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A basic assumption behind the inequalities used for testing noncontextual hidden variable models is that
the observables measured on the same individual system are perfectly compatible. However, compatibility
is not perfect in actual experiments using sequential measurements. We discuss the resulting “compatibility
loophole” and present several methods to rule out certain hidden variable models that obey a kind of extended
noncontextuality. Finally, we present a detailed analysis of experimental imperfections in a recent trapped-ion
experiment and apply our analysis to that case.
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I. INTRODUCTION

Since the early days of quantum mechanics (QM), it has
been debated whether QM can be completed with additional
hidden variables (HVs), which would eventually account for
the apparent indeterminism of the results of single measure-
ments in QM and may lead to a more detailed deterministic
description of the world [1–3]. The problem of distinguishing
QM from HV theories, however, cannot be addressed unless
one makes additional assumptions about the structure of the
HV theories. Otherwise, for a given experiment, one can just
take the observed probability distributions as a HV model [4].
Moreover, there are explicit HV theories, such as Bohmian
mechanics [5,6], which can reproduce all experiments up to
date.

In the 1960s, it was learned that HV models reproducing
the predictions of QM should have some peculiar and
highly nonclassical properties. The most famous result in
this direction is Bell’s theorem [7]. Bell’s theorem states that
local HV models cannot reproduce the quantum-mechanical
correlations between local measurements on some entangled
states. In principle, the theorem just states a conflict between
two descriptions of the world: QM and local HV models.
However, the proof of Bell’s theorem by means of an
inequality involving correlations between measurements on
distant systems, which is satisfied by any local HV model, but
is violated by some quantum predictions [8], allows us to take
a step further and test whether the world itself can be described
by local HV models [9–13]. More recently, a similar approach
has been used to test whether the world can be reproduced
with some specific nonlocal HV models [14–16].

A second seminal result on HV models reproducing QM is
the Kochen-Specker (KS) theorem [17–19]. To formulate it,
one first needs the notion of compatible measurements: two or
more measurements are compatible if they can be measured
jointly on the same individual system without disturbing
each other (i.e., without altering their results). Compatible
measurements can be made simultaneously or in any order and
can be repeated any number of times on the same individual

system and always must give the same result independently of
the initial state of the system.

Second, one needs the notion of noncontextuality. A context
is a set of compatible measurements. A physical model is
called noncontextual if it assigns to a measurement a result
independent of which other compatible measurements are
carried out. There are some scenarios where the assumption
of noncontextuality is especially plausible, for instance, in the
case of measurements on distant systems or in the case where
the measurements concern different degrees of freedom of
the same system and the degrees of freedom can be accessed
independently.

In a nutshell, the KS theorem states that noncontextual
HV models cannot reproduce QM. This impossibility occurs
already for a single three-level system, so it is not related to
entanglement.

There have been several proposals to test the KS theorem
[20–24], but there also have been debates about whether
the KS theorem can be experimentally tested at all [25–34].
Nevertheless, first experiments have been performed, but these
experiments required some additional assumptions [35–38].
Furthermore, the notion of contextuality has been extended to
state preparations [39] and experimentally investigated [40].

Quite recently, several inequalities have been proposed
which hold for all noncontextual models, but are violated
in QM, potentially allowing for a direct test [41–44]. A
remarkable feature of some noncontextuality inequalities is
that the violation is independent of the quantum state of the
system [43,44]. In this article we will call these inequalities
KS inequalities, since the proof of the KS theorem in Ref. [19]
is also valid for any quantum state of the system. Very recently,
several experiments have found violations of noncontextual in-
equalities [38,45–48]. Three of these experiments have found
violations of a KS inequality for different states [45,46] or for
a single (maximally mixed) state [48]. In these experiments,
compatible observables are measured sequentially.

The measurements in any experiment are never perfect.
In tests of noncontextuality inequalities, these imperfections
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OTFRIED GÜHNE et al. PHYSICAL REVIEW A 81, 022121 (2010)

can be interpreted as a failure of the assumption that the
observables measured sequentially on the same system are
perfectly compatible. What if this compatibility is not per-
fect? We will refer to this problem as the “compatibility
loophole.” The main aim of this article is to give a detailed
discussion of this loophole and demonstrate that, despite this
loophole, classes of HV models which obey a generalized
definition of noncontextuality can still be experimentally
ruled out.

The article is organized as follows: In Sec. II we give precise
definitions of compatibility and noncontextuality, focusing on
the case of sequential measurements. We also review some
inequalities which have been proposed to test noncontextual
HV models.

In Sec. III we discuss the case of imperfectly compatible
observables. We first derive an inequality which holds for any
HV model; however, this inequality is not experimentally
testable. Then, we consider several possible extensions of
noncontextuality. By that, we mean replacing our initial
assumption of noncontextuality for perfectly compatible ob-
servables with a new one, which covers also nearly compatible
observables and implies the usual noncontextuality if the
measurements are perfectly compatible. We then present
several experimentally testable inequalities which hold for
HV models with some generalized version of noncontextuality,
but which are violated in QM. One of these inequalities has
already been found to be violated in an experiment [45]. In
Sec. IV we present details of this experiment.

In Sec. V we present two explicit contextual HV models
which violate all investigated inequalities. These models,
which do not satisfy the assumptions of extended noncon-
textuality, are useful in understanding which counterintuitive
properties a HV model must have to reproduce the quantum
predictions. Other contextual HV models for contextuality
experiments have been proposed in Ref. [49]. Finally, in
Sec. VI, we conclude and discuss consequences of our work
for future experiments.

II. HIDDEN VARIABLE MODELS AND
NONCONTEXTUALITY

A. Joint or sequential measurements

In the scenario originally used for discussing noncontextu-
ality [19], a measurement device is treated as a single device
producing outcomes for several compatible measurements
(i.e., a context). When treating the measurement device in this
manner, the whole context is needed to produce any output
at all. In this joint measurement, one of the settings of the
measurement device is always specifically associated with one
of the outcomes, in the sense that another measurement device
exists that takes only that setting as input and gives an identical
outcome as output. This is checked by repeatedly making a
joint measurement and the corresponding compatible single
measurements in any possible order. This is at the basis of
the noncontextuality argument. The argument goes as follows:
Precisely because another contextless device exists that can
measure the outcome of interest, there is good reason to assume
that this outcome is independent of the context in the joint
measurement.

In this article we discuss sequential individual measure-
ments, rather than joint measurements. It might be argued
that the version of the noncontextuality assumption needed
in this scenario is more restrictive on the HV model
than the version used for joint measurements. This would
mean that a test using a sequential setup would be weaker
than a test using a joint-measurement setup, because it would
rule out fewer HV models. However, the motivation for
assuming noncontextuality even in the joint-measurement
setup is the existence of the individual measurements and
their compatibility and repeatability when combined with joint
context-requiring measurements. Therefore, the assumptions
needed in the sequential-measurement setting are equally well
motivated as the assumptions needed in the joint-measurement
setting.

In fact, the sequential setting is closer to the actual mo-
tivation of assuming noncontextuality: There exist individual
contextless measurement devices that give the same results
as the joint measurements, and we actually use them in ex-
periment. Furthermore, from an experimental point of view, a
changed context in the joint-measurement device corresponds
to a physically entirely different setup even for the unchanged
setting within the context, so it is difficult to maintain that the
outcome for the unchanged setting is unchanged from physical
principles [18,50]. Motivating physically unchanged outcomes
is much easier in the sequential setup, since the device used is
physically identical for the unchanged setting.

Therefore, in this article we consider the situation where
sequences of measurements are made on an individual physical
system. Throughout the article, we consider only dichotomic
measurements with outcomes ±1, but the results can be
generalized to arbitrary measurements. The question is: Under
which conditions can the results of such measurements be
explained by a HV model? More precisely, we ask which
conditions a HV model has to violate in order to reproduce the
quantum predictions.

