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In this article, we provide an alternative and general way to construct the result of the action of any particle-
conserving bosonic or fermionic operator represented in second quantized form on a state vector, without
resorting to the matrix representation of operators or even its elements. This approach is based on our proposal
to compactly enumerate the configurations (i.e., determinants for fermions, permanents for bosons) that are the
elements of the state vector. This extremely simplifies the calculation of the action of an operator on a state
vector. The computations of statical properties and the evolution dynamics of a system become much more
efficient, and applications to systems made of more particles become feasible. Explicit formulations are given for
spin-polarized fermionic systems and spinless bosonic systems, as well as to general (two-component) fermionic
systems, two-component bosonic systems, and mixtures thereof.
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I. INTRODUCTION

The well-known time-dependent Schrödinger equation
governs the dynamics of many-particle quantum systems in
different fields of modern physics [1–7]. To define a quantum
system means to specify its Hamiltonian. A quantum system is
considered to be made of interacting constituent parts, usually
treated as point particles with some known characteristics
such as mass and charge. If the interaction potential between
these particles is known, then the Hamiltonian of the quantum
system is defined. Eigenvectors and eigenvalues of this
Hamiltonian provide complete description of all the properties
of the considered isolated quantum system.

In general, exact solutions for many-particle Hamiltonians
are not known and, therefore, different numerical approaches
and techniques are in use [1–8]. The most basic and simplest
approach is to represent the unknown many-body wave
function as a linear combination of some known many-body
wave functions, that is, to expand the solution in a known
basis set. To solve the problem means to find the expansion
coefficients or their evolution, depending on whether one
performs time-independent or time-dependent studies.

For a quantum system made of indistinguishable particles
(e.g., fermions or bosons) along with the Hamiltonian, one
has also to specify the quantum statistics of the system.
Statistics enters the many-body solution via the basis set used:
If each and every basis function fulfills a defined quantum
statistics, then any linear combination of the basis functions
also possesses the same statistics. From the other end, statistics
reduces the required size of the Hilbert subspace; that is, it
allows one to operate with a smaller number of many-body
basis functions.

In this article, we specifically deal with a system of N

identical particles. We utilize the commonly used many-
body basis functions for bosons, permanents [5], which
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are constructed as symmetrized products of N one-particle
functions or orbitals, and for fermions, determinants, which
are antisymmetrized Hartree products of orbitals [8]. All
many-body basis functions (determinants or permanents) are
attributed to configurations where N particles reside in M

orbitals; for bosons, M � 1, and for fermions, M � N . For
orthonormal many-body basis sets, one can associate the
number of the many-body basis functions used with the size
of the respective Hilbert subspace. Intuitively, it is clear that
a larger number of independent many-body basis functions
provides a better description of the many-body solution. The
expansion spanned by all possible permutations for fixed
M and N is referred to as a full configurational expansion
or a full Fock subspace. If the many-body wavefunction is
represented as a linear combination of permanents for bosons
and determinants for fermions, then the Hamiltonian of the
system as well as any other operator can also be expressed in
second quantized form.

Once the finite many-body basis set is specified, one can
construct the respective Hamiltonian matrix. Straightforward
implementation of the standard quantum mechanical rules
requires construction and operations with this Hamiltonian
matrix. For example, typical diagonalization or propagation
schemes, such as the short iterative Lanczos (SIL) [9], utilize
as a standard building block the product of this matrix to a
corresponding state vector, representing the many-body wave
function. In this work, we propose an absolutely different
“ideology,” which allows us to get the required result of
the action of the Hamiltonian on a state vector without
construction of the Hamiltonian matrix at all. The proposed
theory can be effectively and naturally applied to any general
particle-conserving operator represented in second quantized
form. The construction and operation with the corresponding
matrix is not needed. We show the generality and applicability
of this theory to systems of fermions, bosons, and mixtures
thereof. In the present work, we treat particle-conserving
operators only. In the following, we do not indicate explicitly
“particle-conserving” when it is unambiguous.

The proposed theory has already been implemented for
bosonic systems [10,11] within the multiconfigurational
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time-dependent Hartree for bosons (MCTDHB) [12]. Appli-
cations to multiboson long-time dynamics in double-well [10]
and triple-well [11] traps have already been performed suc-
cessfully. These studies demonstrate that the ideas proposed
in this work are indeed very beneficial in computing dynamics.

The structure of the article is as follows. For the sake of
expositional clarity, we first consider in Sec. II a system of
spin-polarized fermions, that is, a system where all spins
of all fermions are identical, so each and every fermionic
orbital can be occupied only by one particle. In Sec. II B,
we enumerate and address the fermionic configurations in a
simple, compact, and practical way. The ideas of how to get
the action of one- and two-body fermionic operators on a state
vector as well as of the general Hamiltonian are explained
in Sec. II C. Section II D deals with other quantities such as
expectation values of the Hamiltonian and density matrices. In
Sec. III, we consider a system of bosons and apply the proposed
theory to get the result of the action of a bosonic Hamiltonian
on a state vector, without construction of the corresponding
Hamiltonian matrix. In Sec. III B, we first describe how
to map the fermionic onto the bosonic configurations. This
allows us to adopt, after small modification, the fermionic
enumeration scheme for bosons. Next, in Sec. III C, we see
how bosonic one- and two-body operators act on a state
vector and then give explicitly the desired total action of
the bosonic Hamiltonian on it as well as related quantities
such as expectation values of the Hamiltonian and other one-
and two-body operators. In Sec. IV, we generalize our ideas
and findings to multicomponent systems. In Sec. IV A, we
first deal with general fermions, that is, the system where
fermions with up and down spin projections coexist. Then we
demonstrate the applicability of the theory to binary mixtures
of bosons in Sec. IV B and to systems made of spinless
bosons and spin-polarized fermions in Sec. IV C. Extension
of the proposed theory to multicomponent systems is given in
Sec. IV D. In Sec. V, we discuss the practical implementation
of the proposed ideas, and in Sec. VI, we summarize and
conclude the discussion.

II. THE CASE OF SPIN-POLARIZED FERMIONS

A. Hamiltonian of interacting systems and the state vector |�〉
Let us define the system first. We consider a general

Hamiltonian in the second quantization form with one-body
and two-body interaction terms,

Ĥ =
∑
k,q

hkq b̂
†
kb̂q + 1

2

∑
k,s,q,l

Wksql b̂
†
kb̂

†
s b̂l b̂q , (1)

where the matrix elements hkq of the one- and Wksql of the
two-body operators are assumed to be known. Three-body
and higher order interaction terms can also be included in an
obvious way. To complete the definition of the system, one
has to specify the commutation relations for the creation and
annihilation operators b̂

†
k and b̂q . Here, we operate with the

systems of indistinguishable fermions, and therefore, the usual
anticommutation relations are fulfilled: b̂kb̂

†
q + b̂

†
q b̂k = δkq .

We expand the generic state vector of the many-body
system in a linear combination of Nconf known many-body

basis functions |�n〉:

|�〉 =
Nconf∑

�n
C�n |�n〉 . (2)

Traditionally, Slater determinants are taken as |�n〉 for fermionic
systems. Using fermionic creation operators b̂

†
k , each Slater

determinant is assembled as

|�n〉 = (b̂†1)n1 (b̂†2)n2 · · · (b̂†M )nM |vac〉, (3)

where ni can be either “0” or “1” for spin-polarized fermions.
The symbol �n = (n1, n2, n3, . . . , nM ) represents the occu-
pations of the orbitals that preserve the total number of
particles n1 + n2 + n3 + · · · + nM = N , M is a number of the
one-particle functions, here M � N , and |vac〉 is the vacuum.

