is readily translated into
an emission rate [29,30]. The differential rate (per volume and
time) for emitting a single photon of frequency ω′ = mν ′ in
the process (1) is given by [6]

dW�

dx
= e2m2

16π

ne

q0
a2

0
J�[z�(x)]
(1 + x)2

, (15)

where ne is the density of incoming electrons. We have chosen
a normalization somewhat different from [30] such that dW�

now has dimensions of L−4 (i.e., particles per unit time and
volume). The nontrivial part of the rate is encoded in the
function J�,

J�(z�) ≡ − 4

a2
0

J 2
� (z�) +

(
2 + x2

1 + x

) [
J 2

�−1(z�)

+ J 2
�+1(z�) − 2J 2

� (z�)
]
. (16)

The J� are the usual Bessel functions of the first kind depending
on the invariant argument

z�(x) ≡ 2�
a0√

1 + a2
0

√
x

y�

(
1 − x

y�

)
, (17)

which is composed of two further invariants, namely

x ≡ k · k′

k · p′ , y� ≡ �y1 ≡ 2� k · p

m2∗
, 0 � x � y�. (18)

Note that z� = 0 when x acquires its minimal or maximal
value. If we express the laser intensity in terms of (laser)
photon density, nL,

a2
0 = e2nL

m2ω
, (19)

the differential rate (15) may be written in a more symmetrical
way as

dW�

dx
= r2

e π
nLne

k0q0
m2 J�(z)

(1 + x)2
, (20)

with re = α/m � 3 fm being the classical electron radius.
Expressed in this form the rate is readily transformed into a
cross section upon dividing by the (symmetric) flux factor [35],

j ≡ nLne

k0q0
k · q = nLne

k0q0
m2 νeζ , (21)
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FIG. 2. (Color online) Left panel: Partial differential cross sections for the first few harmonics in nonlinear Compton backscattering
(head-on collision) for intensity a0 = 20 (solid curves). Right panel: Harmonics summed up to � = 500 for intensities a0 = 20 (solid curve)
and a0 = 5 (dash-dotted line). The spectrum for linear Compton scattering (Klein-Nishina formula) is displayed in both panels for comparison
(dotted curves).

where the last identity holds for a head-on collision. We thus
end up with the differential cross section

dσ�

dx
= r2

e π
m2

k · p

J�(z)

(1 + x)2
, (22)

which indeed has the correct dimensions of an area. Expanding
J�(z) for small a0 one recovers the Klein-Nishina cross section
[6,29].2

For what follows we will need rates and cross sections in
the laboratory frame where we assume a head-on collision
between laser and electron beams. The scattered frequency is
then given by (11) and the invariants (18) become

x = ν ′(1 + cos θ )

eζ − ν ′(1 + cos θ )
, y1 = 2νeζ

1 + a2
0

. (23)

This yields the following differential cross sections:

dσ�

dω′ = r2
e π

n · P
m2

k · p
J�(z�), (24)

dσ�

d�
= r2

e

2�

(
ν ′

νeζ

)2

J�(z�). (25)

The individual harmonic cross sections (24) are plotted in
Fig. 2 (left panel). One clearly sees that the contribution of each
harmonic has its own frequency range given by �ω � ω′

� �
ω′

�,max [cf. (13)], with the individual supports overlapping to
some extent. The contributions of higher harmonics, � > 1,
are getting more and more suppressed in amplitude. These
features are sufficient to guarantee convergence of the cross
section summed over all harmonics [30],

dσ ≡
∞∑

�=1

dσ�. (26)

The result of the summation (up to n = 500) is shown in
Fig. 2 (right panel) for intensities a0 = 5 and a0 = 20. The

2Note that [29] has slightly different conventions: The densities nL

and ne are set to unity, and Gaussian (rather than Heaviside-Lorentz)
units are used, which amounts to a reshuffling of factors of 4π .

figures basically coincide with those in [30], but now we
are able to state the absolute normalization on the vertical
axis.

As already pointed out in [30], two main features can be
seen to arise. First, in line with our discussion at the end of
the previous section, the linear Compton “edge” is red-shifted
by a factor of a2

0 � 400 (a2
0 � 25) from about 4γ 2ω � 25 keV

down to 0.06 keV (1 keV) (i.e., from the hard to the soft
X-ray regime when a0 = 20). This is a rather drastic effect
and it should be straightforward to verify experimentally [30].
Second, higher harmonics show up as additional peaks in the
summed cross section with the peak heights decreasing rapidly
with �.

We conclude this section by pointing out that the ob-
servation of high harmonics may become feasible, albeit
implicitly, using the total emission rate. For sufficiently large
values of a0, very high harmonics, say even with � > 1000,

have considerable integrated strength, as shown in Fig. 3.
For instance, when a0 = 100 and � = 2000, the emission
probability W� is only about two orders of magnitude below the
value for the first harmonic, � = 1. As Fig. 3 shows, summing
such a large number of individual harmonics yields a rather
smooth energy spectrum in total.

For a more detailed analysis of nonlinear Compton scatter-
ing, in particular its laboratory frame signatures, we refer the

FIG. 3. (Color online) The integrated emission probability W� =∫
dW� from (20) as a function of the harmonic number � for various

intensity parameters, a0 = 1, 5, 10, 20, and 100.
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reader to [30]. A complete discussion of polarization effects
has been given recently in [35].

III. NONLINEAR THOMSON SCATTERING

In this section we compare the results for nonlinear
Compton scattering from the previous section with the results
for nonlinear Thomson scattering considered, for instance,
in [36,37]. As stated in [2,6], and further analyzed in [30],
the Thomson limit is obtained when the invariant y� defined
in (18) becomes small. For head-on kinematics this is the
statement

y�(a0) = 2� νeζ

1 + a2
0

� 1. (27)

Physically, the quantity y� represents the maximum (nor-
malized) recoil of the electron during the scattering process.
Hence, the Thomson limit amounts to neglecting the momen-
tum transfer from the laser field to the electron. From (27) this
is feasible if either eζ � 2γ and � are sufficiently small or for
large intensity, a2

0 (i.e., large photon density). The latter is, of
course, consistent with approaching the classical limit.

A closely related quantity measuring quantum nonlinear
effects has also been introduced in [2,6], namely

χ ≡ e
√

(Fµνpν)2

m3
= k · p

m2
a0 = 1

2
y1(0) a0. (28)

This has frequently been used since then, but as the last identity
in (28) shows, it is, for our purposes, basically equivalent to
(27). Following the example of [6] we prefer to work with y�

in what follows.3

Finally, it is worth noting that y� is related to the usual
Mandelstam variable

s = (q + �k)2 = (q ′ + k′)2 = m2
∗(1 + y�), (29)

representing the total center-of-mass energy squared. Hence,
in the Thomson limit, one neglects the photon contributions to
this energy, so that m∗ is the dominant energy scale, s � m2

∗. In
this sense, the Thomson limit is a low-energy limit. In contrast,
the SLAC E-144 experiment [15] (γ � 105, a0 � 0.6, and
hence y1 � 1) has probed the genuine Compton (or quantum)
regime.