B. Notation

The following notation will be used in the discussed
HV models: λ is the HV, drawn with a distribution p(λ) from
a set �. The distribution summarizes all information about
the past, including all preparation steps and all measurements
already performed. Causality is assumed, so the distribution is
independent of any event in the future. It rather determines all
the probabilities of the results of all possible future sequences
of measurements. We assume that, for a fixed value of the
HV, the outcomes of future sequences of measurements are
deterministic; hence, all indeterministic behavior stems from
the probability distribution. This is similar to the investigation
of Bell inequalities, where any stochastic HV model can
be mapped onto a deterministic one where the HV is not
known [4,51].

In an experiment, one first prepares a “state” via certain
preparation procedures (which may include measurements).
One always regards a state preparation as a procedure that
can be repeated. At the HV level, it will therefore lead to
an experimentally accessible probability distribution pexpt(λ).
The HV model hence enables the experimenter to repeatedly
prepare the same distribution. In a single instance of an
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experiment, one obtains a state determined by a single value
λ of the HV. The probability for this instance is distributed
according to the distribution pexpt(λ) and reflects the inability
of the experimenter to control which particular value of the
HVs has been prepared in a single instance.

Continuing, we denote by Ai the measurement of the
observable (or measurement device) A at the position i

in the sequence. For example, A1B2C3 denotes the se-
quence of measuring A first, then B, and finally C.
An outcome from a measurement of, for example, B2

from the preceding sequence is denoted v(B2|A1B2C3).
The product of three outcomes is denoted v(A1B2C3) =
v(A1|A1B2C3)v(B2|A1B2C3)v(C3|A1B2C3). Given a proba-
bility distribution p(λ), we write probabilities p(B+

2 |A1B2C3)
[or p(B+

2 C−
3 |A1B2C3)] for the probability of obtaining

the value B2 = +1 (and C3 = −1) when the sequence
A1B2C3 is measured. One can also consider mean val-
ues like 〈B2|A1B2C3〉 = p(B+

2 |A1B2C3) − p(B−
2 |A1B2C3) or

the mean value of the complete sequence, 〈A1B2C3〉 =
p[v(A1B2C3) = +1] − p[v(A1B2C3) = −1].

C. Compatibility of measurements

In the simplest case, compatibility is a relation between a
pair of measurements, A and B. For that, let SAB denote the
(infinite) set of all sequences that use only measurements of A

and B; that is, SAB = {A1, B1, A1A2, A1B2, B1A2, . . .}. Then
we formulate the following.

Definition 1. Two observables A and B are compatible if
the following two conditions are fulfilled:

(i) For any instance of a state (i.e., for any λ) and for any
sequence S ∈ SAB, the obtained values of A and B remain the
same,

v(Ak|S) = v(Al|S), (1a)

v(Bm|S) = v(Bn|S), (1b)

where k, l, m, and n are all possible indices for which the
considered observable is measured at the positions k, l, m,
and n in the sequence S. [Equivalently, we could require that
p(A+

k A−
l |S) = 0, etc., for all preparations corresponding to

some pexpt(λ).]
(ii) For any state preparation [i.e., for any pexpt(λ)], the

mean values of A and B during the measurement of any two
sequences S1, S2 ∈ SAB are equal,

〈Ak|S1〉 = 〈Al|S2〉, (2a)

〈Bm|S1〉 = 〈Bn|S2〉. (2b)

Clearly, conditions (i) and (ii) are necessary conditions
for compatible observables in the sense that two observ-
ables which violate any of them cannot reasonably called
compatible.

It is important to note that the compatibility of two
observables is experimentally testable by repeatedly preparing
all possible pexpt(λ). The fact that this set is infinite is not a
specific problem here, as any measurement device or physical
law can only be tested in a finite number of cases. A crucial
point in a HV model is that the set of all experimentally
accessible probability distributions pexpt(λ) might not coincide
with the set of all possible distributions p(λ). We will discuss
this issue in Sec. III D.

It should be noted that the conditions (i) and (ii) are not
minimal (cf. the Appendix for a discussion). In particular,
we emphasize that (ii) does not necessarily follow from
(i), as we illustrate by the following example: Consider a
HV model where, for any λ, all v(Ak|S) are +1 when the
first measurement in S is A1, while they are −1 when the first
measurement is B1. The values v(Bm|S) are always +1. Then
condition (i) is fulfilled while (ii) is violated, since 〈A〉 = 1
but 〈A2|B1A2〉 = −1.

Let us compare our definition of compatibility to the notion
of “equivalent measurements” introduced by Spekkens in
Ref. [39]. In this reference, two measurements are called
equivalent if, for any state preparation, the probability distri-
butions of the measurement outcomes for both measurements
are the same. This is similar to our condition (ii) but
disregards repeated measurements on individual systems as in
(i). Interestingly, using this notion and positive operator-valued
measures (POVMs), one can prove the contextuality of a
quantum-mechanical two-level system [39].

Finally, it should be added that the notion of compatibility
is extended in a straightforward manner to three or more
observables. For instance, if three observables A, B, and C are
investigated, one considers the set SABC of all measurement
sequences involving measurements of A, B, or C and extends
the conditions (i) and (ii) in an obvious way. This is equivalent
to requiring the pairwise compatibility of A, B, and C (cf. the
Appendix).

D. Definition of noncontextuality for sequential
measurements

Noncontextuality means that the value of any observable
A does not depend on which other compatible observables
are measured jointly with A. For our models, we formulate
noncontextuality as a condition on a HV model as follows.

Definition 2. Let A and B be observables in a HV model,
where A is compatible with B. We say that the HV model is
noncontextual if it assigns, for any λ, an outcome of A which
is independent of whether B is measured before or after A,

that is,

v(A1) = v(A2|B1A2). (3)

Hence, for these sequences we can write v(A) as being
independent of the sequence. If the condition is not fulfilled,
we call the model contextual.

It is important to note that the condition (3) is an
assumption about the model and—contrary to the definition
of compatibility—not experimentally testable. This is due to
the fact that for a given instance of a state (corresponding
to some unknown λ) the experimenter has to decide whether
to measure A or B first.

From this definition and the time ordering, it follows
immediately that, if A is compatible with B and A is also
compatible with C, then for noncontextual models

v(A1|A1B2) = v(A2|B1A2) = v(A1|A1C2) = v(A2|C1A2)

(4)

holds. This is the often-used definition of noncontextual
models, stating that the value of A does not depend on whether
B or C is measured before, jointly with, or after it.
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This definition can directly be extended to three or more
compatible observables. For instance, if {A,B,C} are com-
patible, then noncontextuality means that for any λ,

v(A1) = v(A2|B1A2) = v(A2|C1A2)

= v(A3|B1B2A3) = v(A3|B1C2A3)

= v(A3|C1B2A3) = v(A3|C1C2A3). (5)

Of course, the equalities in the second and third lines follow
if the first line holds for any λ and the HV model allows the
measurement of B1 or C1 to be seen as a preparation step.
Again, if {A, a, α} is another set of compatible observables,
one can derive consequences similar to Eq. (4).

E. Inequalities for noncontextual HV models

Here we will discuss several previously introduced inequal-
ities involving compatible measurements, which hold for any
noncontextual HV model, but which are violated for certain
states and observables in QM. Later, these inequalities are
extended to the case where the observables are not perfectly
compatible.