In the written expansion, Eq. (2), we did not specify
explicitly the size Nconf of the problem, that is, the size or length
of the |�〉 vector. Let us now consider the configurational space
spanned by all possible distributions of N fermions over M

fermionic orbitals, that is, a full Fock subspace of the respective
configurational space. For spin-polarized fermions, the size of
such a full Fock subspace [8,13] is

Nconf =
(

M

N

)
, (4)

where
(
n

k

) = n!
k!(n−k)! . On the other hand, Nconf is the dimension,

that is, the number of the elements of any state vector |�〉 of
the system.

B. Enumeration of the Slater determinants

Our goal is to provide a simple and compact scheme
for enumeration of the configurations. More strictly, we can
reformulate this enumeration as a requirement to map M

integers n1, n2, n3, . . . , nM characterizing each configuration,
that is, the Slater determinant [see Eq. (3)] to one integer
addressing it as a coordinate (index) of the state vector. Clearly,
there are many ways to solve this problem. Here we report on
one that utilizes the so-called Combinadic numbers [14].

Every fermionic configuration can be represented as a
vector with M components, filled by “1” or “0”. The number
of orbitals M must be larger than the number of spin-polarized
fermions N . Each appearing “1” means that the corresponding
orbital is occupied by one fermion, and “0” means that it is not
occupied (i.e., it has a hole). Since the total number of “1” and
“0” characterizing a configurational vector (i.e., its length) is
M , there are N particles (“1”) and Mv = M − N holes (“0”).
Here, Mv specifies the number of unoccupied (i.e., virtual)
orbitals. The general fermionic configuration reads as follows:

|

i2︷ ︸︸ ︷
i1︷ ︸︸ ︷

11111110 1111110 · · · 111110︸ ︷︷ ︸
iMv

1111111〉. (5)

For example, for the system of N = 7 polarized fermions
distributed over M = 10 fermionic orbitals, there are N = 7
occupied orbitals and Mv = M − N = 3 unoccupied ones.
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Then, for instance, the fermionic configuration |1011101011〉
means that the second, sixth, and eighth fermionic orbitals are
vacant (i.e., not occupied), while the first, third, fourth, fifth,
seventh, ninth, and tenth orbitals are occupied by one fermion.
The problem of enumeration of M dimensional vectors filled
by “1” and “0” has been successfully solved in the context of
Ref. [14]; here we utilize it.

For a given system with N fermions and M fermionic
orbitals, the address of every fermionic configuration can be
uniquely defined either by specifying the positions of all the
“1”s (i.e., particles) or alternatively by giving the positions
of all holes (i.e., the “0”s). For the sake of definitiveness
and without loss of generality, we use the positions of the
holes to specify the configurations. The general configuration
defined in Eq. (5) is described by Mv = M − N holes placed
at positions i1, i2, . . . , iMv

. It is convenient to order the holes
as i1 < i2 < i3 < · · · < iMv

. The address of this configuration
is computed as follows:

J (i1, i2, . . . , iMv
) = 1 +

Mv∑
k=1

(
N + Mv − ik

Mv + 1 − k

)
. (6)

So, each and every fermionic configuration in a fermionic
state vector |�〉 has its own unique address (index), defined
by the numbers i1, i2, . . . , iMv

. For the previously considered
fermionic configuration |1011101011〉 with N = 7 particles
and Mv = 3 holes, the “0”s are located at i1 = 2, i2 = 6, i3 =
8 when we count their positions from the left [see Eq. (5)].
By using Eq. (6), we obtain the address of this configuration
J (2, 6, 8) = ( 10−2

3 ) + ( 10−6
2 ) + ( 10−8

1 ) + 1 = 65. We note that
the enumeration scheme provided in Ref. [14] uses positions
of the “1”s counted from the right, whereas in our scheme
we count the positions of the “0”s (i.e., holes) from the
left. The inverse problem, a restoration of the hole positions,
i1, i2, . . . , iMv

, according to a given address J also can be
solved [14] if needed. Our goal is fulfilled: Spin-polarized
fermionic configurations are enumerated in an easy and
compact way.

Let us summarize: N spin-polarized fermions distributed
over M fermionic orbitals span the full subspace of the
Fock space of Nconf = (N+Mv

N
) configurations; here Mv =

M − N is the number of unoccupied fermionic orbitals. The
dimension of any state vector |�〉 of this system is Nconf .
Every fermionic configuration, Eq. (5), in the respective Fock
subspace is characterized by the positions of Mv holes placed
at i1, i2, . . . , iMv

. We can attribute a unique address J to
each fermionic configuration according to the rule in Eq. (6):
J = J (i1, i2, . . . , iMv

). This Combinadic-based mapping is a
one-to-one and onto mapping. In particular, the index J takes
all values between 1 and Nconf . The inverse mapping, from the
distinct integers 1, 2, . . . , Nconf − 1, Nconf to the Nconf distinct
configurations is, of course, well defined. We do not construct
it here explicitly since the inverse mapping is not needed for
the usefulness and practical implementation of the presented
formalism.

Now, a general |�〉, Eq. (2), can be rewritten in a specific
form:

|�〉 =
Nconf∑
J=1

CJ |J (i1, i2, . . . , iMv
)〉 =

Nconf∑
J=1

CJ |J (i)〉 , (7)

where it is explicitly stated that every fermionic configuration
(i.e., Slater determinant) |J (i)〉 is specified by Mv holes
placed at (i1, i2, . . . , iMv

) ≡ i. It has a unique address J =
J (i1, i2, . . . , iMv

), which can be computed according to Eq. (6).
The index (address) J runs over all Nconf configurations.

C. Applying operators to |�〉
The Hamiltonian (1) is defined as a sum of terms; each of

them is a product of creation and annihilation operators—a pair
b̂
†
kb̂q for the one-body and a quartet b̂

†
kb̂

†
s b̂l b̂q for the two-body

terms, scaled by respective prefactors, that is, integrals hkq and
Wksql . In principle, any other operator can be represented in a
similar way as a sum of contribution of one-, two-, or higher
order terms. The idea is quite simple: If one would know the
result of action of each of these terms on a state vector |�〉,
the sum of all of them would give the required total result of
the action of the Hamiltonian on a state vector. Here we recall
that the total number of terms in the Hamiltonian is defined
by the number of the orbitals used. In the most general case of
M orbitals, the total number of the one-body terms is M2, and
the total number of the two-body terms is M4. Any symmetry
in the problem, including hermicity, reduces these numbers.

1. Action of one- and two-body operators

Let us consider the action of a pair b̂
†
kb̂q of creation

and annihilation operators on every fermionic configuration,
Eq. (5), of a general state vector |�〉. As a first step, we
consider a specific, say b̂

†
2b̂3, term that kills a particle in

the third orbital and creates a particle in the second one.
For spin-polarized fermions due to Fermi-Dirac statistics, the
term b̂

†
2b̂3 provides a nonzero action only on the subset of

configurations |n1, 0, 1, . . . , nM〉 having n2 ≡ 0, n3 ≡ 1:

b̂
†
2b̂3|n1, 0, 1, . . . , nM〉 = (−1)0|n1, 1, 0, . . . , nM〉,

where the remaining ni can be 0 or 1. Similarly, for a general
b̂
†
kb̂q case, nk ≡ 0, nq ≡ 1:

b̂
†
kb̂q |n1, n2, n3, . . . , nM〉
= (−1)