In what follows we want to find explicit relations be-
tween the general Compton expressions and their classical
(Thomson) limit. To this end we try to separate off the quantum
corrections from the purely classical results. We begin with the
momentum projection (12), which may be rewritten as

κ� = κ0 + 1
2y�

(
1 + a2

0

)
e−ζ , (30)

where κ0 is obtained by setting � = 0. Replacing κ� → κ0 in
the scattered frequency (11) for head-on collisions straightfor-
wardly yields the (nonlinear) Thomson limit,

ν ′
�,Th = �ν n · u

n · u + κ0 n · n′ ≡ �ν

1 + κ0e−ζ (1 + cos θ )
≡ �ν ′

1.

(31)

3The second equality in (28) follows from the gauge-invariant
definition of a0 (see, e.g., [22]).

This suggests that the general formula for arbitrary collision
geometry is obtained by setting � = 0 in the denominator of
(10) such that the scattered frequencies

ν ′
�,Th = �ν ′

1 ≡ �ν n · u

n′ · u + a2
0

2n · u
n · n′

(32)

are indeed integer multiples of a fundamental frequency ν ′
1.

At this point it is instructive to compare with the low-intensity
(“linear”) limit (or Thomson limit proper) where � = 1, a0 →
0, and (32) condenses to

ν ′ = n · u

n′ · u
ν. (33)

This is the Doppler shift in disguise upon noting that for a
head-on collision and backscattering n · u = γ (1 + β) = eζ

and n′ · u = γ (1 − β) = e−ζ .
Expressing the invariant x from (18) in terms of the

scattering angle θ it becomes explicitly � dependent [30],
x ≡ x� = �x1, with

x1 = νe−ζ (1 + cos θ )

1 + κ0e−ζ (1 + cos θ )
. (34)

Comparing with (31) one finds the relation

ν ′
� = ν ′

�,Th

1 + x�

. (35)

As x� is bounded by y� the Thomson limit implies x� → 0
so that Compton and Thomson expressions should generically
differ by terms of order x� as in (35). This is consistent with the
findings in [30] and confirmed by the numerical comparison
of Fig. 4 (left panel).

Let us move on to the emission rates. Again, we try to
isolate all terms dependent on x�. Following [30] we define
the ratio r = x1/y1 with 0 � r � 1 and rewrite z� from (17)
as

z� = �z1 = 2�
a0√

1 + a2
0

√
r(1 − r), 0 � z1 < 1. (36)

It is important to take the Thomson limits, x1 → 0 and y1 →
0, in such a way that the ratio r stays fixed as a result of
which z� remains unchanged. We may therefore decompose
the spectral function (16) into a classical (Thomson) part and
an x�-dependent correction,

J�(z�) = K�(z�) + x2
�

1 + x�

L�(z�), (37)

where (suppressing the overall argument z�)

L� ≡ J 2
�−1 + J 2

�+1 − 2J 2
� and K� ≡ −4J 2

� /a2
0 + 2L�.

(38)

This yields the Thomson limit of the cross section (25),(
dσ�

d�

)
Th

= r2
e

2�

(
ν ′

νeζ

)2

K�(z�), (39)

where only the classical part, K�, of J� contributes. Factoring
K� out from (25) we may explicitly calculate the Compton to
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FIG. 4. (Color online) Left panel: Comparison of classical (Thomson) and QED (Compton) results for the scattered frequency in the
backscattering direction, θ = 0, with δν ′

� ≡ ν ′
�,Th − ν ′

� plotted as a function of y�. Solid line: x�/(1 + x�) [cf. (35)]; dotted line: Thomson limit
(31). Right panel: Normalized integrated partial cross section σ� as a function of the electron recoil y� normalized to Thomson limit [cf. (40)].
By choosing � = 1 the curves for a0 → 0 and a0 = 5 up to 20 are on top of each other.

Thomson ratio,

dσ�

d�

/ (
dσ�

d�

)
Th

= 1

(1 + x�)2
+ x2

�

2(1 + x�)3

(
1 + 4

a2
0

J 2
�

K�

)
= 1 + O(x�). (40)

Again, Compton and Thomson results differ by terms of order
x�. A numerical comparison is displayed in Fig. 4 (right panel).

For our set of parameters one finds y� � 2 × 10−6�, which
is very small unless one considers extremely high harmonics
(� > 106). Thus, according to (40), Compton and Thomson
results differ by approximately 10−5 for low harmonics.
This suggests, for these parameters, that a purely classical
calculation will yield a very good approximation for the
Compton scattering results. This will be further corroborated
in the following section.

IV. CLASSICAL RADIATION

Having considered the classical limit of Compton scattering
we find it worthwhile to compare with a purely classical
calculation. This will later be used to investigate various finite-
size effects on the spectrum. We are particularly interested
in a fully covariant description of the radiation emitted as
bremsstrahlung by a charge moving in a laser field such as
given by (5). It is most convenient (and, as an additional bonus,
also maintains explicit gauge invariance) to start from the field
strength tensor [22]

Fµν = Fi(k · x) f
µν

i , f
µν

i = nµεν
i − nνε

µ

i , i = 1, 2,

(41)

with nµ = kµ/ω as before and ε
µ

i the two transverse polariza-
tion vectors introduced for the circularly polarized gauge field
(5) which corresponds to the choice4

F1(k · x) = −aω sin(k · x), F2(k · x) = aω cos(k · x),

(42)

4To obtain linear polarization just set one of the F ’s to zero.

such that F ≡ aω represents the magnitude of electric and
magnetic field.

The Lorentz equation of motion for a charge in a plane wave
has first (and quite elegantly) been solved by Taub in 1948
[38]. (For other early treatments see [36,39,40].) A modern
covariant analysis has recently appeared [22] on which the
following remarks are based. For the following it is useful to
absorb charge e and mass m into the field variables, that is,
to replace (e/m)Fµν → Fµν and (e/m)Aµ → Aµ such that
the rescaled Aµ is dimensionless.5 The Lorentz equation of
motion then reads

ṗµ = Fµ
ν (x(τ )) pν (43)

and is, in general, a nonlinear differential equation as the field
strength, Fµν , depends on the trajectory x(τ ) to be solved for.
Thus, normally, one cannot expect to find an analytic solution.
For a plane wave, however, where Fµν = Fµν(k · x), there
is a sufficient number of conserved quantities such that the
system becomes integrable. Most important is the constancy of
longitudinal momentum in time, k · p ≡ m� = const, which
defines a frequency � = ωn · u such that k · x can be traded
for proper time via

k · x = �τ = ω n · u τ = ω n · u0 τ, (44)

by adopting the initial conditions k · x(0) = 0 and u(0) =
u0. Integrability is now obvious as Fµν = Fµν(�τ ), which
turns (43) into a linear equation. All amplitude functions
become functions solely of proper time. Integration of
(43) is now straightforwardly done via exponentiation, u =
exp(

∫
dτ F )u0. The null field (41) is nilpotent of order two

(i.e., all powers higher than two vanish [22]). Thus the
exponential series gets truncated after the term quadratic in
field strength, leaving us with

uµ(τ ) = u
µ

0 − Aµ + 2A · u0 − A2

2n · u0
nµ, Aµ = Aµ(τ ).