1. Clauser-Horne-Shimony-Holt (CHSH)-like inequality

To derive a first inequality, consider the mean value

〈χCHSH〉 = 〈AB〉 + 〈BC〉 + 〈CD〉 − 〈DA〉. (6)

If the measurements in each average are compatible [i.e.,
the pairs (A,B), (B,C), (C,D), and (D,A) are compatible
observables)], then a noncontextual HV model has to assign a
fixed value to each measurement, and the model predicts

|〈χCHSH〉| � 2. (7)

In QM, on a two-qubit system, one can take the observables

A = σx ⊗ 1, B = 1 ⊗ (σz + σx)√
2

,

(8)

C = σz ⊗ 1, D = 1 ⊗ (σz − σx)√
2

,

then the measurements in each sequence are commuting and
hence compatible, but the state

|φ+〉 = (|00〉 + |11〉)/
√

2 (9)

leads to a value of 〈χCHSH〉 = 2
√

2, therefore not allowing any
noncontextual description. The choice of the observables in
Eq. (8) is, however, by no means unique, if one transforms all
of them via the same global unitary transformation, another
set is obtained, and the state leading to the maximal violation
does not need to be entangled. In fact, the two-qubit notation
is only chosen for convenience and could be replaced with a
formulation with a single party using a four-level system. For
example, if we take the observables

A = σx ⊗ σx, B = 1√
2

⎛
⎜⎜⎜⎝

1 1 0 0

1 −1 0 0

0 0 −1 1

0 0 1 1

⎞
⎟⎟⎟⎠ ,

C = σz ⊗ 1, D = 1√
2

⎛
⎜⎜⎜⎝

1 −1 0 0

−1 −1 0 0

0 0 −1 −1

0 0 −1 1

⎞
⎟⎟⎟⎠ , (10)

then the measurements in each sequence are commuting and
hence compatible, but the product state

|�〉 = |x+〉|0〉 = (|00〉 + |10〉)/
√

2 (11)

leads to a value of 〈χCHSH〉 = 2
√

2, therefore not allowing any
noncontextual description.

2. The Klyachko, Can, Binicioğlu, and Shumovsky (KCBS)
inequality

As a second inequality, we take the pentagram inequality in-
troduced by Klyachko, Can, Binicioğlu, and Shumovsky [42].
Here, one takes five dichotomic observables and considers

〈χKCBS〉 = 〈AB〉 + 〈BC〉 + 〈CD〉 + 〈DE〉 + 〈EA〉. (12)

If the observables in each mean value are compatible and
noncontextuality is assumed, it can be seen that

〈χKCBS〉 � −3 (13)

holds. However, using appropriate measurements on a three-
level system, there are qutrit states which give a value of
〈χKCBS〉 = 5 − 4

√
5 ≈ −3.94, also leading to contradiction

with noncontextuality.

3. An inequality from the Mermin-Peres square

For the third inequality, we take the one introduced in
Ref. [43]. Consider the mean value

〈χKS〉 = 〈ABC〉 + 〈abc〉 + 〈αβγ 〉 + 〈Aaα〉
+ 〈Bbβ〉 − 〈Ccγ 〉. (14)

If the measurements in each expectation value are compatible,
then any noncontextual HV model has to assign fixed values
to each of the nine occurring measurements. Then, one can see
that

〈χKS〉 � 4. (15)

However, on a two-qubit system, one can choose the observ-
ables of the Mermin-Peres square [52,53]

A = σz ⊗ 1, B = 1 ⊗ σz, C = σz ⊗ σz,

a = 1 ⊗ σx, b = σx ⊗ 1, c = σx ⊗ σx,

α = σz ⊗ σx, β = σx ⊗ σz, γ = σy ⊗ σy.

(16)

The observables in any row or column commute and are
therefore compatible. Moreover, the product of the observables
in any row or column equals 1, apart from the rightmost
column, where it equals −1. Hence, for any quantum
state,

〈χKS〉 = 6 (17)

holds. The remarkable fact in this result is that it shows
that any quantum state reveals nonclassical properties if the
measurements are chosen appropriately.
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III. NOT PERFECTLY COMPATIBLE MEASUREMENTS

In any real experiment, the measurements will not be
perfectly compatible. Hence, the notion of noncontextual-
ity does not directly apply. The experimental violation of
inequalities like (7), (13), and (15) proves that one cannot
assign to the measurement devices independent outcomes ±1.
However, a model that is not trivially in conflict with QM
also has to explain the measurement results of sequences of
incompatible observables, such as, for example, the results
from measuring A1C2 for the observables of the CHSH-like
inequality. Therefore, it is not straightforward to find out what
the implications of these violations on the structure of the
possible HV models are. The reason is that the assumption that
incompatible measurements have predetermined independent
outcomes is not physically plausible.

To deal with this problem, we will derive extended versions
of the inequalities (7), (13), and (15), which are valid even
in the case of imperfect compatibility. We will first derive an
inequality which is an extension of inequality (7) and which
holds for any HV model. This inequality, however, contains
terms which are not experimentally accessible. Then, we
investigate how these terms can be connected to experimental
quantities, if certain assumptions about the HV model are
made. We will present three types of testable inequalities, the
first two start from condition (i) of Definition 1, while the third
one uses condition (ii).

First we consider nearly compatible observables. We show
that if the observables fulfill the condition (i) of Definition
1 to some extent and if assumptions about the dynamics of
probabilities in a HV model are made, then these HV models
can be experimentally refuted.

In the second approach, we consider the case that a certain
finite number of compatibility tests has been made. For
some runs of the experiment the tests are successful [i.e.,
no error occurs when checking condition (i)], and in some
runs errors occur. We then assume that the subset of HVs
where noncontextuality holds is at least as large as the subset
where the compatibility tests are successful. We then show that
HV models of this type can, in principle, be refuted experi-
mentally.

Finally, in the third approach, we also consider assumptions
about the possible distributions pexpt(λ) and show that if the
condition (ii) of Definition 1 is nearly fulfilled, then again this
type of HV model can experimentally be ruled out.

We will discuss these approaches using the CHSH-like
inequality (7). At the end of the section, we will also explain
how the inequalities (13) and (15) have to be modified, in order
to test these different types of HV models.

A. CHSH-like inequality for all HV models

To start, consider a HV model with a probability distribution
p(λ) and let p[(A+

1 |A1) and (B+
1 |B1)] denote the probability

of finding A+ if A is measured first and B+ if B is measured
first. This probability is well defined in all HV models of the
considered type, but it is impossible to measure it directly, as
one has to decide whether one measures A or B first. Our
aim is now to connect it to probabilities arising in sequential
measurements, as this will allow us to find contradictions
between HV models and QM.

First, note that

p[(A+
1 | A1) and (B+

1 |B1)] � p[A+
1 , B+

2 |A1B2]

+p[(B+
1 |B1) and (B−

2 |A1B2)]. (18)

This inequality is valid because if λ is such that it contributes
to p[(A+

1 |A1) and (B+
1 |B1)], then either the value of B

stays the same when measuring A1B2 (hence λ contributes
to p[A+

1 , B+
2 |A1B2]) or the value of B is flipped and λ

contributes to p[(B+
1 |B1) and (B−

2 |A1B2)]. The first term
p[A+

1 , B+
2 |A1B2] is directly measurable as a sequence, but

the second term is not experimentally accessible.
Let us rewrite

〈AB〉 = 1 − 2p[(A+
1 |A1) and (B−

1 |B1)]

− 2p[(A−
1 |A1) and (B+

1 |B1)] (19)

as the mean value obtained from the probabilities
p[(A±

1 |A1) and (B±
1 |B1)]. Then, using Eq. (18), it follows that

〈A1B2〉 − 2pflip[AB] � 〈AB〉 � 〈A1B2〉 + 2pflip[AB], (20)

where we used pflip[AB] = p[(B+
1 |B1) and (B−

2 |A1B2)] +
p[(B−

1 |B1) and (B+
2 |A1B2)]. This pflip[AB] can be inter-

preted as a probability that A flips a predetermined value of B.
Furthermore, using Eqs. (6) and (7), we obtain

|〈XCHSH〉| � 2(1 + pflip[AB] + pflip[CB]

+ pflip[CD] + pflip[AD]), (21)

where

〈XCHSH〉 := 〈A1B2〉 + 〈C1B2〉 + 〈C1D2〉 − 〈A1D2〉. (22)

Inequality (21) holds for any HV model and is the general-
ization of inequality (7). Note that for perfectly compatible
observables, the flip terms in inequality (21) vanish if the
assumption of noncontextuality is made. Then this results in
inequality (7).

B. First approach: Constraints on the disturbance and the
dynamics of the HV

The terms pflip[AB], etc., in inequality (21) are not
experimentally accessible. Now we will discuss how they can
be experimentally estimated when some assumptions on the
HV model are made.