∑
i∈(k,q) ni |n1, n2, . . . , nq − 1, . . . , nk + 1, . . . , nM〉,

where (−1)
∑

i∈(k,q) ni is a prefactor ensuring correct fermionic
statistics of the antisymmetrized wave function and the
summation i ∈ (k, q) runs over all occupations ni between
the kth and qth orbitals. We can interpret this well-known
result as follows: Operation of any even combination of
creation and annihilation operators on a configuration (de-
terminant) results in readdressing this configuration (determi-
nant) to another one. Since the occupation numbers of the
incoming |n1, n2, n3, . . . , nM〉 and resulting |n1, n2, . . . , nq −
1, . . . , nk + 1, . . . , nM〉 configurations are explicitly known,
the numbers of the orbitals with zero occupations (i.e., the hole
positions) are also available; therefore, according to Eq. (6),
we can also compute their addresses in a state vector, Eq. (7).
By applying the enumeration scheme (mapping) introduced
previously, one gets

b̂
†
kb̂q |J (i)〉 = (−1)d

kq

J |J (i′)〉, k ∈ i, q /∈ i.
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In other words, the J th configuration is readdressed to a new
configuration with index J ′ ≡ J (i′) with some sign prefactor.
For a given configuration |J (i)〉 and fixed k, q, the integer d

kq

J is
equal to the number of fermions, that is, “1”s located between
the kth and qth orbitals: d

kq

J = ∑
i∈(k,q) ni . Note that there

is no difference in whether to count the number of fermions
between the kth and qth orbitals in the original configuration
J or in the resulting J ′ configuration, namely, d

kq

J = d
kq

J ′ . It is
important to stress that the operation with even combinations
of creation and annihilation operators results in a single-valued
readdressing; that is, an initial configuration having address J

is readdressed to a single configuration with address J ′.
Having at hand the result of the action of the pair b̂

†
kb̂q on a

general configuration (determinant), we can find out its action
on the total state vector [see Eq. (7)]:

|�kq〉 ≡ b̂
†
kb̂q |�〉 =

Nconf∑
J=1

CJ b̂
†
kb̂q |J 〉 =

Nconf∑
J=1

C
kq

J |J (i)〉 ,

(8)

C
kq

J =
{

CJkq (−1)d
kq

J ; k �∈ i, q ∈ i

0; otherwise
,

where at the last step we have changed variables of the sum-
mation index from J ′ to J . Note that this closed-form result of
the action of the basic one-body operator on a state vector has
been obtained without referring to the matrix representation of
the respective operator. How are we to understand this result?
Every element C

kq

J of the resulting vector having address J

is obtained as a product of the CJkq element of the incoming
vector having address J kq scaled by the (−1)d

kq

J fermionic
prefactor. The configuration J kq is related to J by making a
hole at kth and filling a hole at qth orbitals. The b̂

†
kb̂q term acts

only if the index k coincides with one of the holes’ positions
(i1, . . . , k, . . . , iMv

) and the index q does not coincide with
either of them. If these two conditions are not fulfilled, the
respective configuration does not contribute at all to the result-
ing state vector. The addresses J kq = J (i1, . . . , k, . . . , iMv

)
and J = J (i1, . . . , q, . . . , iMv

) are computed by Eq. (6). In
Eq. (8), the summation runs over the index J , implying that for
a given J one has to restore the holes’ positions i1, i2, . . . , iMv

first. However, this complication can be easily avoided if,
instead, one starts Mv nested loops running over the positions
of the holes i1 < i2 < · · · < iMv

directly. In the latter case,
all i1, . . . , iMv

are explicitly available, as well as the resulting
address J = J (i1, . . . , q, . . . , iMv

) via Eq. (6). Hence, at each
step, to get the desired element C

kq

J of the resulting vector, one
has to compute one integer d

kq

J and apply Eq. (6) only once
to get the index J kq = J (i1, . . . , k, . . . , iMv

) of the respective
incoming configuration and its value CJkq .

The action of a general (k �= s �= l �= q) two-body b̂
†
kb̂

†
s b̂l b̂q

term on the incoming state vector |�〉 can be obtained using a
similar strategy:

|�kslq〉 ≡ b̂
†
kb̂

†
s b̂l b̂q |�〉 = b̂†s b̂l|�kq〉 =

Nconf∑
J=1

C
kslq

J |J (i)〉,
(9)

C
kslq

J =
{

CJkslq (−1)d
kq

J sl (−1)d
sl
J ; k, s �∈ i, l, q ∈ i

0; otherwise
.

To get the J th element C
kslq

J of the resulting state vector
one has to take the element CJkslq of the incoming vector

having address J kslq and multiply it by (−1)d
kq

J sl +dsl
J prefactor.

Using Eq. (6), we compute the addresses of the result-
ing J = J (i1, . . . , l, . . . , q, . . . , iMv

) and incoming J kslq =
J (i1, . . . , k, . . . , s, . . . , iMv

) configurations. The configuration
J ksql is related to J by making holes at kth and sth and filling
holes at qth and lth orbitals. For a given quartet k, s, l, q, every
component J of the incoming state vector is characterized by
the integers d

kq

J sl + dsl
J , computed as a sum of the number dsl

J

of fermions located between the sth and lth orbitals of the
configuration J , and d

kq

J sl , the number of fermions between

the kth and qth ones of the configuration J sl . The b̂
†
kb̂

†
s b̂l b̂q

term provides nonzero action only on the smaller subset of the
configurations having nk ≡ ns ≡ 0, nl ≡ nq ≡ 1. Therefore,
in practical computations one needs to address only this subset.

2. Action of the Hamiltonian

Considering configurations as coordinates of the state
vector |�〉, we have seen that the action of each term of the
Hamiltonian on the state vector readdresses the coordinates
of the original state vector, multiplying them by some known
prefactors. So, instead of constructing the full Hamiltonian
matrix and performing matrix-to-vector multiplications, we
obtained the same result by reordering the components of the
incoming state vector according to the action of every b̂

†
kb̂q

and b̂
†
kb̂

†
s b̂l b̂q term, multiplying them by the corresponding

integrals hkq and Wksql , and summing the results up.
The general Hamiltonian Eq. (1) is a sum of

the one-body ĥ = ∑
k,q hkq b̂

†
kb̂q and two-body Ŵ =

1
2

∑
k,s,q,l Wksql b̂

†
kb̂

†
s b̂l b̂q terms. Using the results of the previ-

ous subsection, we find the total action of all one-body terms
on the initial state vector |�〉:

ĥ |�〉 =
∑
k,q

hkq[b̂†kb̂q |�〉] =
∑
k,q

hkq |�kq〉 =
Nconf∑
J=1

Cĥ
J |J (i)〉,

(10)
Cĥ

J =
∑
k,q

hkqC
kq

J .

Here, all the components C
kq

J have been computed using
Eq. (8). Analogously, we sum up all the contributions from
all two-body terms:

Ŵ |�〉 = 1

2

∑
k,s,q,l

Wksql[b̂
†
kb̂

†
s b̂l b̂q |�〉]

= 1

2

∑
k,s,q,l

Wksql |�kslq〉 =
Nconf∑
J=1

CŴ
J |J (i)〉, (11)

CŴ
J = 1

2

∑
k,s,q,l

WksqlC
kslq

J .

Finally, the desired action of the Hamiltonian on the state
vector |�〉 is a sum of the two vectors obtained in Eqs. (10)
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and (11):

Ĥ |�〉 = ĥ |�〉 + Ŵ |�〉 =
Nconf∑
J=1

CĤ
J |J (i)〉 ,

(12)
CĤ

J = Cĥ
J + CŴ

J ,

which fulfills our initial goal. This closed-form result of the
action of the Hamiltonian on a state vector is constructed
without building the respective Hamiltonian matrix or even
referring to its matrix elements.

D. Other quantities of interest

In the preceding subsections, we have successfully derived
a simple and straightforward technique to operate with state
vectors without representing the respective operators in matrix
form. In particular, we have utilized the basic fact that the result
of action of any operator represented as a sum of products of
creation and annihilation operators on a state vector is equal to
the sum of action of each of these terms. So, the action of any
operator on a state vector (called incoming state vector) results
in a new state vector (called resulting state vector). Let us now
show that the expectation value of the respective operator can
be immediately computed as a dot product of the incoming
and resulting state vectors.