(45)

5The intensity parameter hence becomes a2
0 ≡ −〈A2〉 = a2 for

circular and a2
0 = a2/2 for linear polarization, respectively.
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Note that we have assumed the initial condition Aµ(0) = 0;
otherwise one has to replace Aµ → Aµ − Aµ(0). It is reas-
suring to directly check the conservation law n · u = n · u0,

which holds as n · A = 0 (Lorenz or light-cone gauge) and
n2 = 0.

Another τ integration of (45) then yields the orbit

xµ(τ ) = xµ(0) + τu
µ

0 −
∫ τ

0
dτ ′Aµ

+ 1

2n · u0

∫ τ

0
dτ ′ (2A · u0 − A2) nµ. (46)

The first two terms are obviously initial conditions, followed
by a transverse part along Aµ and a longitudinal contribution
proportional to nµ = kµ/ω.

The calculation of the classical radiation spectrum may be
found in most texts on electrodynamics (see, e.g., [41,42])
though not necessarily in a covariant manner. One has to
determine the four-momentum P µ of the radiation field
using Poynting’s theorem and the retarded potentials, A

µ
ret =

�−1jµ|ret. A particularly compact covariant expression is
given by the Fourier integral [43]

P µ = −
∫

d4k

(2π )3
sgn(k0) δ(k2) kµ j (k) · j (−k), (47)

where jµ(k) is the Fourier transform of the electron current,

jµ(x) = e

∫
dXµ δ4(x − X(τ ))

= e

∫
dτ uµ(τ )δ4(x − X(τ )), (48)

uµ ≡ dXµ/dτ.

Accordingly, (47) expresses the radiation four-momentum in
terms of the electron trajectory, X = X(τ ), encoded in the
current (48). The zero component of (47), of course, yields the
radiated energy, which, after performing the k0 integration,
we write as

P 0 ≡
∫

dω′d�ω′ d2Nγ (k′)
dω′d�

, k′ = ω′(1, n′), (49)

where we have reinstated primes for scattered momentum
components. The integrand is the spectral density describing
the number of photons radiated per unit frequency per unit
solid angle,

ρ(ω′, n′) ≡ d2Nγ

dω′d�
= − ω′

16π3
j (k′) · j ∗(k′). (50)

Thus, to determine the spectral density all we need to know is
the Fourier transform jµ(k′) of the current (48), which depends
on both orbit position and velocity, Xµ and uµ, respectively.
Employing the continuity equation, k′ · j (k′) = 0, one may
eliminate j 0 such that (50) turns into

ρ(ω′, n′) = ω′

16π3
|n′ × j(k′)|2 � 0. (51)

In summary, a determination of the classical radiation spec-
trum in an external field amounts to solving the Lorentz force
equation in this field for the trajectory, and hence to finding
the current jµ(x) of (48). Its Fourier transform, compactly

written as

jµ(k′) = e

∫
dτ uµ(τ )e−ik′ ·x(τ ), (52)

then yields the spectrum via the radiation formula (50). The
Fourier integral (52) may be (partly) evaluated using a trick of
Schwinger’s [44], by assuming periodic τ dependence of the
gauge field as in (5) and (42). In this case the four-velocity is
periodic as well:

uµ(τ + �′T ) = uµ(τ ), T ≡ 2π/�, �′ integer, (53)

but for the orbit one finds

xµ(τ + �′T ) = �′T wµ + xµ(τ ), (54)

where wµ is the velocity averaged over one period of proper
time and hence proportional to the quasi-momentum (7), qµ =
mwµ. Note that the dependence on �′ has been separated off
in the first term of (54). For (almost) periodic functions f (τ )
it makes sense to decompose the integral over all τ into a sum
of integrals over all periods, that is,∫

dτ f (τ ) =
∞∑

�′=−∞

∫ T

0
dτ f (τ + �′T ). (55)

Applying this to the current (52) and, once again, separating
off the �′-dependent pieces one finds the expression

jµ(k′) = e
∑
�′

exp

{
2πi�′ ω′

�

(
n′ · u0 + a2

0

2n · u0
n · n′

)}

× j
µ

T (ω′, n′), (56)

where we have defined the integral over a single period T ,

j
µ

T (ω′, n′) ≡
∫ T

0
dτ uµ(τ ) exp

{
−i ω′ n′ · x0 − i ω′

×
∫ τ

0
dτ ′ n′ · u(τ ′)

}
, (57)

which is independent of �′. Thus, in (56) all dependence
on �′ has again been factored off such that the sum over
all periods can be evaluated using Poisson resummation,∑

�′ exp(2πi�′h) = ∑
� δ(� − h). As a result, we obtain a

“delta comb” for the current,

jµ(k′) = ω′
1

∑
�>0

δ(ω′ − �ω′
1) j

µ

T (�ω′
1, n′), (58)

where the multiples of ω′
1 = mν ′

1, derived from the exponent
in (57), define the harmonic frequencies ν ′

� = �ν ′
1, which pre-

cisely coincide with the Thomson limit (32) upon identifying
u0 with the asymptotic velocity u = p/m of the scattering
process.6 Mod-squaring our answer we thus conclude with
Schwinger [44] that periodic motion (induced by periodic
fields of infinite spatio-temporal extension) leads to a line
spectrum of radiation into harmonics labeled by index �.

What can we expect to happen when we restrict the
fields to have finite temporal duration, (i.e., for pulses)? In
general, an analytic treatment will be difficult, but there is

6For head-on collisions we recover (31).
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one particular case which is reasonably straightforward and
nevertheless yields the basic physics involved. This is the case
of a rectangular pulse (see also [45]), where we just cut off the
τ integral in (52) such that −τ0/2 � τ � τ0/2. Accordingly,
the sum over �′ in (56) only extends from −N to N , where we
assume that our pulse contains 2N periods, τ0/T = 2N . The
finite sum can nevertheless be evaluated, with the result that
(58) gets replaced by

j
µ

N (k′) =
sin(2N + 1)π

ω′

ω′
1

sin π
ω′

ω′
1

j
µ

T (ω′, n′). (59)

The prefactor composed of the ratio of two sines is nothing
but the diffraction pattern obtained when light passes 2N + 1
slits. It has the usual maxima at ω′/ω′

1 = � integer but also
N − 1 additional peaks of lower amplitude between adjacent
integers. Thus, in our language, each harmonic is accompanied
by a substructure of N − 1 = τ0/2T − 1 secondary peaks.
Furthermore, there is of course line broadening, as the (formal)
zero-width limit of the delta comb is only achieved for infinite
N and hence infinite temporal extent.

These findings should qualitatively also hold for more
realistic (smooth) pulse shapes such as Gaussians or power
laws. We will explore this in more detail in the next section.

Before we come to that we conclude the general discussion
with a remark on the relevance of radiation damping. In
principle, the Lorentz equation (43) is only valid approxi-
mately as it neglects the back-reaction of the radiation field
on the electron orbit (see [46] for an illuminating recent
discussion). To incorporate the latter the Lorentz equation
is superseded by the Landau-Lifshitz one [42], which was
recently utilized in the context of high-intensity lasers [48]. For
our parameters, the radiation reaction parameter defined there
becomes

R = 4
3αγ νa2

0 � 10−3. (60)

We have checked that for our electron beam and laser pulse
specifications the longitudinal motion is barely altered. In
particular, radiation damping modifies the change in energy
after collision by just 0.58%. Accordingly, the backscattered
photon spectrum will change at the subpercent level at most,
and we can safely neglect back-reaction effects. For more
detailed discussions of radiation damping in a laser context
the reader is referred to [36,47–49].