In order to obtain an experimentally testable version of
inequality (21), we will assume that

p[(B+
1 B1) and (B−

2 |A1B2)]

� p[(B+
1 |B1) and (B+

1 , B−
3 |B1A2B3)]

≡ p[B+
1 , B−

3 |B1A2B3]. (23)

This assumption is motivated by the experimental procedure:
Let us assume that one has a physical state, for which one
surely finds B+

1 if B1 is measured first, but finds B−
2 if the

sequence A1B2 is measured. Physically, one would explain this
behavior as a disturbance of the system due to the experimental
procedures when measuring A1. The left-hand side of Eq. (23)
can be viewed as the amount of this disturbance. The right-
hand side quantifies the disturbance of B when the sequence
B1A2B3 is measured. In real experiments, it can be expected
that this disturbance is larger than when measuring A1B2,
because of the additional experimental procedures involved.
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Note that in real experiments, a measurement of B will also
disturb the value of B itself, as can be seen from the fact that
sometimes the values of B1 and B2 will not coincide, if the
sequence B1B2 is measured.

It should be stressed, however, that we do not assume
that the set of HV values giving [(B+

1 |B1) and (B−
2 |A1B2)] is

contained in the set giving (B+
1 , B−

3 |B1A2B3); the assumption
only relates the sizes of these two sets.

In addition, by similar reasoning, assumption (23) may be
relaxed to

p[(B+
1 |B1) and (B−

2 |A1B2)] � p[B+
1 , B−

k |B1SAk−1Bk],

(24)

where S is a given finite sequence of measurements from SAB.

Again, if the measurements are nearly compatible, this type of
HV model can be ruled out experimentally.

Assumption (23) gives an measurable upper bound to
pflip[AB]. One directly has

|〈XCHSH〉| � 2(1 + perr[B1A2B3] + perr[B1C2B3]

+perr[D1C2D3] + perr[D1A2D3]), (25)

where we used

perr[B1A2B3] = p[B+
1 , B−

3 |B1A2B3]

+p[B−
1 , B+

3 |B1A2B3], (26)

denoting the total disturbance probability of B when measur-
ing B1A2B3.

The point of this inequality is that if the observable
pairs (A,B), (C,B), (C,D), and (A,D) fulfill approx-
imately the condition (i) in the definition of compati-
bility, the terms perr will become small, and a viola-
tion of inequality (25) can be observed. In Ref. [45] it
was found that 〈XCHSH〉 − 2(perr[B1A2B3] + perr[B1C2B3] +
perr[D1C2D3] + perr[D1A2D3]) = 2.23(5). Hence, this ex-
periment cannot be described by HV models which fulfill
Eq. (23) (see also Sec. IV).

C. Second approach: Assuming noncontextuality for the set of
HVs where the observables are compatible

Let us discuss a different approach to obtaining experimen-
tally testable inequalities. For that, consider the case that the
experimenter has measured a (finite) set of sequences in SAB

in order to test the validity of condition (i) in the definition
of compatibility. He finds that the conditions are violated or
fulfilled with certain probabilities. In terms of the HV model,
there is a certain subset �AB ⊂ � of all HVs where all tests
in the finite set of experimentally performed compatibility
tests succeed and where through the observed probabilities the
experimenter can estimate the volume of this set.

In this situation, one can assume that, for each HV λ ∈ �AB

(where all the measured compatibility requirements are ful-
filled), the assumption of noncontextuality is also valid. More
precisely, one can assume that v(A1|A1B2) = v(A2|B1A2)
in Eq. (3) holds for all λ ∈ �AB . One may support this
assumption if one considers noncontextuality as a general
property of nature, since this is the usual noncontextuality
assumption for the HV model where the HVs are restricted to
�AB.

To see that this assumption leads to an experimentally
testable inequality, consider the case where the experimenter
has tested all sequences up to length 3, that is all sequences
from S (3)

AB = {A1A2A3, A1A2B3, . . . , B1B2B3}, and has
determined, for each of them, the probability perr(S) that
some measurement, which is performed two or three times
in the sequence, is disturbed. For sequences like B1A2B3,
this is exactly perr[B1A2B3] defined in Eq. (26). However,
now we have additional error terms like perr[B1B2A3] =
p[B+

1 , B−
2 |B1B2A3] + p[B−

1 , B+
2 |B1B2A3], perr[B1B2B3] =

1 − p[B+
1 , B+

2 B+
3 |B1B2B3] − p[B−

1 , B−
2 B−

3 |B1B2B3], etc.
These probabilities are not completely independent:
Due to the time ordering, a λ that contributes to
perr[B1B2A3] (or perr[A1A2B3]) will also contribute
to perr[B1B2B3] (or perr[A1A2A3]). Consequently, relations
like perr[B1B2A3] � perr[B1B2B3] hold.

Let us define

perr
[
S (3)

AB

] =
⎛
⎝ ∑

S∈S (3)
AB

perr[S]

⎞
⎠ − perr[B1B2A3]

−perr[A1A2B3]. (27)

Here, we have excluded two perr in the sum, as the λ’s which
contribute to them are already counted in other terms. With
this definition, for a given distribution pexpt(λ), a lower bound
to the probability of finding a λ where condition (i) from
Definition 1 is fulfilled is

p[�AB] � 1 − perr
[
S (3)

AB

]
. (28)

From that and the assumption that v(A1|A1B2) = v(A2|B1A2)
on �AB , it directly follows that

pflip[AB] � perr
[
S (3)

AB

]
, (29)

giving a measurable upper bound to pflip[AB]. Finally, the
experimentally testable inequality

|〈XCHSH〉| � 2
(
1 + perr

[
S (3)

AB

] + perr
[
S (3)

CB

]
+ perr

[
S (3)

CD

] + perr
[
S (3)

AD

])
(30)

holds. This inequality is similar to inequality (25), but it
contains more error terms. Nevertheless, a violation of this
inequality in ion-trap experiments might be feasible in the
near future (see Sec. IV).

This result deserves two further comments. First, in the
derivation we assumed a pointwise relation; namely, for
all λ ∈ �AB , the noncontextuality assumption v(A1|A1B2) =
v(A2|B1A2) holds. Of course, we could relax this assump-
tion by assuming only that the volume of the set where
v(A1|A1B2) = v(A2|B1A2) holds is not smaller than the
volume of �AB. Under this condition, Eq. (30) still holds.

Second, when comparing the second approach with the
first one, one finds that the first one is indeed a special case
of the second one. In fact, from a mathematical point of view,
the first approach is the same as the second one, if in the
second approach only the compatibility test S = B1A2B3 is
performed. Consequently, inequality (25) is weaker than (30).
However, note that the first approach came from a different
physical motivation. Further, assuming a pointwise relation for
the first approach is very assailable, as only one compatibility
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test is made. However, as we have seen, a relation between the
volumes suffices. A pointwise relation can only be motivated if
all experimentally feasible compatibility tests are performed.

D. Third approach: Certain probability distributions
cannot be prepared

The physical motivation of the third approach is as
follows: The experimenter can prepare different probability
distributions pexpt(λ) and check their properties. For instance,
he or she can test to what extent the condition (ii) in Definition
1 is fulfilled. However, in a general HV model there might be
probability distributions p(λ) that do not belong to the set of
experimentally accessible pexpt(λ). One might be tempted to
believe that this difference is negligible and that the properties
that can be verified for the pexpt(λ) hold also for some of the
p(λ). In this approach we will show that this belief can be
experimentally falsified. More specifically, we show that if
only four conditional probability distributions have the same
properties as all pexpt(λ), then a contradiction with QM occurs.