Indeed, according to the standard definition [15–17], for a
given state vector |�〉 the elements of the reduced one-body
density matrix read as follows:

ρkq = 〈�|b̂†kb̂q |�〉 ≡ 〈�|[b̂†kb̂q |�〉] = 〈�|�kq〉

=
Nconf∑
J=1

C∗
J C

kq

J , (13)

where we substitute the result for b̂
†
kb̂q |�〉 from Eq. (8). Thus,

the elements of the reduced one-body density matrix ρkq are
obtained as a dot product of the incoming |�〉 and resulting
|�kq〉 state vectors.

Similarly, the elements of the reduced two-body density
matrix are obtained as a dot product of the incoming |�〉 and
resulting [see Eq. (9)] |�kslq〉 state vectors:

ρkslq = 〈�| b̂†kb̂†s b̂l b̂q |�〉 ≡ 〈�| [b̂†kb̂
†
s b̂l b̂q |�〉] = 〈

�|�kslq
〉

=
Nconf∑
J=1

C∗
J C

kslq

J . (14)

So, in the discussed scheme, the elements of the reduced
one- and two-body density matrices appear very naturally.
Moreover, the elements of the reduced three- and higher order
density matrices can be obtained in a very similar way.

Finally, taking the result of the action of the Hamiltonian
on an initial state vector Ĥ |�〉 from Eq. (12), we compute
the respective expectation value of the Hamiltonian as a dot
product as well:

〈�| Ĥ |�〉 ≡ 〈�| [Ĥ |�〉] =
Nconf∑
J=1

C∗
J CĤ

J . (15)

We have prescribed here a few expectation values of particular
interest in a many-body theory. Other quantities can be
represented and computed in a similar way.

III. THE CASE OF STUCTURELESS BOSONS

A. General remarks

Here, we deal with a system of N identical interacting
bosons. The terms “structureless” and “spinless” are often used
to specify that the bosons do not have an internal structure.
Our goal is to show that our ideas of how to operate with
state vectors without resorting to the matrix representation
of the respective operators proposed previously for fermions
can naturally be extended and applied to bosonic systems.
The generic Hamiltonian Eq. (1) introduced previously for
the system of spin-polarized fermions is also applicable to
the system of structureless bosons with the only modifica-
tion concerning the commutation relations of creation and
annihilation operators. Here, we operate with the systems
of indistinguishable bosons, and therefore, we use the usual
commutation relations: b̂kb̂

†
q − b̂

†
q b̂k = δkq .

The generic bosonic state vector is expanded as a linear
combination of Nconf known many-body basis functions |�n〉:

|�〉 =
Nconf∑

�n
C�n |�n〉 , (16)

where |�n〉 are permanents that are assembled as

|�n〉 = 1√
n1!n2!n3! · · · nM !

(b̂†1)n1 (b̂†2)n2 · · · (b̂†M )nM |vac〉.
(17)

Here, �n = (n1, n2, n3, . . . , nM ) represents the occupations of
the orbitals that preserve the total number of particles n1 +
n2 + n3 + · · · + nM = N , |vac〉 is the vacuum, and M is the
number of the one-particle functions. For bosons, M � 1.

The number of elements Nconf in the bosonic state vector
|�〉 is equal to the number of the configurations used. Here we
consider the configurational space spanned by all possible
distributions of N bosons over M orbitals, that is, a full
subspace of the respective configurational space. We recall
that one of the key consequences of this fullness is that an
action of any operator on the state vector results in a new state
vector defined in the same configurational subspace.

The size of this full Fock subspace is [13] as follows:

Nconf =
(

N + M − 1

N

)
. (18)

This number is equal to the size of the configurational
space spanned by N spin-polarized fermions distributed over
M ′ = N + M − 1 fermionic orbitals; see Sec. II A. Therefore,
there exists one-to-one mapping between the configurational
spaces of the N -boson system distributed over M bosonic
orbitals and a fermionic system made of N fermions distributed
over M ′ = N + M − 1 fermionic orbitals, and vice versa. In
other words, every fermionic configuration having N + M − 1
components (occupation numbers) should be attributed to a
bosonic configuration characterized by M components. Let
us compare these isomorphic bosonic and fermionic systems.
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TABLE I. Mapping between fermionic and bosonic configurations made of N particles. The
number of the unoccupied fermionic orbitals is equal to the total number of the bosonic orbitals
minus one: Mv ≡ M − 1. Now, we can adopt the fermionic enumeration scheme for bosons.

Enumeration index J N fermions, N + M − 1 orbitals N bosons, M orbitals

1 | 1111 · · · 111︸ ︷︷ ︸
N

000 · · · 00︸ ︷︷ ︸
M−1

〉 |N, 0, . . . , 0︸ ︷︷ ︸
M−1

〉

2 | 1111 · · · 11︸ ︷︷ ︸
N−1

01 000 · · · 00︸ ︷︷ ︸
M−2

〉 |N − 1, 1, 0, . . . , 0︸ ︷︷ ︸
M−2

〉

· · · · · · · · ·
J | 11111︸ ︷︷ ︸

5

0 111︸︷︷︸
3

0 1111︸︷︷︸
4

0 · · · 0 111︸︷︷︸
3

00 111111︸ ︷︷ ︸
6

〉 |5, 3, 4, . . . , 3, 0, 6〉

· · · · · · · · ·
Nconf − 1 | 000 · · · 00︸ ︷︷ ︸

M−2

10 1111 · · · 111︸ ︷︷ ︸
N−1

〉 | 0, . . . , 0︸ ︷︷ ︸
M−2

, 1, N − 1〉

Nconf | 000 · · · 00︸ ︷︷ ︸
M−1

1111 · · · 111︸ ︷︷ ︸
N

〉 | 0, . . . , 0︸ ︷︷ ︸
M−1

, N〉

What is also equal in these two systems, apart from the
total number N of particles? The number of the fermionic
unoccupied orbitals Mv = M ′ − N , that is, the number of
fermionic holes, is equal to the maximal number of the bosonic
holes: Mv = M − 1. We note that the maximal number of
bosonic holes appear in configurations such as |N, 0, . . . , 0〉
and |0, N, 0, . . . , 0〉. Since we already know how to enumerate
fermionic configurations in terms of holes (see Sec. II B), we
can adopt the fermionic enumeration scheme to the respective
bosonic system.

B. Mapping and enumeration of the permanents

Our goal is to provide a simple and compact scheme
for enumeration of the bosonic configurations. To utilize
the formal isomorphism between the bosonic and fermionic
systems considered previously, we first have to show how to
map, or attribute, a fermionic configuration to the bosonic one.
The rule is very simple: the number of bosons residing in the
first bosonic orbital n1 is equal to the number of fermions
occupying successively the lowest fermionic orbitals from
the bottom to the first fermionic hole. In other words, the
occupation of the first bosonic orbital is defined as the number
of “1”s appearing in the (N + M − 1)-component fermionic
vector [Eq. (5)] up to the first hole, that is, the first “0”, when
counting from the left. The occupation number of the second
bosonic orbital n2 is defined as the number of “1”s between
the first and second “0” (i.e., between the first and second
fermionic holes). The third bosonic occupation number n3 is
defined as the number of “1”s between the second and third
“0”, and so on. Table I illustrates this mapping.

Consequently, the bosonic occupation numbers and the
positions of the fermionic holes are simply connected:

n1 = i1 − 1,

n2 = i2 − i1 − 1,

· · ·
nk = ik − ik−1 − 1,

· · ·
nM−1 = iM−1 − iM−2 − 1,

nM = N + M − iM−1 − 1.

(19)

So, having a set of the bosonic occupation numbers
|n1, n2, n3, . . . , nM〉, by using this scheme we can restore
the positions of the M − 1 fermionic holes (i1, i2, . . . , iM−1)
and the respective fermionic configuration, and vice versa.
Now we can explicitly use the relations Eq. (19) between
bosonic occupation numbers and fermionic holes to uniquely
address bosonic configurations utilizing Eq. (6). Finally,
omitting all intermediate steps, we get the address of a generic
bosonic configuration |n1, n2, n3, . . . , nM〉 in the bosonic state
vector:

J (n1, n2, . . . , nM−1, nM )

= 1 +
M−1∑
k=1

(
N + M − 1 − k − ∑k

l=1 nl

M − k

)
. (20)

Here nM enters the expression implicitly via the identity
N = n1 + n2 + n3 + · · · + nM .