V. BEAM SHAPE EFFECTS

It has become clear that treating the laser beam as a plane
wave of infinite spatial and temporal extent according to (5)
and (42) is an idealization, the validity of which has to be
checked. An infinite plane wave should be a fair approximation
if the electrons only probe the central region of the laser focus
and if the reaction time is small compared to pulse duration σ .
To assess the feasibility of these assumptions and the size of
possible modifications we will study finite size effects by first
considering pulsed plane waves and, in a second step, allowing
for a transverse intensity profile in addition.

A. Finite temporal duration

A pulsed plane wave is obtained upon multiplying the field
strength Fµν from (41) corresponding to the infinite wave (5)
with an envelope factor of width σ such that (42) gets replaced
by

F1(k · x) = −gσ (k · x) F sin(k · x),
(61)

F2(k · x) = gσ (k · x) F cos(k · x),

with some suitable envelope factor gσ and F = aω. Note
that this does not spoil the fact that the associated gauge
potential Aµ (in radiation gauge) still represents a plane-
wave solution of Maxwell’s equations, as k2 = ω2n2 = 0
implies �Aµ(k · x) = 0. By writing the pulse width as σ ≡
�τ0 with a pulse duration τ0 in proper time, we have

gσ (k · x) = g(τ/τ0). (62)

Orbit velocity and trajectory are still given by (45) and (46)
if the pulse factors are included in the definition of the gauge
potential Aµ(τ ). Hence, a useful analytic expression for the
orbit can be obtained whenever the τ integrals over A and A2

can be evaluated, which, of course, crucially depends on the
pulse shape function g. It has been suggested [50] to use the
“solitonic” pulse

g(τ ) = sech (τ/τ0), (63)

which, being the generating function of Euler numbers, does
not lend itself to straightforward integrations. A particularly
simple case, however, is obtained by considering crossed fields
with Fµν constant, and hence Aµ linear in τ ,

Fµν = F f µν, Aµ = a�τ εµ. (64)

By superimposing a power-law pulse shape, the amplitudes
become time dependent, for example,

Fµν(τ ) = F(
1 + τ 2/τ 2

0

)3/2 f µν,

(65)
Aµ(τ ) = a�τ(

1 + τ 2/τ 2
0

)1/2 εµ,

such that the orbit coefficient functions appearing in (46)
become∫ τ

0
dτ ′ Aµ(τ ′) = a�τ 2

0 εµ
(√

1 + τ 2/τ 2
0 − 1

)
, (66)∫ τ

0
dτ ′ A2(τ ′) = −a2�2τ 3

0

(
τ

τ0
− arctan

τ

τ0

)
. (67)

As a result we note that within the pulse (τ � τ0) the
coefficients (66) and (67) are quadratic and cubic in τ ,
respectively, and hence behave as for infinite crossed fields.
Outside the pulse, that is, when it has passed by (τ 	 τ0), the
orbits become modified and approach free motion linear in τ .

As we have seen in the previous section, for any particular
choice of amplitudes one has to insert the velocity (45) and
the orbit (46) into (52) and evaluate the radiation formula (50)
to analyze the influence of the finite temporal extent encoded
in the pulse shape g(τ ). For a rectangular pulse we saw sec-
ondary peaks appearing in a way reminiscent of a diffraction
pattern.
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FIG. 5. (Color online) Normalized spectral density ρ̄ = ρ/τ0 as a function of normalized frequency ω′/e2ζ ω for a = 0.7 (left panel) and
a = 1.4 (right panel). Upper (lower) panels correspond to a laser pulse duration of T0 = 25 (T0 = 100 fs). The full vertical (red) lines denote
the nonlinear Compton edges for the ideal case of an infinite plane wave laser field, while dotted (gray) lines represent the respective linear
Compton edges. For pulsed fields the spectral density covers the whole range between the two Compton edges.

For smooth pulse shapes g the situation is slightly different.
By adopting backscattering kinematics for simplicity and
the circularly polarized pulse (61), the electron current (52)
becomes

j(ω′) = −e

∫
dτA(τ ) exp

{
−iω′

(
n′ · u0τ

+ a2

n · u0

∫ τ

dτ ′g2(τ ′)
)}

, (68)

where the dependence on proper time τ in the exponent is
strongly nonlinear due to nonvanishing a ∼ 1 and the presence
of the smooth pulse envelope g.

As a numerical example, we have chosen the pulse shape
(63) advocated for in [50] and determined the radiation
spectrum for laser amplitudes a = 0.7 and a = 1.4 and pulse
durations7 T0 = 25 and 100 fs assuming circular polarization
as before. In Fig. 5 we have plotted the normalized spectral
densities ρ̄ ≡ ρ/T0 as a function of the normalized frequency
ω′/e2ζ ω. Looking at the spectra one observes Nτ subpeaks
within the first harmonic signal resulting from the nonlinear
τ -dependent modulation in the exponent of (68). Radiation
generated at different times τ , and therefore at different
effective laser intensities a2g2(τ ) with effective Compton
edges ω′/e2ζ ω = [1 + a2g2(τ )]−1, interferes, thus generating
the pattern of subpeaks seen in Fig. 5. There are important
differences between smooth pulses and the interference for
box-shaped, flattop pulses, which were discussed in (59) and
will be addressed in the following. Here, the interference
pattern is due to the nonlinearity of the process (a ∼ 1) together
with the nontrivial envelope function g of the laser and it
disappears in the limit a → 0. The smooth pulse subpeaks
are a sign of chirp in the emitted X-ray pulse. This, however,
is not the case for box-shaped pulses, where the side peaks
just reflect the discontinuous pulse shape and resemble the
interference pattern of a single slit. These differences will be
further investigated in Appendix B where the time structure of

7The pulse duration T0 in the laboratory frame is defined by setting∫
d(k · x) gσ (k · x) ≡ ωT0 max (gσ ). For the solitonic pulse (63), T0

is related to the proper time pulse duration τ0 via T0 = πeζ τ0.

the scattered radiation is discussed. Summarizing we conclude
that subpeaks in the harmonic signals are a purely nonlinear
effect.

It has been known for a while that temporal modulations
strongly affect the spectral densities, with the main effect being
the additional oscillatory substructures [45,47,51]. Our analy-
sis here gives a rather simple explanation of this phenomenon.
Interestingly, a similar pattern (with a similar explanation)
has been observed recently for the rates associated with
laser-induced pair creation [52] which is obtained from
Thomson-Compton scattering via crossing.

We have found that the number Nτ of subsidiary peaks
within the first harmonic scales linearly with the pulse duration
T0 and the intensity a2 according to the empirical formula

Nτ = 0.24 T0[fs] a2. (69)

Reversing the arguments leading to (69) suggests the interest-
ing possibility to actually determine the intensity of a laser
pulse by counting the number of subpeaks within the first
harmonic if the pulse duration is known.