So let us assume that the experimenter has checked that
the observables A and B fulfill condition (ii) in Definition 1
approximately. He has found that

|〈B1|B1A2〉 − 〈B2|A1B2〉| � εAB (31)

for all possible (or at least a large number of) pexpt(λ).
This means that, for experimentally accessible distributions
pexpt(λ), one has that

|p(B+
1 |B1A2) − p(B+

2 |A1B2)| � εAB/2,

|p(B−
1 |B1A2) − p(B−

2 |A1B2)| � εAB/2, (32)

as can be seen by direct calculation.
Let us consider the flip probability pflip[AB] =

p[(B+
1 |B1) and (B−

2 |A1B2)] + p[(B−
1 |B1) and (B+

2 |A1B2)]
again. Here, the probability p stems from the initial probability
distribution p(λ). One can consider the conditional probability
distributions q±(λ) which arise from p(λ) if the result of B1 is
known. Physically, the conditional distributions describe the
situation for an observer who knows that the experimenter
has prepared p(λ) but has the additional information that
measurement of B1 will give +1 or −1. With that, we can
rewrite

pflip[AB] = q+(B−
2 |A1B2)p(B+

1 |B1)

+ q−(B+
2 |A1B2)p(B−

1 |B1). (33)

Now let us assume that these conditional probability distribu-
tions have the same properties as all accessible distributions
pexpt(λ). Then, the bounds in Eq. (32) also have to hold for
q±. Since p(B+

1 |B1) + p(B−
1 |B1) = 1, it follows directly that

pflip[AB] � εAB/2. Hence, under the assumption that some
conditional probability distributions in the HV model have
properties similar to those of the preparable pexpt(λ), the
inequality

〈XCHSH〉 � 2 + εAB + εCB + εCD + εAD (34)

holds. A violation of it implies that, in a possible
HV model, certain conditional probability distributions have
to be fundamentally different from experimentally preparable
distributions.

Again, this result deserves some comments. First, note
that the tested bound in Eq. (32) does not have to hold for
all probability distributions in the theory. In an experiment
testing Eq. (34) with some p̂expt(λ), only assumptions about
four conditional probability distributions (corresponding to
two possible second measurements with two outcomes) have
to be made. In fact, assuming Eq. (32) for δ distributions (i.e.,
a fixed HV λ) is not very physical, as in this case the left-hand
side of these equations is 0 or 1.

Second, finding an experimental violation of Eq. (34)
shows that these four distributions have properties significantly
different from all preparable pexpt(λ). In other words, one
may conclude that in a possible HV model describing such
an experiment, it must be forbidden to prepare p̂expt(λ) with
additional information about the result of B or D.

To make this last point more clear, consider the situation
where the experimenter has prepared p̂expt(λ) and a second
physicist has the additional knowledge that the result of B1

will be +1 if it were measured as a first instance. Both
physicists disagree on the probability distribution p̂expt and
q+, but that is not the central problem because this occurs
in any classical model as well. The point is that q+ cannot
be prepared: If the experimenter measures B1 and keeps only
the cases where he finds +1, he obtains a new experimentally
accessible probability distribution p̃expt. However, this will not
be the same as the probability distribution q+, because in this
case, the first measurement has already been made.

E. Application to the KCBS inequality and
the KS inequality (15)

In the previous discussion, we used the CHSH-like inequal-
ity (7) to develop our ideas. Clearly, one could also start from
inequalities (13) and (15) to obtain testable inequalities for the
types of HV models discussed earlier in this article.

For the KCBS inequality (12) this can be done with the
same methods as before, since the KCBS inequality uses only
sequences of two measurements, as does the CHSH inequality
(7). A generalization of Eq. (34) is

〈XKCBS〉 := 〈A1B2〉 + 〈C1B2〉 + 〈C1D2〉 + 〈E1D2〉 + 〈E1A2〉
� −3 − (εAB + εCB + εCD + εED + εEA). (35)

Generalizations of Eqs. (25) and (30) can also be written in a
similar manner.

Also for the KS inequality (15), one can deduce general-
izations, which exclude certain types of HV models. The main
problem here is to estimate a term like 〈A1B2C3〉. First, an
inequality corresponding to Eq. (18) is

p[(A+
1 |A1) and (B+

1 |B1) and (C+
1 |C1)]

� p[A+
1 , B+

2 , C+
3 |A1B2C3]

+ p[(B+
1 |B1) and (B−

2 |A1B2)]

+ p[(C+
1 |C1) and (C−

3 |A1B2C3)], (36)

which holds again for any HV model. Then, a direct calculation
gives that one has

〈ABC〉 � 〈A1B2C3〉 + 4pflip[AB] + 4pflip[(AB)C],
(37)

〈ABC〉 � 〈A1B2C3〉 − 4pflip[AB] − 4pflip[(AB)C],
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where

pflip[(AB)C] = p[(C+
1 |C1) and (C−

3 |A1B2C3)]

+ p[(C−
1 |C1) and (C+

3 |A1B2C3)]. (38)

Given these bounds, one arrives at testable inequalities,
provided assumptions on the HV model are made as in the
three approaches above. If Eq. (23) is assumed, one can directly
estimate pflip[AB] � perr[A1B2] and

pflip[(AB)C] � perr[(AB)C]

= p[C+
1 C−

4 |C1A2B3C4] + p[C−
1 C+

4 |C1A2B3C4]. (39)

Then, if one writes the generalized form of Eq. (15),
then there are more correction terms than in Eq. (25).
Moreover, they involve sequences of length 4. On average,
these perr terms have to be smaller than 2/48 ≈ 0.0417 in
order to allow a violation. Consequently, an experimental test is
very demanding (see also the discussion in Sec. IV C). Finally,
generalizations in the sense of Eqs. (30) and (34) can also be
derived in a similar manner.

IV. EXPERIMENTAL IMPLEMENTATION

Experimental tests of noncontextual HV theories have been
carried out with photons [35–38,46], neutrons [37,38], laser-
cooled trapped ions [45], and liquid-state nuclear magnetic
resonance systems [48]. In the experiments with photons
and neutrons, single particles were prepared and measured
in a four-dimensional state space composed of two two-
dimensional state spaces describing the particle’s polarization
and the path it was following. In contrast, in a recent experi-
ment with trapped ions [45], a composite system composed of
two trapped ions prepared in superpositions of two long-lived
internal states was used for testing the KS theorem. In the
following, we will describe this experiment and present details
about the amount of noncompatibility of the observables
implemented.

A. Experimental methods

Trapped laser-cooled ions are advantageous for these kinds
of measurements because of the highly efficient quantum-
state preparation and measurement procedures trapped ions
offer. In Ref. [45], a pair of 40Ca+ ions was prepared in a
state space spanned by the states |00〉, |01〉, |10〉, and |00〉,
where |1〉 = |S1/2,mS = 1/2〉 is encoded in a Zeeman ground
state and |0〉 = |D5/2,mD = 3/2〉 in a long-lived metastable
state of the ion (see Fig. 1).

A key element for both preparation and measure-
ment are laser-induced unitary operations that allow for
arbitrary transformations on the four-dimensional state
space. For this, the entangling operation (Mølmer-Sørensen
gate operation) UMS(θ, φ) = exp(−i θ

2 σφ ⊗ σφ), where σφ =
cos(φ)σx + sin(φ)σy is realized by a bichromatic laser field
off-resonantly coupling to transitions involving the ions’
center-of-mass mode along the weakest axis of the trap-
ping potential [54]. In addition, collective single-qubit gates
U (θ, φ) = exp[−i θ

2 (σφ ⊗ 1 + 1 ⊗ σφ)] are realized by reso-
nantly coupling the states |0〉 and |1〉. Finally, the single-
qubit gate Uz(θ ) = exp(−i θ

2 σz) is implemented using a
strongly focused laser inducing a differential light-shift on

FIG. 1. (Color online) Partial level scheme of 40Ca+ showing the
relevant energy levels and the laser wavelengths needed for coupling
the states. The D states are metastable with a lifetime of about 1 s.
A magnetic field of about 4 G is applied to lift the degeneracy of
the Zeeman states. The states |0〉 and |1〉 used for encoding quantum
information are indicated in the figure.

the states of the first ion. This set of operations, S =
{Uz(θ ), U (θ, φ), UMS(θ, φ)}, which is sufficient for construct-
ing arbitrary unitary operations, can be used for preparing the
desired input states |ψ〉.