Let us summarize. The system of N bosons and M bosonic
orbitals spans the full subspace of the Fock space of Nconf

configurations [see Eq. (18)]. The dimension of any state vector
|�〉 of the system is Nconf . Every bosonic configuration in the
respective Fock subspace is characterized by the set of M

occupation numbers |n1, n2, n3, . . . , nM〉. We can attribute a
unique address J to each of the configurations according to the
rule of Eq. (20): J = J (n1, n2, . . . , nM−1, nM ). The proposed
enumeration schemes in Eqs. (6) and (20) are equivalent and
connected via Eq. (19) to each other. They can be equally
applied to enumerate bosonic and fermionic configurations.
In other words, every many-body basis function written in
the “fermionic style” (hole positions representation) can be
translated via Eq. (19) to the “bosonic style” (occupation num-
bers representation): |n1, n2, . . . , nM〉. However, the explicit
use of the bosonic representation for fermions is neither as
economic nor appealing as it is for bosons. Therefore, once
Eq. (20) has been derived, we preserve for the
sake of clarity the hole enumeration scheme for
fermions and occupation number enumeration scheme for
bosons.
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Now, we can represent the bosonic state vector |�〉 in a
form similar to Eq. (7):

|�〉 =
Nconf∑
J=1

CJ |J (n1, n2, . . . , nM )〉 =
Nconf∑
J=1

CJ |J (n)〉 , (21)

with the only difference that every bosonic configuration
|n1, n2, n3, . . . , nM〉 has a unique address J , which is com-
puted according to Eq. (20), that is, using bosonic occupation
number representation. The index J runs over all Nconf

configurations.

C. Applying operators to |�〉
Any bosonic operator can be represented as a sum of

products of bosonic creation and annihilation operators. If
we now show that the action of any even combination of
creation and destruction operators on a bosonic state vector
[Eq. (21)] leads, as in the case of fermions, only to readdressing
(reindexing) of the configurations (coordinates), we can adopt
all the ideas developed for fermions to bosonic systems.

Let us first consider a specific (say, the b̂
†
3b̂2) term that kills

a boson in the second bosonic orbital and creates a boson in
the third one. The result of the action of this pair of creation
and annihilation operators on an arbitrary permanent is known
and reads as follows:

b̂
†
3b̂2|n1, n2, n3, . . . , nM〉
= √

n2

√
n3 + 1|n1, n2 − 1, n3 + 1, . . . , nM〉.

It acts on every many-body configuration having nonzero occu-
pation n2. We can interpret this result as follows: The operation
of any even combination of bosonic creation and annihilation
operators on a permanent results in the readdressing of this
permanent to another one multiplied with a trivial bosonic
prefactor. Clearly, all the ideas proposed for fermions in
Sec. II can be easily adopted here for bosons.

1. Action of one- and two-body operators

To derive the results of the actions of bosonic one- and two-
body operators on a state vector, one can follow the strategy
used for fermions in Sec. II C1. We provide the final results
and briefly discuss their meanings. The action of one-body
bosonic operator b̂

†
kb̂q on an incoming |�〉 results in |�kq〉:

|�kq〉 ≡ b̂
†
kb̂q |�〉 =

Nconf∑
J=1

C
kq

J |J (n)〉 ,

(22)
C

kq

J = CJkq

√
nk

√
nq + 1.

Let us explain this expression. According to Eq. (20),
every configuration |n1, . . . , nk, . . . , nq, . . . , nM〉 of the re-
sulting vector |�kq〉 has a unique address (index) J =
J (n1, . . . , nk, . . . , nq, . . . , nM ). The respective coefficient
C

kq

J is obtained as a product of the J kq th component of
the incoming vector CJkq scaled by the bosonic

√
nk

√
nq + 1

prefactor. On the right-hand side of Eq. (22), we “exchange”
the kth and qth indices because of a change of variables of
the summation index J applied, similar to how it was done in
Eq. (8). The index J kq is computed according to Eq. (20) and
corresponds to the configuration |n1, . . . , nk − 1, . . . , nq +

1, . . . , nM〉. This simple and straightforward methodology is
ideally suitable for programming.

The action of a general (k �= s �= l �= q) two-body b̂
†
kb̂

†
s b̂l b̂q

term on the incoming state vector |�〉 is defined as

|�kslq〉 ≡ b̂
†
kb̂

†
s b̂l b̂q |�〉 =

Nconf∑
J=1

C
kslq

J |J (n)〉 ,

(23)
C

kslq

J = CJkslq

√
nk

√
ns

√
nl + 1

√
nq + 1,

where, after the change of variables of the summation index
J , the addresses of the incoming J kslq = J (n1, . . . , nk −
1, . . . , ns − 1, . . . , nl + 1, . . . , nq + 1, . . . , nM ) and resulting
J = J (n1, . . . , nk, . . . , ns, . . . , nl, . . . , nq, . . . , nM ) configu-
rations are computed using Eq. (20). For other combinations
of the indices k, s, l, q, Eq. (23) is valid as well, of course,
with the corresponding bosonic prefactors. For instance, for
k = q, s = l the bosonic prefactor [see second line of Eq. (23)]
is nkns .

2. Action of the Hamiltonian

Using the same strategy as for the fermionic case, we group
together the actions of all one-body and all two-body operators
to get the total action of the Hamiltonian on an initial bosonic
state vector |�〉 [Eq. (21)].

The one-body contributions read as

ĥ|�〉 =
∑
k,q

hkq[b̂†kb̂q |�〉] =
∑
k,q

hkq |�kq〉 =
Nconf∑
J=1

Cĥ
J |J (n)〉 ,

(24)
Cĥ

J =
∑
k,q

hkqC
kq

J .

The two-body terms are

Ŵ |�〉 = 1

2

∑
k,s,q,l

Wksql[b̂
†
kb̂

†
s b̂l b̂q |�〉] = 1

2

∑
k,s,q,l

Wksql |�kslq〉

=
Nconf∑
J=1

CŴ
J |J (n)〉 , (25)

CŴ
J = 1

2

∑
k,s,q,l

WksqlC
kslq

J .

By combining the contributions from the one- and two-body
terms, we get the desired action of the Hamiltonian on a state
vector |�〉:

Ĥ |�〉 = ĥ |�〉 + Ŵ |�〉 =
Nconf∑
J=1

CĤ
J |J (n)〉 ,

(26)
CĤ

J = Cĥ
J + CŴ

J ,

which concludes our constructions for bosons.

3. Other quantities of interest

We have seen that the action of any bosonic operator on the
state vector results in a new (resulting) state vector. Similar
to fermionic systems, the expectation value of the respective
operator is immediately available as a dot product of the
incoming and resulting state vectors. The matrix elements of
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the reduced one- and two-body density matrices as well as
the expectation value of the Hamiltonian can be obtained in a
very similar way, as have already been done for fermions in
Eqs. (13)–(15), respectively. Other expectation values are also
amenable to this formulation.

IV. THE CASE OF MULTICOMPONENT SYSTEMS
AND BINARY MIXTURES

In this section, we generalize the new ideas for effective
and efficient operations in Fock space proposed previously
for systems of spinless bosons and spin-polarized fermions to
multicomponent systems. More specifically, we show that the
mapping and enumeration scheme discussed previously can
be naturally extended to more general systems.

Let us considered binary mixtures with N = NA + NB

particles. The mixture consists of NA identical particles
(bosons or fermions) of type A and NB identical particles
(bosons or fermions) of type B. In what follows, whenever
needed we denote the quantities in the mixture by A, B, or AB

superscripts.
The many-body Hamiltonian of the mixture has three kinds

of terms:

Ĥ (AB) = Ĥ (A) + Ĥ (B) + Ŵ (AB),
(27)

Ŵ (AB) =
∑

k,k′,q,q ′
W

(AB)
kk′qq ′ â

†
kâq b̂

†
k′ b̂q ′ .