To the best of our knowledge, the harmonic substruc-
ture has never been observed experimentally. This may be
because most certainly the subpeaks will get smeared out
by a variety of mechanisms. These include effects such as
(i) the ponderomotive force in focused beams, (ii) the influence
of transverse intensity profiles, as well as (iii) contributions
due to the phase space distribution of the electron beam,
in particular its energy spread �γ/γ and transverse beam
emittance ε. These effects will be studied in detail in the
next few subsections. In particular, we will show how these
effects can be minimized to allow for a possible experimental
verification of the individual subpeaks with a 100-TW-class
laser system.

B. Spatial intensity profile

Let us briefly turn to the effects associated with a transverse
intensity profile of the laser beam. This is taken into account
by choosing the complex vector potential

A = aε�(b, z) gσ (k · x) eik·x, (70)
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with a (linear or circular) polarization vector8

ε ∈
{ {ex, ey} for linear polarization,

{e+, e−}={ex +iey, ex −iey} for circular polarization

(71)

and the transverse distance b ≡ (x2 + y2)1/2. The paraxial
approximation of the wave equation then yields the following
equation for the transverse profile � [50]:

�⊥� − 2iω(∂z�)

[
1 − i

g′
σ

gσ

]
= 0, (72)

with the transverse Laplacian �⊥ = ∂2
x + ∂2

y and primes de-
noting derivatives with respect to k · x. The standard Gaussian
beam solution (with gσ = 1) reads [53]

�0(ρ, z) = w0

w(z)
exp

{
− b2

w(z)2

}

× exp

{
i arctan

z

zR

− i
ωb2

2R(z)

}
(73)

with focal spot radius (“waist”) w0, Rayleigh length zR =
w2

0ω/2, beam radius w(z) = w0(1 + z2/z2
R)1/2, and the curva-

ture of the wave fronts R(z) = z(1 + z2
R/z2).

In order for the Gaussian profile �0 to be an approx-
imate solution of the paraxial equation (72), the temporal
profile function gσ (k · x) = g(τ/τ0) has to satisfy |ġ/g| � �

[50]. The Gaussian g(τ ) = exp(−τ 2/2τ 2
0 ) does not have this

property, since |ġ/g| ∼ τ is unbounded. For a hyperbolic
secant, g(τ ) = sech (τ/τ0), the condition can be fulfilled, as
|ġ/g| = tanh(τ/τ0)/τ0 is bounded [50,54].

For a strongly focused beam such that � ≡ w0/zR = O(1),
the intensity profile �0 will have to be corrected, since
the fields derived from �0 solve Maxwell’s equations up
to terms of O(�2) [54,55]. Although these corrections to
�0 are crucially important in some cases [19,56], we did
not find them relevant for the electron trajectories or the
emitted photon spectrum associated with the (almost) head-on
collisions studied in this paper.

An important effect of the transverse beam profile is the
ponderomotive force Fp = −∇mA2/2 pushing the electrons
away from regions of high intensity as they gain transverse
momentum [9]. Accordingly, electrons with β ‖ ez before the
scattering will leave the interaction region under an angle αout

with respect to the z axis. For fixed total pulse energy Wtot and
pulse length T0, the magnitude of the ponderomotive force
scales as Fp ∝ Wtot/(T0w

3
0) ∝ max (αout). This means that the

ponderomotive force leads to measurable effects only for very
small waist size w0. To quantify the effect we simulate electron
trajectories corresponding to head-on collisions assuming a
laser pulse of 3 J energy and T0 = 20 fs for different impact
parameters b (cf. Fig. 6). For w0 = 5 µm the maximum
deflection angle for 40-MeV electrons is about 1 mrad and
for 10 µm it is roughly one order of magnitude lower. This
is small compared to the typical angular scale of the emitted
radiation, which is of order 1/γ ∼ 12 mrad.

8Note that the use of unnormalized polarization vectors {e+, e−} is
required here to be consistent with the normalization of Aµ in (5).

FIG. 6. (Color online) Effect of the ponderomotive force deflect-
ing an electron with impact parameter b, initially in perfect alignment
with the laser pulse (zero injection angle), after collision ejected with
an angle αout with respect to the beam axis. Laser parameters: energy
of 3 J, pulse duration of T0 = 20 fs, with different focal radii w0.

Let us move on to our numerical simulations, choosing
a 3-J laser pulse described by either a circularly or linearly
polarized Gaussian beam of pulse duration T0 = 20 fs and a
wavelength of 800 nm colliding head-on with a dilute electron
beam. The spectral density for Ne electrons is calculated as
an incoherent superposition of the individual emission rates ρi

according to

ρ(ω′) =
Ne∑
i

ρi(ω
′). (74)

Figure 7 shows the spectrum ρ(ω′, θ ) in the plane φ = 0 for a
tightly focused laser with w0 = 5 µm and a corresponding
Rayleigh length of zR = 100 µm. The peak values of the
normalized amplitude, a = 8.66 and a = 6.12 for linear and
circular polarization, respectively, are clearly in the nonlinear
regime, the associated nonlinear Compton edge being approx-
imately 1 keV [cf. (11)]. The electron bunch (in this section
we use cold electron bunches) is modeled by a Gaussian with a
bunch length of 1 ps and a transverse beam size of rb = 5 µm.
The spectral density, normalized to one electron, is shown
as a function of the energy ω′ for different scattering angles,
θ = 0, 5, and 10 mrad. Due to the strong field gradients of
the laser in both transverse and longitudinal directions, the
spectrum is extremely broad for the parameter values chosen.
The individual harmonics are not visible as the individual
spectral lines are overlapping. It seems fair to describe the
scattered photons as a broad continuum.

In comparison, Fig. 8 shows the backscattered spectrum for
the same pulse (3 J, T0 = 20 fs), but with a larger focal radius
of w0 = 50 µm, corresponding to a Rayleigh length of zR =
10 mm. The maximum value of the normalized amplitude is
a = 0.866 (a = 0.612) for linear (circular) polarization, which
corresponds to a nonlinear Compton edge of 27.5 keV. The
electron beam has the same transverse beam size rb and bunch
length as before (Fig. 7), so that the electron bunch exclusively
probes the very center of the focus where the laser intensity
is almost constant. In fact, at rb = 5 µm = w0/10 the field
intensity is only 1% lower than at the center of the focus. In
contrast to Fig. 7, the harmonics are now well separated and
clearly visible.
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FIG. 7. (Color online) Nor-
malized spectral density ρ(ω′, θ )/
Ne of the scattered radiation as a
function of frequency ω′ and dif-
ferent scattering angles, θ = 0, 5,
10 mrad (from top to bottom). The
assumed scenario is for head-on
collision of a dilute electron bunch
(Ne = 10 000) with a strongly fo-
cused (w0 = 5 µm) laser pulse
(3 J, 20 fs). Left panel: Circular
polarization. Right panel: Linear
polarization.

C. A scaling law for the spectral density

For the following we assume that the laser waist size is
much larger than the electron beam radius, w0 	 rb, so that
the electron beam interacts only with the center of the laser
focus. In this case the laser may be reasonably described by a
pulsed plane wave in the relevant interaction region [57].