A measurement of σz by a state projection onto the basis
states |0〉 and |1〉 on one of the ions is carried out by illuminat-
ing the ion with laser light coupling the S1/2 ground state to
the short-lived excited state P1/2 and detecting the fluorescence
emitted by the ion with a photomultiplier. Population in P1/2

decays back to S1/2 within a few nanoseconds so that thousands
of photons are scattered within a millisecond if the ion was
originally in the state |1〉. If it is in state |0〉, it does not couple
to the light field and therefore scatters no photons. In the
experiment, we assign the state |1〉 to the ion if more than
one photon is registered during a photon collection period of
250 µs. In this way, the observables σz ⊗ 1 and 1 ⊗ σz can be
measured.

To measure further observables like σi ⊗ 1, 1 ⊗ σj , or
σi ⊗ σj , the quantum state ρ to be measured is transformed
into UρU † by a suitable unitary transformation U prior to
the state detection. Measuring the value of σz ⊗ 1 on the
transformed state is equivalent to measuring the observable
A = U †(σz ⊗ 1)U on the original state ρ. The measurement
is completed by applying the inverse operation U † after the
fluorescence measurement. The purpose of this last step is to
map the projected state onto an eigenstate of the observable A.
In this way, any observable A with two pairs of degenerate
eigenvalues can be measured. The complete measurement,
consisting of unitary transformation, fluorescence detection,
and back transformation, constitutes a quantum nondemolition
measurement of A. Each measurement of a quantum state
yields one bit of information which carries no information
about other compatible observables.

B. Measurement results

The measurement procedure outlined in the preceding
section is very flexible and can be used to consecutively
measure several observables on a single quantum system,
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FIG. 2. (Color online) Measurement correlations for a sequence
of measurements A1B2C3 with A1 = σz ⊗ σz, B2 = σx ⊗ σx , and
C3 = σy ⊗ σy for a partially entangled input state. The colors indicate
whether v1v2v3 = +1 [yellow (light gray) spheres] or v1v2v3 = −1
[red (dark gray) spheres]. The volume of a sphere is proportional to
the likelihood of finding the corresponding measurement outcome
(v1, v2, v3).

as illustrated by the following example. To test inequal-
ity Eq. (14) for the observables of the Mermin-Peres
square (16), the quantum state |ψ〉 = |11〉/√2 + ei π

4 (|01〉 +
|10〉)/2 is prepared by a applying the sequence of gates
UMS(−π/2, π/4)UMS(−π/2, 0)U (π/2, 0) to the initial state
|11〉. The correlations that are found for a sequence of
measurements A1B2C3, where A1 = σz ⊗ σz, B2 = σx ⊗ σx ,
and C3 = σy ⊗ σy , are shown in Fig. 2. For this measurement,
1100 copies of the state were created and measured. Each
corner of the sphere corresponds to a measurement outcome
(v1, v2, v3) where vk = ±1 is the measurement result for the
kth observable. The relative frequencies of the measurement
outcomes are indicated by the volume of the spheres attached
to the corners, and the colors indicate whether v1v2v3 = +1
or v1v2v3 = −1. For perfect state preparation and measure-
ments, one would expect to observe always v1v2v3 = −1.
Due to experimental imperfections, the experiment yields
〈v1v2v3〉 = −0.84(2). Nevertheless, the experimental results
nicely illustrate the quantum measurement process: the first
measurement gives 〈σz ⊗ σz〉 = 0.00(2); that is, the state |ψ〉 is
equally likely to be projected onto |�+〉 = |11〉 (v1 = +1) and
onto |�−〉 = (|01〉 + |10〉)/√2 (v1 = −1). In the latter case,
the projected state |�−〉 is an eigenstate of σx ⊗ σx and σy ⊗ σy

so that these measurements give definite results v2 = +1 and
v3 = +1 (top left corner of Fig. 2). In the former case, the
projected state is not an eigenstate of σx ⊗ σx and v2 = +1
and v3 = −1 are found with equal likelihood. In this case, v2

and v3 are random but correlated with v2v3 = 1 (the other two
strongly populated corners of Fig. 2).

In Ref. [45], also the other rows and columns of the
Mermin-Peres square (16) were measured for the state |ψ〉,
and a violation of Eq. (14) was found with 〈χKS〉 = 5.36(4).
Also, different input states were investigated to check that the
violation is indeed state-independent. The fact that the result
falls short of the quantum-mechanical prediction of 〈χKS〉 = 6
is due to imperfections in the measurement procedure. These
imperfections could be incorrect unitary transformations
but could also be errors occurring during the fluorescence
measurement.

TABLE I. Measurement correlations 〈AiAj |A1 · · · A5〉 between
repeated measurements of A = σz ⊗ 1 for a maximally mixed state.
Observing a correlation of 〈AiAj |A1 · · · A5〉 = αij means that the
probability of the measurement results of Ai and Aj coinciding equals
(αij + 1)/2.

Measurement 2 3 4 5

1 0.97(1) 0.97(1) 0.96(1) 0.95(1)
2 0.97(1) 0.97(1) 0.96(1)
3 0.98(1) 0.98(1)
4 0.98(1)

An instructive test consists of repeatedly measuring the
same observable on a single quantum system and analyzing
the measurement correlations. Table I shows the results of
five consecutive measurements of A = σz ⊗ 1 on a maximally
mixed state based on 1100 experimental repetitions.

As expected, the correlations 〈AiAi+k|A1 · · · A5〉 are in-
dependent of the measurement number i within the error
bars. However, the correlations become smaller and smaller
the bigger k gets. Table II shows another set of measurement
correlations 〈AiAj |A1 · · · A5〉, where A = σx ⊗ σx . Here, the
correlations are slightly smaller, since entangling interactions
are needed for mapping A onto σz ⊗ 1, which is experimen-
tally the most demanding step.

It is also interesting to compare the correlations
〈A1A3|A1A2A3〉 with the correlations 〈A1A3|A1B2A3〉 for an
observable B that is compatible with A. For A = σx ⊗ σx

and B = σz ⊗ σz, we find 〈A1A3|A1A2A3〉 = 0.88(1) and
〈A1A3|A1B2A3〉 = 0.83(2) when measuring a maximally
mixed state; that is, it seems that the intermediate measure-
ment of B perturbs the correlations slightly more than an
intermediate measurement of A. Similar results are found
for a singlet state, where 〈A1A3|A1A2A3〉 = 0.92(1) and
〈B1B3|B1B2B3〉 = 0.91(1), but 〈A1A3|A1B2A3〉 = 0.90(1)
and 〈B1B3|B1A2B3〉 = 0.89(1). Because 〈B1B3|B1A2B3〉 =
1 − 2perr(B1A2B3), correlations of the type 〈B1B3|B1A2B3〉
are required for checking inequality (25) that takes into account
disturbed HVs.

C. Experimental limitations

There are a number of error sources contributing to
imperfect state correlations, the most important being the
following.

TABLE II. Measurement correlations 〈AiAj |A1 · · · A5〉 between
repeated measurements of A = σx ⊗ σx for a maximally mixed state.
Observing a correlation of 〈AiAj |A1 · · · A5〉 = αij means that the
probability of the measurement results of Ai and Aj coinciding equals
(αij + 1)/2.

Measurement 2 3 4 5

1 0.94(1) 0.88(1) 0.82(2) 0.80(2)
2 0.93(1) 0.87(2) 0.84(2)
3 0.90(1) 0.87(2)
4 0.93(1)
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1. Wrong state assignment based on fluorescence data

During the 250-µs detection period of the current ex-
periment, the number of detected photons has a Poissonian
distribution with an average number of n|1〉 = 8 photons if
the ion is in state |1〉. If the ion is in state |0〉, it does
not scatter any light; however, light scattered from trap
electrodes gives rise to a Poissonian distribution with an
average number of n|0〉 = 0.08 photons. These photon count
distributions slightly overlap. The probability of detecting 0
or 1 photons even though the ion is in the bright state is
0.3%. The probability of detecting more than 1 photon if
the ion is in the dark state is also 0.3%. Therefore, if the
threshold for discriminating between the dark and the bright
state is set between 1 and 2, the probability for wrongly
assigning the quantum state is 0.3%. Making the detection
period longer would reduce this error but increase errors related
to decoherence of the other ion’s quantum state that is not
measured.