The first two terms of Ĥ (AB) are the A and B single-species
Hamiltonians and can be read directly from Eq. (1), formally
replacing in the first case the b̂q and b̂

†
k operators with âq and

â
†
k , respectively. The third term of Ĥ (AB) is the interaction

between the two species. We call Ĥ (A), Ĥ (B) intraspecies parts
and Ŵ (AB) the interspecies part.

The many-body wavefunction �(AB) is a linear combination
of all possible products of permutational-symmetry-adapted
configurations:

|�(AB)〉 =
∑
�n, �m

C�n �m(t) |�n〉 × | �m〉 ≡
∑
�n, �m

C�n �m |�n, �m〉 . (28)

The configurations {|�n〉}, {| �m〉} are either Slater determinants
(3) or permanents (17), depending on whether we deal with
Bose-Bose, Fermi-Fermi, or Bose-Fermi mixtures.

In this work, we make an assumption. The total number
of particles of each kind, NA and NB , is conserved. In
other words, there is no conversion between the particles;
that is, the particles of A kind cannot become of B kind
and vice versa. The Fock subspace of the A subsystem is
spanned by all possible permutations of NA particles over
MA orbitals (NA

conf configurations), and the configurational
subspace of the B subsystem is spanned by permutations of NB

particles over MB orbitals (NB
conf configurations). Practically,

in this case we work in the full configurational subspaces,
that is, the summation in Eq. (28) over �n runs from 1 until
NA

conf and over �m from 1 until NB
conf . More strictly, the total

configurational space is a tensor product of two full subspaces,
and any state vector of such a binary system has NA

confN
B
conf

components.
In Secs. II and III, we have seen that enumeration schemes

of the full bosonic and fermionic configurational subspaces can

be easily done by counting either holes [Eq. (6)] for fermions or
particles [Eq. (20)] for bosons. Therefore, if JA and JB label
configurations in the A and B subspaces, respectively, then
the two-component vector index �J = (JA, JB ) enumerates all
possible configurations in the total product Fock subspace.
Now, we can represent the state vector of the mixture,
Eq. (28), in a form where enumeration of the configurations in
the A and B subspaces are explicitly specified:

|�(AB)〉 =
NA

conf∑
JA=1

NB
conf∑

JB=1

CJAJB
|JA, JB〉 =

NA
conf∑

JA=1

NB
conf∑

JB=1

CJAJB
| �J 〉.

(29)

The key goal of this section is to demonstrate that the action
of the total Hamiltonian, Eq. (27), on the state vector of
the mixture can also be represented and computed without
construction of the respective Hamiltonian matrix.

A. General fermionic system

We consider the mixture of fermions of two different
kinds, A and B. Despite such an unusual abbreviation, it is
a standard system of spin-up and spin-down fermions where
the A subsystem is associated with spin-up fermions and
B with spin-down fermions. Here, we consider the general,
so-called unrestricted case where particles are not constrained
to occupy the same spatial orbitals; that is, the one-particle
functions of the spin-up fermions can differ from the respective
orbitals of the spin-down fermions. Such a treatment is
allowed if the Hamiltonian does not have terms leading to
spin-flip phenomena, taking place, for example, in external
magnetic fields. The Hamiltonian, Eq. (27), does not have such
terms.

Let us first show that the action of typical one- and
two-body terms contributing to the Ĥ (A), Ĥ (B), and Ŵ (AB)

parts on a basic configuration | �J 〉 ≡ |JA(i), JB(i′)〉 translates
or readdresses it to another configuration, multiplied by the
respective fermionic prefactors. Indeed, the configuration | �J 〉
is specified when the MA

v = MA − NA positions of the holes
characterizing the A subsystem, that is, the (i1, i2, . . . , iMA

v
) set,

and the MB
v = MB − NB positions of the holes characterizing

the B subsystem, that is, the (i ′1, i
′
2, . . . , i

′
MB

v
) set, are given.

Then, the JA(i) and JB(i′) numbers available via Eq. (6)
provide unique indices of the two-component address of this
configuration in the state vector |�(AB)〉.

If the initial holes of the A subsystem are located at positions
(i1, . . . , k, . . . , iMA

v
), the action of the â

†
kâq operator kills a

particle of A kind in the qth orbital and creates the particle
of A kind in the kth orbital. We then obtain the holes at
(i1, . . . , q, . . . , iMA

v
). Hence, according to Eq. (6), we get its

new index J
kq

A of the two-component address (J kq

A , JB ), where
the standard fermionic prefactor has to be added to account for
the correct permutation symmetry:

â
†
kâq |JA(i), JB(i′)〉 = (−1)d

kq

JA

∣∣J kq

A , JB

〉
, k ∈ i, q �∈ i.

(30)
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Clearly, the actions of the two-body terms would also lead to
readdressings with some other fermionic prefactors:

â
†
kâ

†
s âl âq |JA(i), JB(i′)〉 = â†

s âl(−1)d
kq

JA

∣∣J kq

A , JB

〉
= (−1)d

kq

JA (−1)
dsl

J
kq
A

∣∣J kslq

A , JB

〉
, k, s ∈ i, l, q �∈ i. (31)

The action of creation and annihilation operators from the A

subspace changes the address of JA component only and does
not touch the JB ones. Similarly, the actions of the one- and
two-body B terms of the Hamiltonian read as follows:

b̂
†
k′ b̂q ′ |JA(i), JB(i′)〉= (−1)d

k′q′
JB

∣∣JA, J
k′q ′
B

〉
, k′ ∈ i′, q ′ �∈ i′,

(32)

b̂
†
k′ b̂

†
s ′ b̂l′ b̂q ′ |JA(i), JB(i′)〉 = b̂

†
s ′ b̂l′ (−1)d

k′q′
JB

∣∣JA, J
k′q ′
B

〉
= (−1)d

k′q′
JB (−1)

ds′ l′
J
k′q′
B

∣∣JA, J
k′s ′l′q ′
B

〉
,

k′, s ′ ∈ i′, l′, q ′ �∈ i′. (33)

Now, we show that the action of the interspecies terms
from the Ŵ (AB) part also results in a readdressing of the

initial configuration to another one with a different fermionic
prefactor:

â
†
kâq b̂

†
k′ b̂q ′ |JA(i), JB(i′)〉 = (−1)d

kq

JA (−1)d
k′q′
JB

∣∣J kq

A , J
k′q ′
B

〉
, (34)

k ∈ i, q �∈ i, k′ ∈ i′, q ′ �∈ i′.

We have shown that the action of each term of the
Hamiltonian, Eq. (27), on a general configuration readdresses
it to another one within the same Fock subspace. This allows
us to conclude that the action of the total Hamiltonian,
Eq. (27), on a state vector, Eq. (29), can be obtained
directly without construction of the respective Hamiltonian
matrix:

Ĥ (AB)|�(AB)〉 =
NA

conf∑
JA=1

NB
conf∑

JB=1

CĤ (AB)

JAJB
|JA(i), JB(i′)〉,

CĤ (AB)

JAJB
= CĤ (A)

JAJB
+ CĤ (B)

JAJB
+ CŴ (AB)

JAJB
, (35)

where CĤ (A)
and CĤ (A)

can be read from Eqs. (8)–(12) and the
CŴ (AB)

JAJB
can be easily derived using Eq. (34):

Ŵ (AB)|�(AB)〉 =
∑

k,k′,q,q ′
W

(AB)
kk′qq ′ â

†
kâq b̂

†
k′ b̂q ′ |�(AB)〉 =

NA
conf∑

JA=1

NB
conf∑

JB=1

CŴ (AB)

JAJB
|JA(i), JB(i′)〉,

CŴ (AB)

JAJB
=

∑
k,k′,q,q ′

W
(AB)
kk′qq ′C

kk′qq ′
JAJB

, (36)

C
kk′qq ′
JAJB

=
{

C
J

kq

A J
k′q′
B

(−1)d
kq

JA (−1)d
k′q′
JB ; k �∈ i, q ∈ i, k′ �∈ i′, q ′ ∈ i′

0; otherwise
.