We may thus concentrate our attention on energy
spread and emittance.9 According to [59] the former may be
modeled by a distribution of the Lorentz factor γ of width �γ ,
centered at γ0, while the latter measures the transverse phase
space volume of the beam via the correlator

εx = γ0β0

√
〈x2〉〈ξ 2〉 − 〈xξ 〉2 � γ0β0 rb �α. (75)

The expectation values 〈· · ·〉 refer to the transverse phase
space distribution of the electron ensemble, usually taken
to be Gaussian as well. In addition, we have defined the
normalized transverse momentum, ξ = |px/pz| = tan α ≈ α,
which basically coincides with the injection angle α with
respect to the beam axis (chosen as the z direction). Obviously,
while our previous considerations were assuming a head-on
collisions (β · n = −β), we now have to consider sideways
injection, allowing for a small angle α relative to the laser

9In fact, things may be turned around by using Thomson scattering
as a diagnostic tool to measure electron beam parameters [58].

beam axis (see Fig. 9) (i.e., β · n = −β cos α). In this case we
have to use the general relation (11) for the scattered frequency
depending on three scalar products,

n · n′ = 1 + cos θ, (76)

n · u = γ (1 + β cos α), (77)

n′ · u = γ (1 − β cos α′). (78)

Here, θ is the scattering angle between k′ and −k, α is the
angle of incidence between laser and electron beams (p and
−k), and α′ is the angle between p and k′. For a head-on
collision, α = 0 and α′ = θ . Allowing for the possibility of
linear polarization we choose ε1 = ex so that laser direction
and polarization define the xz plane. This introduces another
azimuthal angle, ϕ, for the electron momentum, p = γmβ.
We thus have in general β = β(sin α cos ϕ, sin α sin ϕ, cos α),
n′ = (sin θ cos φ, sin θ sin φ, cos θ ), and

cos α′ = cos(θ − α)

− [cos(θ − α) − cos(θ + α)] sin2 φ − ϕ

2
. (79)

As we now have a distinguished vector transverse to the beam,
namely p⊥ ≡ (px, py), we are breaking axial symmetry and
thus expect the radiation to develop an azimuthal dependence
on φ. The same is known to happen for linear polarization

FIG. 8. (Color online) Same as
Fig. 7 but for w0 = 50 µm.
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FIG. 9. Sketch of beam geometry. The initial electron velocity is
denoted by u, while n (n′) is the direction of the incoming (outgoing)
photon.

(even for head-on collisions, α = 0 [37]) and has been used to
detect higher harmonics [24].

To proceed we need the dependence of the spectral density
(50) on the initial conditions, in particular the initial four-
velocity u0. Clearly, this enters via the current (52) according
to

jµ(k′) = e

∫
dτ uµ(τ ; u0)e−ik′ ·x(τ ;u0). (80)

Writing u0 = γ0(1,β0) with β0 = β0(sin α0 cos ϕ0,

sin α0 sin ϕ0, cos α0) we see that the spectral density
will depend on the initial electron energy γ0 (via β0) and the
angles of incidence, α0 and ϕ0: ρ = ρ(ω′, n′; γ0, α0, ϕ0).

How will this change with initial conditions? To address
this question we view such a change as being due to a
Lorentz transformation, � : u0 → u� = �u0, where � is
defined in Appendix A. Under this assumption one can derive
a scaling formula that relates the spectral density for the
transformed initial conditions to the original one. Choosing
the initial kinematics of a head-on collision (α0 = 0, ϕ0 = 0)
for simplicity and u� = u�(γ, α, ϕ) we find

ρ(ω′, n′; γ, α, ϕ) = M(γ, α, ϕ; γ0, 0, 0) ρ(ω′/h, n′; γ0, 0, 0).

(81)

Here, we have defined a rescaling factor for the scattered
frequency as

h ≡ ν ′(u�)

ν ′(u0)
(82)

with ν ′(u) as in (32) and a “transition function,” which depends
only on kinematic quantities,

M = ν ′(u�)

ν ′(u0)

(n · u0)2

(n · u�)2

×
{

1 − 4s + 4s2ς, linear polarization,

1 − 2s + 2s2, circular polarization,
(83)

where we have introduced

s ≡ hω′

ω

|ε · u�|2
(n · u�)2

, ς ≡ (u�)2
⊥

|ε · u�|2 . (84)

Here, ε = (0, ε) denotes a single, real or complex, polar-
ization vector describing linear or circular polarization (71).
Averaging M corresponding to linear polarization over the
azimuthal angle ϕ one naturally recovers M for circular
polarization. The first factor in (83) is related to the Jacobian
of a Lorentz transformation for going from head-on to
side-injection geometry and accounts for the fact that the
radiation is peaked in the forward direction of the elec-
tron. The derivation of the scaling law (81) is deferred to
Appendix A.

The main virtue of the scaling property (81) obeyed
by the spectral density ρ is its use in calculating what is
called the “warm spectral density” ρW (ω′). The latter is defined
as the expectation value of the (“cold”) spectral density
ρ(γ, α, ϕ) taken in the initial ensemble of Ne electrons,
characterized by the normalized distribution f (γ, α, ϕ) of
initial energies and injection angles. Thus we have

ρW (ω′) = Ne

∫
dγ dα dϕ f (γ, α, ϕ) ρ(ω′; γ, α, ϕ)

= Ne

∫
dγ dα dϕ f (γ, α, ϕ) M(γ, α, ϕ; γ0, 0, 0)

× ρ(ω′/h; γ0, 0, 0). (85)

As pointed out in [59], in this way one avoids having to perform
a summation over an ensemble of test particles of the form
(74). The distribution function f (γ, α, ϕ) in (85) is taken to
be a product of a Gaussian in γ , a χ distribution (with two

FIG. 10. (Color online) The warm spectral density for ELBE [27] parameters (left panel), LWFA electrons [60] (center panel), and our
proposed parameters (right panel; see Table I). For comparison the cold spectral density is shown also in each plot as a gray dotted curve. The
smearing of the harmonic subpeaks due to finite emittance and energy spread is clearly visible. Very low values for both the energy and angular
spread are needed for a possible observation of the subpeaks.
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degrees of freedom) in α, and a uniform distribution in ϕ,

f (γ, α, ϕ) = 1

2π
fγ (γ )fα(α)

= 1

(2π )3/2�γ
exp

{
− (γ − γ0)2

2(�γ )2

}

× α

(�α)2
exp

{
− α2

2(�α)2

}
(86)

as we assume the electron beam to be axially symmetric with
both transverse components ux0 and uy0 normally distributed
and uncorrelated. In order to resolve the substructures in an
experiment, one has to fine-tune several parameters. First,
it seems sensible to only have a small number of subpeaks
(say less then five), so that they can be clearly resolved. This
is achieved by adopting values of a = 0.7 and T0 = 25 fs
(values corresponding to the upper left panel of Fig. 5). It is
important to have good control of both the energy spread and
the emittance. The energy spread tends to smear out the small
subpeaks, in particular at the high-energy end of the spectrum,
whereas emittance affects the whole range.