2. Imperfect optical pumping

During fluorescence detection, the ion leaves the compu-
tational subspace {|0〉, |1〉} if it was in state |1〉 and can also
populate the state |S1/2,mS = −1/2〉. To prevent this leakage,
the ion is briefly pumped on the S1/2 ↔ P1/2 transition with
σ+-circularly polarized light to pump the population back to
|1〉. Due to imperfectly set polarization and misalignment of
the pumping beam with the quantization axis, this pumping
step fails with a probability of about 0.5%.

3. Interactions with the environment

Due to the nonzero differential Zeeman shift of the states
used for storing quantum information, superposition states
dephase in the presence of slowly fluctuating magnetic fields.
In particular, while measuring one ion using fluorescence de-
tection, quantum information stored in the other ion dephases.
We partially compensate for this effect with spin-echo-like
techniques [55] that are based on a transient storage of
superposition states in a pair of states having an opposite
differential Zeeman shift as compared to the states |0〉 and |1〉.
A second interaction to be taken into account is spontaneous
decay of the metastable state |0〉, which, however, only
contributes an error of smaller than 0.1%.

4. Imperfect unitary operations

The mapping operations are not error-free. This concerns in
particular the entangling gate operations needed for mapping
the eigenstate subspace of a spin correlation σi ⊗ σj onto
the corresponding subspaces of σz ⊗ 1. For this purpose,
a Mølmer-Sørensen gate operation UMS(π/2, φ) [54,56] is
used. This gate operation has the crucial property of requiring
the ions only to be cooled into the Lamb-Dicke regime.
In the experiments, the center-of-mass mode used for mediat-
ing the gate interaction is in a thermal state with an average
of 18 vibrational quanta. In this regime, the gate operation is
capable of mapping |11〉 onto a state |00〉 + eiφ|11〉 with a
fidelity of about 98%. Taking this fidelity as being indicative
of the gate fidelity, one might expect errors of about 4% in
each measurement of spin correlations σi ⊗ σj as the gate is

carried out twice, once before and once after the fluorescence
measurement.

These error sources prevented us from testing a generaliza-
tion of inequality (15), as discussed in Sec. III E. Measurement
of the correlations 〈B1B3|B1A2B3〉 and 〈C1C4|C1A2B3C4〉
resulted in error terms perr that were about 0.06 for sequences
involving three measurements and about 0.1 for sequences
with four measurements, that is, twice as big as required
for observing a violation of (15). However, the experimental
errors were small enough to demonstrate a violation of the
CHSH-like inequality (25), valid for nonperfectly compatible
observables [45]. A test of the inequality (30) would become
possible if the error rates could be further reduced.

V. CONTEXTUAL HV MODELS

In this section we will introduce two HV models which
are contextual in the sense of Eq. (3) and violate the
inequalities discussed in Sec. II. We first discuss a simple
model which violates inequality (25) and then a more complex
one which reproduces all measurement results for a (finite-
dimensional) quantum-mechanical system. These models are
useful for pointing out which counterintuitive properties a
HV model must have to reproduce the quantum predictions
and which further experiments can rule out even these
models.

A. A simple HV model leading to a violation of inequality (25)

We will show here that violation of inequality (25) can be
achieved simply by allowing the HV model to remember what
measurements have been performed and what the outcome
was. The basic idea of the model is very simple (cf. the more
complicated presentation in [49]).

The task is to construct a simple HV model for our four
dichotomic observables A, B, C, and D. The HV λ is taken to
be a quadruple with entries taken from the set {+,−,⊕,�};
the latter two cases will be called “locked” in what follows,
signifying that the value is unchanged whenever a compatible
measurement is made. For convenience, we can write λ =
(A+, B+, C+,D+) or λ = (A+, B−, C⊕,D�), etc., and we
take the initial distribution to be probability 1/2 of either
(A+, B+, C+,D+) or (A−, B−, C−,D−). The measurement
of an observable is simply reporting the appropriate sign
and locking the value in the position. To make the model
contextual, we add the following mechanism:

(a) If A is measured, then the sign of D is reversed and
locked unless it is locked.

(b) If D is measured, then the sign of A is reversed and
locked unless it is locked.

For the case λ = (A+, B+, C+,D+), the measurement results
when measuring inequality (25) will be as follows.

(i) Measurement of A1 will yield A+
1 and λ =

(A⊕, B+, C+,D�), and for the next measurement one
obtains B+

2 or D−
2 .

(ii) Measurement of B1 will yield B+
1 and λ =

(A+, B⊕, C+,D+), and further one obtains A+
2 B+

3 or
C+

2 B+
3 .
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(iii) Measurement of C1 will yield C+
1 and λ =

(A+, B+, C⊕,D+), and we will obtain B+
2 or D+

2
afterward.

(iv) Measurement of D1 will yield D+
1 and λ =

(A�, B+, C+,D⊕), and we will obtain C+
2 D+

3 or
A−

2 D+
3 . The latter is because a measurement of

A2 will not change D⊕ since it is locked. In this
case, after a measurement of A2, the HVs are λ =
(A�, B+, C+,D⊕).

The case λ = (A−, B−, C−,D−) is the same with reversed
signs. This means that

〈A1B2〉 = 〈C1B2〉 = 〈C1D2〉 = −〈A1D2〉 = 1, (40)

and

perr[B1A2B3] = perr[B1C2B3] = perr[D1C2D3]

= perr[D1A2D3] = 0. (41)

Hence, this model leads to the maximal violation of Eq. (25).
In this model, the observables A and D are compatible

in the sense of Definition 1, but they maximally violate
the noncontextuality condition in Eq. (3). It is easy to verify
that pflip[AD] = 1, so that assumption (23) does not hold. We
argue that in this model, the change in the outcome D cannot be
explained as merely due to a disturbance of the system from
the experimental procedures when measuring A1. It should
therefore be no surprise that the inequality (25) is violated by
the model. Finally, note that a model behavior like this would
create problems in any argument to establish noncontextuality
via repeatability of compatible measurements, even for joint
measurements as discussed in Sec. II A, and not only in the
sequential setting used here.

B. A HV model explaining all quantum-mechanical predictions

Let us now introduce a detailed HV model which repro-
duces all the quantum predictions for sequences of measure-
ments. In a nutshell, this contextual HV model is a translation
of a machine that classically simulates a quantum system.

We consider the case in which only dichotomic measure-
ments are performed on the quantum-mechanical system.
Therefore, any observable A decomposes into A = �A

+ − �A
−

with orthogonal projectors �+ and �−. For a mixed state
�, a measurement of this observable produces the result +1
with probability p(A+) = tr(�A

+ρ) and the result −1 with
probability p(A−) = tr(�A

−ρ). In addition, the measurement
apparatus will modify the quantum state according to

� �→ �A
±��A

±
tr(�A±�)

, (42)

depending on the measurement result ±1.
This behavior can be exactly mimicked by a HV model if

we allow the value of the HV to be modified by the action of the
measurement. If H is the Hilbert space of the quantum system,
we use two types of HV. First, we use parameters 0 � λA < 1,
0 � λB < 1, etc., for each observable A, B, etc., and second,
we use a normalized vector |ψ〉 ∈ H.

Then, for given values of all these parameters, we associate
to any observable the measurement result as follows: We define
qA = 〈ψ |�A

−|ψ〉 and let the model predict the measurement

result: −1 if λA < qA and +1 if qA � λA. Furthermore,
depending on the measurement result, the values of the HVs
λA and |ψ〉 change according to

λA �→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λA

qA
if λA < qA,

λA − qA

1 − qA
if λA � qA,

(43)

and

|ψ〉 �→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�A
−|ψ〉√
qA

if λA < qA,

�A
+|ψ〉√

1 − qA
if λA � qA.