Each element of the resulting vector has a unique ad-
dress (JA(i), JB(i′)) characterized by the two sets of holes
(i1, . . . , q, . . . , iMA

v
) and (i ′1, . . . , q

′, . . . , i ′
MB

v
), that is, JA and

JB are obtained by using Eq. (6). The value of the element
CŴ (AB)

JAJB
is computed as a sum of the C

J
kq

A J
k′q′
B

components of
the incoming state vector scaled by the respective integrals
W

(AB)
kk′qq ′ and fermionic prefactors. The address (J kq

A , J
k′q ′
B ) of

each of these components is obtained for every given set
k, k,′ q, q ′ by applying Eq. (6) to (i1, . . . , k, . . . , iMA

v
) and

(i ′1, . . . , k
′, . . . , i ′

MB
v

). Finally, the expectation value of the
Hamiltonian as well as that of any other operator are available
as a dot product of the incoming and respective resulting
vectors in a manner very similar to what has been done in
the single-component case, Eq. (15).

B. Mixture of bosons

Here, we consider the mixture of bosons of two different
kinds, A and B. In Sec. III, we have seen that operations
with single-component bosonic systems can be done without
representing the respective operators in the matrix form. Now,
we demonstrate the usefulness of this theory and ideas to
bosonic mixtures.

The general configuration | �J 〉 ≡ |JA(n), JB (n′)〉 is spec-
ified by the bosonic occupation numbers corresponding
to the first (n1, n2, . . . , nMA

) and second (n′
1, n

′
2, . . . , n

′
MB

)
bosonic subsystems. Let us first show that the actions of
typical intraspecies terms from the A subsystem lead to
readdressings:

â
†
kâq |JA(n), JB(n′)〉 =

√
nk + 1

√
nq

∣∣J kq

A , JB

〉
, (37)

â
†
kâ

†
s âl âq |JA(n), JB(n′)〉= â†

s âl

√
nk + 1

√
nq

∣∣J kq

A , JB

〉
=

√
nk+1

√
nq

√
ns+1

√
nl

∣∣J kslq

A , JB

〉
.

(38)

Similar expressions can be obtained for the action of the
intraspecies terms associated with the B subsystem. Clearly,
the interbosonic term, acting on a general configuration,
translates it to another one, weighted by the respective bosonic
prefactor:

â
†
kâq b̂

†
k′ b̂q ′ |JA(n), JB(n′)〉

=
√

nk + 1
√

nq

√
nk′ + 1

√
nq ′

∣∣J kq

A , J
k′q ′
B

〉
. (39)
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Having verified that the actions of intra- and interspecies
terms of the bosonic operators on a general configuration
result in its readdressing with some scaling prefactors, we can
explicitly express the result of the action of the Hamiltonian
on a state vector, Eq. (29); that is, to sum up the contributions
from all the terms of Eq. (27),

Ĥ (AB)|�(AB)〉 =
NA

conf∑
JA=1

NB
conf∑

JB=1

CĤ (AB)

JAJB
|JA(n), JB (n′)〉

(40)
CĤ (AB)

JAJB
= CĤ (A)

JAJB
+ CĤ (B)

JAJB
+ CŴ (AB)

JAJB
,

where CĤ (A)
and CĤ (A)

can be deduced from Eqs. (22)–(26)
and the CŴ (AB)

JAJB
can be derived using Eq. (39) in a way very

similar to that done in Eq. (36).
We conclude that the operation of the Hamiltonian rep-

resenting a binary mixture of bosons on a state vector can
be performed directly without constructing the respective
Hamiltonian matrix.

C. Mixture of bosons and fermions

In the two preceding subsections, we have seen that
effective and efficient operations and manipulations with state
vectors of a binary mixture of bosons or a binary mixture
of fermions are possible without resorting to the matrix
representation of the respective operators. Actually, the final
Eqs. (35) and (40) for Ĥ (AB)|�(AB)〉 are almost identical, with
the only exception of the enumeration scheme used to address
fermionic and bosonic configurations. In the Fermi-Fermi
case, we use the positions of the holes i, i′ of the A and
B subsystems to specify the fermionic configurations and
Eq. (6) to compute the indices of the two-component address of
the mixture, whereas in the Bose-Bose case, we utilize bosonic
occupation numbers n, n′ to specify the bosonic configurations
and Eq. (20) to compute the components of the respective
address. The goal of this subsection is to demonstrate, for
completeness, the validity and applicability of the theory to a
mixed system of bosons and fermions.

Let A be the fermionic subsystem and B be the bosonic one.
Now, to specify the general configuration | �J 〉 ≡ |JA(i), JB(n)〉,
one has to provide a set of the fermionic holes (i1, i2, . . . , iMA

v
)

and a set of the bosonic occupation numbers (n1, n2, . . . , nMB
).

The two-component address of this configuration is defined by
the two numbers JA(i) and JB(n) computed using Eqs. (6) and
(20), respectively.

Clearly, the operation of the one- and two-body fermionic
terms on the general configuration changes the positions of
the fermionic holes and does not affect the bosonic occupation
numbers. In other words, only the first (fermionic) index of
the two-component address | �J 〉 is changed, like in Eqs. (30)
and (31). Similarly, the action of the pure bosonic terms on
a general configuration readdresses only the bosonic index,
analogously to Eqs. (37) and (38). The Bose-Fermi interaction
terms lead to the change of both fermionic and bosonic parts
of the two-component address:

â
†
kâq b̂

†
k′ b̂q ′ |JA(i), JB(n)〉

= (−1)d
kq

JA

√
nk′ + 1

√
nq ′

∣∣J kq

A , J
k′q ′
B

〉
, k ∈ i, q �∈ i.

(41)

Every configuration characterized by i = (i1, i2, . . . , iMA
v

)
and n = (n1, n2, . . . , nMB

) and therefore having the address
(JA(i), JB(n)) is translated to a configuration (J kq

A , J
k′q ′
B )

where the kth fermionic hole was filled and a new hole at q

was created, that is, (i1, . . . , q, . . . , iMA
v

), and simultaneously
one boson from bosonic orbital q ′ was transfered to orbital k′,
that is, (n1, . . . , nk′ + 1, . . . , nq ′ − 1, . . . , nMB

).
The action of any term of the Bose-Fermi Hamiltonian

on a general configuration leads to its translation, that is,
readdressing with some known prefactor. This allows us to
apply the developed theory and write down the result of the
action of the Hamiltonian on a state vector of the system as
follows:

Ĥ (AB)|�(AB)〉 =
NA

conf∑
JA=1

NB
conf∑

JB=1

CĤ (AB)

JAJB
|JA(i), JB(n)〉 ,

(42)
CĤ (AB)

JAJB
= CĤ (A)

JAJB
+ CĤ (B)

JAJB
+ CŴ (AB)

JAJB
,

where the contributions CĤ (A)
and CĤ (B)

from the actions of
the intraspecies Hamiltonians can be deduced from Eqs. (8)–
(12) and Eqs. (22)–(26), respectively. The results of the action
of the Bose-Fermi interactions CŴ (AB)

JAJB
can be derived using

Eq. (41) in a way very similar to that done in Eq. (36).