A common source for ultrarelativistic electron beams are
linacs such as the ELBE accelerator at the FZD [27]. It is
capable of producing electron bunches with a very low energy
spread of �γ/γ0 = 10−3 and transverse emittance of about
εx = 1.5 mm mrad. On the other hand, with new laser-based
acceleration schemes such as laser wake field acceleration
(LWFA) the production of electron bunches with �γ/γ0 =
3.5% and angular divergence of �α = 0.68 mrad at γ0 = 400
have been reported [60]. The numerical results for the warm
spectral densities using both ELBE and LWFA electron beam
parameters are shown in Fig. 10, which also includes a
comparison with the respective cold spectral densities. Clearly,
the harmonic subpeaks are smeared out for ELBE parameters
and even more so for LWFA. For ELBE it is the emittance
which is too high for the observation of the subpeaks. A LWFA
electron bunch, on the other hand, has too large an energy
spread—despite its low angular divergence. We conclude that
in order to resolve the subpeaks both energy spread and
emittance need to be sufficiently small. In Table I we list
a suitable set of parameters which allow us to observe the
harmonic subpeaks with a 100 TW laser. For petawatt lasers,
the strong constraint on the emittance may be relaxed because
they are capable of achieving nonlinear peak intensities a2 � 1

TABLE I. Beam parameters required for observing the substruc-
ture in the fundamental harmonic of nonlinear Thomson scattering
employing a 100-TW laser.

Parameter Proposed value

laser frequency ω [eV] 1.5
laser amplitude a 0.7
laser pulse length T0 [fs] 25
laser focal radius w0 [µm] 50
electron beam radius rb [µm] 5
electron bunch length Lb �zR = 10 mm
electron energy spread �γ/γ0 0.001
electron transverse emittance εx [mm mrad] 0.7

across larger spot sizes w0 such that larger electron beam radii
rb can be tolerated. The essential quantity in (86) is �α ∝ ε/rb

and not the emittance itself.

VI. DISCUSSION AND SUMMARY

Backscattering of an optical laser beam by relativistic
electrons has become important as a tunable source of X rays
(see, e.g., [61]). At low laser intensities (a2

0 � 1) the relevant
physics is adequately described in terms of the conventional
classical or QED treatment (Thomson or Compton scattering,
respectively). At high intensities (a2

0 � 1), however, one enters
the relativistic nonlinear regime where multiphoton processes
become important. These require a strong-field QED approach
adopting a Furry picture where Volkov electrons dressed
by the external field replace the ordinary QED electrons.
As a result, the backscattered photon spectrum deviates
significantly from the one corresponding to the standard
Klein-Nishina formula for (linear) Compton scattering. By
the correspondence principle, one expects that large photon
numbers should allow for a classical description of the laser
beam. Indeed, we find that classical Thomson scattering (i.e.,
bremsstrahlung by an accelerated charge in the external laser
field) yields the same answer (e.g., for unpolarized cross
sections) as strong-field QED at leading order in the small
recoil parameter, x1. For an optical 100-TW laser and 40-MeV
electrons, such as in operation at Forschungszentrum Dresden-
Rossendorf, one has x1 � 10−3 �, where � is the number
of laser photons involved. The sharp decrease of emission
probabilities with photon number � corroborates the validity
of working in the Thomson limit. In particular, as we have
shown, effects due to finite size and the realistic shape of both
laser and electron beams may be easily addressed within this
framework.

Our main focus was the search for suitable conditions
allowing us to experimentally observe the signatures of the
nonlinear, multiphoton processes in question. In particular, we
have found that the rich substructure in the spectral density
of the first harmonic strongly depends on the combination
of short pulses and high intensity. To quantitatively assess
this dependence, we established a simple scaling law for
the spectral density by means of which we could estimate
the effects of electron emittance and energy spread on this
substructure.

Turning to experimental prospects we conclude that the
ELBE-DRACO constellation at Forschungszentrum Dresden-
Rossendorf offers the possibility of clearly detecting the red
shift of the Compton edge (as already argued in [30]) as well
as the generation of higher harmonics (i.e., their intensity
distribution and angular dependence) as long as the laser pulse
is not focused too strongly [a0 = O(1)] and of sufficiently
short duration. Higher intensities, accomplished by strong
focusing, lead to a near-continuous backscattered radiation
spectrum reaching far beyond 100 keV in the ultraviolet. This
spectrum emerges from the superposition of many higher
harmonics, modified by the temporal and spatial variations
of the laser pulse. This renders a clear-cut verification of
high-intensity signals rather difficult.

In summary we have presented realistic results for the
Thomson-Compton backscattering spectra of optical laser
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photons by relativistic electrons assuming an experimental
setup that can be realized at facilities already in operation. The
subtle interplay between beam and intensity parameters may be
fine-tuned in such a way that the observation of intensity effects
due to the increased effective electron mass seems feasible for
the first time.

ACKNOWLEDGMENTS

The authors gratefully acknowledge stimulating discus-
sions with T. E. Cowan, C. Harvey, A. Ilderton, K. Langfeld,

K. Ledingham, R. Sauerbrey, R. Schützhold, G. Schaller,
H. Schwoerer, V. G. Serbo, and A. Wipf.

APPENDIX A: DERIVATION OF THE SCALING LAW

The scaling law (81) relates the spectral densities ρ for
different geometries, in particular for different initial electron
velocities, u0. It is useful to describe such a change in geometry
as being due to a Lorentz transformation, � : u

µ

0 → u
µ
� =

�µ
νu

ν , where � is a Lorentz transformation composed of
transverse rotations �R and a boost �B , which may be
parametrized by

�R(α, ϕ) =

⎛
⎜⎜⎜⎝

1 0 0 0

0 cos α + sin2 ϕ(1 − cos α) − sin ϕ cos ϕ(1 − cos α) cos ϕ sin α

0 − sin ϕ cos ϕ(1 − cos α) cos α + cos2 ϕ(1 − cos α) sin ϕ sin α

0 − cos ϕ sin α − sin ϕ sin α cos α

⎞
⎟⎟⎟⎠ , (A1)

�B(ζ ) =

⎛
⎜⎜⎜⎝

cosh ζ 0 0 − sinh ζ

0 1 0 0

0 0 1 0

− sinh ζ 0 0 cosh ζ

⎞
⎟⎟⎟⎠ , (A2)

for a rotation with angle α around the axis vϕ =
(− sin ϕ, cos ϕ, 0) perpendicular to the z axis and a boost
along the z axis with rapidity ζ = cosh−1 γ , changing the
electron’s energy, respectively. We construct � as follows:
First rotate u0(γ0, α0, ϕ0) parallel to the z axis, then apply the
boost changing the electron’s energy from γ0 to γ, and finally
rotate to the new direction α, ϕ:

� = �R(α, ϕ)�B (γ )�−1
B (γ0)�−1

R (α0, ϕ0). (A3)

According to (80) the spectral density ρ depends on the initial
conditions through the orbit x(τ ; u0) and its velocity u(τ ; u0).
In what follows, the direction of observation n′ is kept fixed.
Let us consider the simplest case first, namely backscattering
and a head-on collision, implying a change only in the electron
energy, γ0, to γ (as α = ϕ = 0,�R = 1). In this case, the
spectral density obeys the simple scaling relation