(44)

Let us now fix the initial probability distribution of the
HVs. The experimentally accessible probability distribu-
tions p(λA, λB, . . . ; ψ) shall not depend on the parameters
λA, λB, . . .; that is, p(λA, λB, . . . ; ψ) = p(λ′A, λ′B, . . . ; ψ).
Hence, we write p(ψ) = ∫

dλAdλB · · · p(λA, . . . ; ψ). The
probability distribution p(ψ) and the measure dψ are chosen
such that

�p =
∫

dψ p(ψ)|ψ〉〈ψ | (45)

is the corresponding quantum state.
We now verify that this model indeed reproduces the

quantum predictions. If the initial distribution is p, then the
probability of obtaining the result −1 for A is given by

pA
− =

∫
λA<qA

dλAdψ p(ψ) =
∫

dψ 〈ψ |�A
−|ψ〉p(ψ)

= tr(ρp�A
−) (46)

and hence is in agreement with the quantum prediction. Due
to the transformations in Eqs. (43) and (44), the probability
distribution changes by the action of the measurement, p �→
p′. The new distribution p′ again does not depend on λA and,
in the case of the measurement result −1, we have

p′(ψ) = 1

pA−

∫
dψ ′q ′A δ

(
|ψ〉 − �A

−|ψ ′〉√
q ′A

)
p(ψ ′), (47)

where δ denotes Dirac’s δ distribution and q ′A = 〈ψ ′|�A
−|ψ ′〉.

The new corresponding mixed state is given by

�p′ =
∫

dψ p′(ψ)|ψ〉〈ψ |

= 1

pA−

∫
dψ ′ p(ψ ′)�A

−|ψ ′〉〈ψ ′|�A
−

= �A
−�p�A

−
tr(�p�A−)

. (48)

This demonstrates that the transformation in Eq. (42) is
suitably reproduced by �p �→ �p′ . An analogous calculation
can be performed for the measurement result +1.

Let us illustrate that this model is actually contextual, as
defined in Eq. (3). As an example, we choose two commuting
observables A = �A

+ − �A
− and B = �B

+ − �B
− with the prop-

erty that, for some pure state |ψ〉, we have 〈ψ |A1B2|ψ〉 = +1,
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while 〈ψ |B|ψ〉 < 1. An example would be A = σz ⊗ 1 and
B = −1 ⊗ σz with |ψ〉 being the singlet state. Then, after a
measurement of A1, the result of a subsequent measurement
of B2 is fixed and hence independent of λB . However, if B

is measured without a preceding measurement of A, then the
result of B will be −1 if λB < 〈ψ |�B

−|ψ〉 and +1 otherwise.
Hence, in our particular model, given the preparation of |ψ〉,
v(B1) depends on λB , while v(B2|A1B2) only depends on
λA. However, the model does not allow special correlations
between λA and λB and hence the model is contextual; that is,
necessarily, there are experimentally accessible values of the
HVs such that Eq. (3) is violated.

VI. CONCLUSIONS

Experimental quantum contextuality is a potential source
of new applications in quantum information processing and a
chance to expand our knowledge on the reasons why quantum
resources outperform classical ones. In some sense, experi-
mental quantum contextuality is an old discipline, since most
Bell experiments are just experiments ruling out noncontextual
HV models, since they do not fulfill the required spacelike
separation needed to invoke locality as a physical motivation
behind the assumption of noncontextuality. The possibility of
observing state-independent quantum contextuality, however,
is a recent development. It shows that the power of QM is not
necessarily in some particular states, but also in some sets of
measurements which can reveal nonclassical behavior of any
quantum state.

These experiments must satisfy some requirements which
are not explicitly needed for tests of Bell inequalities. An
important requirement is that one has to test experimentally
to what extent the implemented measurements are indeed
compatible. In this article, we have discussed how to deal
with the inevitable errors preventing researchers from imple-
menting perfectly compatible measurements. The problem of
imperfectly compatible observables is not fatal, but should be
taken into account with care.

We have presented three approaches by which additional
requirements can be used to exclude the possibility of
noncontextual explanations of the experimental results, and
we have applied them to three specific inequalities of partic-
ular interest: a CHSH-like noncontextuality inequality using
sequential measurements on individual systems, which can be
violated by specific states of four or more levels; a KCBS
noncontextuality inequality using sequential measurements
on individual systems, which can be violated by specific
states of three or more levels; and a KS inequality coming
from the Mermin-Peres square, which is violated by any state
of a four-level system. Similar methods can be applied to
any noncontextuality inequality, irrespective of the number of
sequential measurements or the dimensionality of the Hilbert
space.

The main motivation was to provide experimentalists with
inequalities to rule out noncontextual HV models unambigu-
ously if some additional assumptions are made. We have
shown that a recent experiment with trapped ions already
ruled out some of these HV models. By providing examples
of HV models, we have seen that these extra assumptions
are not necessarily satisfied by very artificial HV models.

Nevertheless, they lead to natural extensions of the assumption
of noncontextuality and allow us to reach conclusions about
HV models in realistic experiments with nonperfect devices.
An interesting line of future research will be to investigate
how these extra assumptions can be replaced by fundamental
physical principles such as locality in experiments where the
system under observation is entangled with a distant system
on which additional measurements can be performed.

ACKNOWLEDGMENTS

The authors thank R. Blatt, J. Emerson, B. R. La Cour,
O. Moussa, and R. W. Spekkens for discussions and ac-
knowledge support by the Austrian Science Fund (FWF),
the European Commission (the SCALA, OLAQUI, and
QICS networks and the Marie-Curie program), the Institut
für Quanteninformation GmbH, the Spanish MCI Project
No. FIS2008-05596, and the Junta de Andalucı́a Excellence
Project No. P06-FQM-02243. A.C. and J.-Å. L. thank the
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APPENDIX

In Sec. II C we discussed the notion of compatibility for
subsequent measurements. In this appendix we provide two
examples which demonstrate that both parts of Definition 1 are
independent. We then show that the statement of compatibility
can be simplified to involve sequences of length 2 only.

A. Mutual independence of Definition 1 (i) and Definition 1 (ii)

For an example in which (i) does not include (ii), assume
that the expectation value of A depends on whether the first
measurement in the sequence is A or B. Then 〈A1|A1B2〉 �=
〈A2|B1A2〉 and hence condition (ii) is violated. However, such
a model is not in conflict with condition (i) if, once A was
measured, the value of A stays unchanged for the rest of the
sequence.

For the converse, assume a HV model where the ex-
pected value 〈A〉 does not depend on the results of any
previous measurement. Then, for any sequence and any k,
〈A〉 = 〈Ak|S〉 and, hence, condition (ii) is satisfied. However,
p(A+

1 A−
2 |A2A2) > 0, unless 〈A1A2〉 = 1, and thus condition

(i) is violated.

B. Compatibility for sequences of length 2

Assume that, for any preparation procedure, A and B obey

〈A1〉 = 〈A2|A1A2〉 = 〈A2|B1A2〉; (A1)

that is, condition (ii) of Definition 1 is satisfied for sequences
of length 2. Then, for a sequence S of length k we have either
S = S ′B or S = S ′A, where S ′ is a sequence of length k − 1.
In a measurement of S, we can consider S ′ to be part of the
preparation procedure and then apply Eq. (A1). It follows that
〈Ak+1|SA〉 = 〈Ak|S ′A〉 and eventually 〈Ak+1|SA〉 = 〈A1〉 by
induction.

In a similar fashion we reduce condition (i) of Definition 1
for dichotomic observables. For an experimentally accessible
probability distribution pexpt(λ), we denote by p̃expt(λ) the
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distribution obtained by a measurement of A and a post-
selection of the result +1. Then, for a sequence S of
length k,

p(A+
1 A−

k+2|ASA) = p̃(A−
k+1|SA)p(A+

1 |A1)

= p̃(A−
1 |A)p(A+

1 |A)

= p(A+
1 A−

2 |A1A2), (A2)

where for the second equality we used that 〈Ak+1|SA〉 = 〈A1〉
holds for p̃. It follows that a set of dichotomic observables
� is compatible if and only if, for any preparation and any
A,B ∈ �, 〈A1A2〉 = 1 and Eq. (A1) holds. In particular, this
proves the assertion that pairwise compatibility of three or
more observables is equivalent to an extended definition of
compatibility involving sequences of all compatible observ-
ables.
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