D. More components

In the previous subsections, we have shown that the total
configurational spaces of quantum systems made of two kinds
of particles, that is, Fermi-Fermi, Bose-Bose, and Bose-Fermi
mixtures, can be labeled by two-component vector index
�J = (JA, JB ). A system with a larger number of components

can be addressed by a multicomponent vector index �J =
(JA, JB, JC, . . .). Then, all the experience collected here can
be expanded to these systems as well. The only constrain is
that the total number of particles of each kind is conserved,
that is, there are no terms in the Hamiltonian leading to particle
conversion. We recall that, depending on the quantum statistics
of the subsystem (i.e., whether we are dealing with fermions
or bosons), we apply different schemes to enumerate the
respective configurations. Both derived enumeration schemes,
that is, Eq. (6) for fermions and Eq. (20) for bosons, are
applicable only if NA = const, NB = const, NC = const, . . ..
We just mention here that a generalization of the presented
enumeration schemes can be adopted also to systems with
particle conversion. This issue is out of the scope of the present
study.

The most relevant conclusion is that for multicomponent
Hamiltonians the action of each term on a state vector leads to
readdressing the configurations with some quantum-statistics-
dependent but simple and known prefactors. We can find the
results of actions of each of these terms on the state vector
independently. The total action of the Hamiltonian is obtained
by summing over all the resulting vectors. Having at hand the
initial and resulting state vectors, we can readily compute the
expectation value of the Hamiltonian as a simple dot product
of these two vectors.
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V. REMARKS ON IMPLEMENTATION

Here, to discuss a strategy for a practical implementation
of the ideas presented in all previous sections, we refer
to the single-component bosonic or fermionic system. To
define the system means to specify the number of particles
N , their quantum statistics, and the number of the orbitals
M . The integrals hkq and Wksql specify the Hamiltonian or
any other operator of interest. Depending on the type of the
quantum statistics, the N and M define the length of the state
vector Nconf according to Eqs. (4) or (18), respectively. It is
equal to the number of the elements in the one-dimensional
vector-array of complex numbers {CJ }Nconf

J=1 representing the
state vector |�〉 of the system.

Now we explain basic computational steps needed to get
the result of the action of the Hamiltonian on a state vector.
As a first step, for a given incoming state vector |�〉, that is,
a vector-array of expansion coefficients {CJ }Nconf

J=1 , the action
of every pair or quartet of creation and annihilation operators
is evaluated using Eqs. (8) and (9) for fermionic or Eqs. (22)
and (23) for bosonic systems. The result of the action of each
such operator on a state vector is another state vector; that is,
as an outcome we get again a one-dimensional vector-array
of some other complex numbers {C ′

J }Nconf
J=1 of the same length

Nconf . It is very important to stress that the action of each
of these operators can be computed independently, implying
an effective parallelization. For example, each available
computational node is designated to a specific pair or quartet
of creation and annihilation operators. Next, the incoming
array {CJ }Nconf

J=1 is broadcasted to every node, and the respective
actions take place, producing the resulting arrays. We apply
Eqs. (13) and (14) on each node to compute the corresponding
element of the reduced one- or two-body density matrices
as dot products of the incoming and respective resulting
vector-arrays. Then, by multiplying each and every element
of the resulting vector-array by the corresponding integral
hkq or Wksql , we get on each node the desired action of the
respective Hamiltonian term. Now, to sum up the resulting
vectors from all the nodes, we can use an appropriate collective
operation and get the desired total action of the Hamiltonian
on the incoming state vector. Finally, using Eq. (15), we easily
compute the expectation value of the Hamiltonian 〈�|Ĥ |�〉 as
a dot product of the total resulting and incoming state vectors.

This technique has several advantages. First of all, it does
not require the evaluation of the Hamiltonian matrix elements
in the given many-body basis set. Consequently, there is no
need to construct, store, and address these elements of the
Hamiltonian matrix at all. Second, the elements of the reduced
one- and two-body matrices are immediately and naturally
available. Third, this technique can be easily extended to
three- and higher body interaction potentials. Last but not
the least, such a strategy implies very effective parallelization
schemes, which are of high demand in modern computational
physics. Finally, in the formulation of this method we did
not specify explicitly the hkq and Wksql numbers; therefore,
it is valid for general many-body Hamiltonians or for any
other operators represented in the second quantization form.
Consequently, this scheme can be successfully applied to
standard real-space Hamiltonians as well as to discrete ones
(e.g., of the Bose-Hubbard type). The derivations of the

readdressing scheme have been done for the full Fock subspace
spanned by permutation of N particles over M orbitals, but in
principle, any selected subspace can be used. For example, an
implementation of additional constraints on possible excitation
patterns for fermions or restrictions on occupancies of the
higher bosonic orbitals leads to considerable reduction of
the respective configurational subspaces. In these cases, the
enumeration schemes derived previously have to be modified
accordingly. Moreover, one has to pay additional attention to
the readdressing cases leading beyond the selected configura-
tional subspace. This opens, on the other hand, a new vision
on size-consistency issues [8,13]; it can be now explicitly
considered and analyzed.

The present mapping, as mentioned before, assumes the
integrals hkq and Wksql to be known. In relevant computations,
these integrals are evaluated from self-consistent or even from
time-dependent one-body functions (orbitals) that have to be
computed “on the fly”. It is relevant to discuss the usefulness
of the present formalism in this situation as well. We have
already implemented the present mapping for interacting
bosons (see Refs. [10,11]), where we treated their rich
many-body dynamics utilizing a few million time-dependent
configurations assembled from up to M = 12 orbitals. There
was no difficulty in this case at all to compute for each and
every time point the time-dependent orbitals underlying the
integrals hkq and Wksql . These computations were practically
impossible without the present mapping.

VI. SUMMARY AND CONCLUSIONS

In this article, we provide a novel, effective, and general
technique to construct the result of the action of any particle-
conserving operator represented in the second quantized form
on a many-body state vector. Within a standard framework,
one represents the corresponding operator in a matrix form
and obtains the desired action of the operator by applying a
matrix-to-vector multiplication. We have shown that the same
result can be reached without even referring to the respective
matrix elements. Considering configurations as coordinates
of the many-body state vector, we first demonstrated that the
action of any even combination of creation and annihilation
operators on a configuration translates or readdresses it to
another configuration. In other words, we have seen that
such an action is equivalent to permutation of coordinates
of the initial state vector, weighted by some trivial prefactors.
The total action of any operator, represented in the second
quantized form on a state vector, is a sum of the actions of all
its terms.

Next, for a full subspace of the configurational space
spanned by permutation of N fermions over M orbitals,
we present a simple and compact scheme to enumerate the
fermionic configurations according to the given set of the
holes’ positions. Then, using the formal isomorphism between
the configurational spaces formed by this fermionic system and
the system of N bosons distributed over the corresponding
number of bosonic orbitals, we invent a simple and compact
scheme to enumerate bosonic configurations according to the
given set of the bosonic occupation numbers. Using these
enumeration algorithms, we directly construct the result of the
action of any pair or quartet of the annihilation and creation
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operators on a state vector. Moreover, the respective matrix
elements of the reduced one- and two-body density matrices
are naturally available as simple dot products of the initial
and resulting state vectors. This allows us to combine the
total action of the Hamiltonian as a sum of all its terms into
simple and compact formulas, which can be directly im-
plemented and permit straightforward parallelization. The
proposed ideas to operate with fermionic and bosonic Hamil-
tonians have been directly extended to binary mixtures of
fermions and of bosons as well as to Bose-Fermi mixtures. We
have also shown that the same ideas can be naturally applied
to systems made of a larger number of components as well.

Finally, since the Ĥ |�〉 is the basic building block ap-
pearing in the computations of statical properties as well as

of the evolution dynamics of many-body systems, we expect
that the implementation of the theory into the respective
computational approaches will increase their efficiency and
enable applications to systems made of larger number of
particles than currently possible. Indeed, the proposed ideas
have recently been implemented for bosonic systems [10,11]
within the MCTDHB [12], and applications to multiboson
long-time dynamics in double-well [10] and triple-well [11]
traps have already been performed successfully.
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