ρ(ω′, γ ) = ρ(ω′/h, γ0) (A4)

with a rescaled frequency ω′/h, where h = ν ′
1(u�)/ν ′

1(u0) and
ν ′

1 as in (32).
If we also allow for a change in the direction of u0,

the height of the spectral peak will certainly change, since
the radiated intensity is peaked in the direction β of the
electron. Thus, we have to use the modified ansatz ρ(ω′; u�) =
M(u�, u0)ρ(ω′/h; u0) with a transition function M, which
we calculate in what follows, for low intensities (a2 � 1)
and arbitrary initial value u

µ

0 , but strictly staying within
the backscattering geometry (i.e., n′ = −n, n′ · n = 2). By
linearizing the orbit expressions (45) and (46) in the gauge
field A,

uµ(τ ; u0) = u
µ

0 − Aµ + nµ A · u0

n · u0
, (A5)

xµ(τ ; u0) = x
µ

0 + u
µ

0 τ −
∫ τ

0
dτ ′Aµ(τ ′)

+ nµ

∫ τ

0
dτ ′ A(τ ′) · u0

n · u0
, (A6)

the three-vector part of the electron current (80) becomes, to
O(A),

j(ω′) = e

∫
dτ

⎡
⎣A · u0

n · u0
n − A − 2i

ω′

n · u0
u0

×
∫ τ

0
dτ ′A(τ ′) · u0

]
e−iω′n′ ·u0τ . (A7)

It is convenient to adopt a complex-valued vector potential
Aµ = (0, A) with A = aεei�τ g(τ/τ0) with �τ = k · x and the
polarization vectors ε as in (71).

The inner integral in (A7) yields, after an integration by
parts,

∫ τ

dτ ′Aµ(τ ′) = 1

iωn · u0
Aµ(τ ) [(1 + O(1/�τ0)] . (A8)

For sufficiently long pulses, �τ0 	 1, the second term can
be neglected. Within these approximations, the result for the
electron current reads

j(ω′) = −ea

∫
dτ g(τ )e−i(ω′n′ ·u0−ωn·u0)τ j0, (A9)
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where

j0 = ε · u0

n · u0
n + ε − 2

ω′ε · u0

ω(n · u0)2
u0. (A10)

By using (51) the spectral density becomes

ρ(ω′; u0) = e2a2

16π3

ω′

(n · u0)2
|g̃(ω − ω′(ν/ν ′))|2|n′ × j0|2

(A11)

with ν ′ from (33). Here and in the following g̃ denotes the
Fourier transform of the envelope function g, and

|n′ × j0|2 = |ε|2 + 4t2|ε · u0|2
(
u2

0 − (n · u0)2
) − 4t |ε · u0|2

(A12)

with t = ω′/ω (n · u0)2. The form of g̃ in (A11) lends support
to the scaling behavior of the frequency adopted in (A4). On
changing the geometry, u0 → u�, and replacing the frequency,
ω′ → ω̄′ = hω′, with h = ν ′(u�)/ν ′(u0), the function g̃ re-
mains invariant.

To determine the transition function M , we chose the special
head-on geometry characterized by u0 = γ0(1, 0, 0, β0) as a
reference, and a second, different geometry characterized by
u� = �u0 or, equivalently, the injection energy γ and the
injection angles α and ϕ (cf. Fig. 9), which yields

M(u�, u0) = ρ(ω̄′; u�)

ρ(ω′; u0)
= ω̄′

ω′
(n · u0)2

(n · u�)2

|n′ × j0(γ, α, ϕ)|2
|n′ × j0(γ0, 0, 0)|2 .

(A13)

Evaluating (A12) with some explicit polarization vectors
one eventually arrives at (83) and (84). To approximately
include the nonlinear case when a �1, we finally substitute the
nonlinear scattered frequency (32) for ν ′ (33) in the definition
of h, that is,

ν ′ → ν ′
1 = n · u0ν

n′ · u0 + n′ · n
a2

2n · u0

. (A14)

In the nonlinear regime, the scaling law perfectly describes
changes in the electron’s initial energy. However, changes in

the angles of incidence, in particular α, are rendered accurate
only for α � 1. Nevertheless, for the purposes of this paper,
the scaling law is sufficient to account for the typical angular
divergence of the electron beams.

APPENDIX B: TIME STRUCTURE OF THE
BACKSCATTERED PULSE

To complete our analysis of effects due to finite pulse
duration let us briefly comment on the temporal structure of the
backscattered pulse. The Fourier transform F(t) of the electron
current (A7),

F(t) =
∫ ∞

−∞
dω′ j(ω′) eiω′t , (B1)

provides information on the time structure of the scattered
pulse in the laboratory frame.

If the envelope function g in the current (68) is chosen as a
“solitonic” pulse as in (63), the inner integral may be evaluated
analytically with the result∫ τ

dτ ′g2(τ ′) = τ0 tanh

(
τ

τ0

)
. (B2)

Thus, (B1) becomes

F(t) = −e

∫
dτA(�τ, τ/τ0)

× δ

[
t −

(
n′ · u0τ + a2

n · u0
τ0 tanh

τ

τ0

)]
≡ −ea exp(ζ ) f(t) (B3)

with

f(t) = A[� (t)t, t/σ (t)]

a

(
1 + a2

cosh2 t/σ (t)

)−1

, (B4)

where we defined a time-dependent effective width σ (t) via
the transcendental equation

t

σ (t)
+ a2 tanh

t

σ (t)
= eζ t

τ0
(B5)

and a time-dependent frequency � (t) ≡ ωeζ τ0/σ (t). By
construction, the product of width and frequency is constant,

FIG. 11. (Color online) Time structure of the scattered X-ray pulse for a circularly polarized laser with “solitonic” pulse shape (ω = 1 eV,
σ = 10 eV−1, and eζ = 10). Left panel: Electron current f defined in (B4) as a function of time t . Red (light) line: low intensity (a → 0);
black line: high intensity (a = 3). Right panel: Normalized time-dependent frequency � as a function of time t . Red (top) and black (bottom)
lines as before. Additional green (middle) curve: Intermediate intensity (a = 1). Dotted lines: Thomson limit (� = 1, ν → 0) of scattered
frequencies (10).
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� (t)σ (t) = ωeζ τ0. The inversion of (B5) has to be done
numerically. The results are shown in the left panel of Fig. 11
for two different values of a and for ω = 1 eV, τ0 = 1 eV−1,
which corresponds to a pulse length of T0 ≈ 20 fs in the
laboratory frame with exp(ζ ) = 10. The main features are
(i) an increase of the scattered pulse length for larger a

and (ii) a double chirp of the backscattered pulse due to
the time-dependent frequency � (t)—the frequency decreases
toward its minimum at the center of the pulse and then
increases.

The chirp in the backscattered signal is a combined effect of
the nonlinear interaction and the nontrivial envelope function
g with finite pulse length σ . Both features are required for
the chirp to be present. Hence, if either a → 0 or σ → ∞ the
chirp vanishes. For box-shaped, flat-top envelope functions,
the time-dependent frequency � (t) will be discontinuous at
the beginning of the pulse, jumping from its linear value e2ζ ω

to its nonlinear value, e2ζ ω/(1 + a2), and back again at the
end of the pulse. In the intermediate regime � (t) will stay
constant so that there will be no chirp for this particular case.
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