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Unitary equilibrations: Probability distribution of the Loschmidt echo
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Closed quantum systems evolve unitarily and therefore cannot converge in a strong sense to an equilibrium state
starting out from a generic pure state. Nevertheless for large system size one observes temporal typicality. Namely,
for the overwhelming majority of the time instants, the statistics of observables is practically indistinguishable
from an effective equilibrium one. In this paper we consider the Loschmidt echo (LE) to study this sort of
unitary equilibration after a quench. We draw several conclusions on general grounds and on the basis of an
exactly solvable example of a quasifree system. In particular we focus on the whole probability distribution of
observing a given value of the LE after waiting a long time. Depending on the interplay between the initial state
and the quench Hamiltonian, we find different regimes reflecting different equilibration dynamics. When the
perturbation is small and the system is away from criticality the probability distribution is Gaussian. However
close to criticality the distribution function approaches a double-peaked, universal form.
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I. INTRODUCTION

A sudden change of the parameters governing the evolution
of a closed quantum many-body system gives typically
rise to a complex and fascinating dynamics. This so-called
Hamiltonian quench is attracting an increasing amount of
attention [1–4]. The reason for such an interest is, at least,
twofold; in the first place this out of equilibrium phenomenon
has been recently observed in cold atom systems [5,6]. Second,
at a more conceptual level, the equilibration dynamics of a
quenched quantum system plays a role in the very foundations
of statistical mechanics [7–12]. New insights can be gained
on the fundamental question about the emergence of a thermal
behavior in closed quantum systems.

In this paper we study a prototypical dynamical quantity for
a quantum quench: the Loschmidt echo (LE). This quantity
is defined by the square modulus of the scalar product, of
the time-evolved, (out of equilibrium) quantum state with the
initial (equilibrium) one, e.g., Hamiltonian ground state.

In spite of the simplicity of its definition the Loschmidt
echo L, or closely related quantities, convey a great deal of
information in a variety of physical problems; for example
L has been intensively studied in the context of Fermi edge
singularities in x-ray spectra of metals [13], quantum chaos
[14,15], decoherence [16–18], and more recently quantum
criticality [19] and out-of-equilibrium fluctuations [20,21].

Typically (cf. Fig. 1) the Loschmidt echo rapidly decays
from its maximum value L = 1 at t = 0 and, after an initial
transient starts oscillating erratically around the same well
defined value. For finite size systems after a sufficiently long
time a pattern of collapses and revivals is observed due to the
almost-periodic nature of the underlying quantum dynamics.
On the other hand for infinite volume systems the Hamiltonian
spectrum generically becomes continuous and an asymptotic
value L∞ (coinciding with the average one) is eventually
reached.

The main goal here is to investigate the statistical properties
of the Loschmidt echo seen as a random variable over the
observation time interval [0, T ]. One of the key properties
is that a small variance, by standard probability theory

arguments, guarantees that for the overwhelming majority of
times, L(t) sticks very close to its average value [7,10,12].
This is the sense in which one can speak about equilibration
dynamics and corresponding “equilibrium properties” of a
finite system that is evolving unitarily and therefore cannot
have attractive fixed points.

We shall show how the features of the probability dis-
tribution of the Loschmidt echo depend on a rich interplay
between the initial state and quench Hamiltonian on the one
hand and the system’s size and observation time on the other. In
particular we will focus on the potential role that the vicinity
of quantum critical points may have on the features of the
Loschmidt echo probability distribution function [4,17,19].
This latter analysis will be mostly carried over by exploiting
exact results for quasifree spin chain i.e., the quantum Ising
model [19].

The paper is organized as follows: in Sec. II we give the
general setting. Later we introduce a relaxation time TR and
discuss the universality content of the L(t) before this time
scale. In Sec. II C we define and study other relevant time
scales, the time T1 for necessary for observing the correct
average, and revival times where large portion of L(t) are
back in phase. In Sec. II D we give explicit formulas for the
moments of the LE assuming the nonresonant hypothesis. In
Sec. III we concentrate on a particular example and prove all
the general results advocated so far for an exactly solvable case.
Moreover we discover three universal behaviors for the whole
LE probability distribution function. We draw some parallels
with another natural quenched observable: the magnetization.
Finally Sec. V is devoted to conclusions and outlook.

II. GENERAL BEHAVIOR

Let us start by recalling a few elementary yet crucial facts. If
H = ∑

n En�n is the system’s Hamiltonian (�n’s = spectral
projections) the closed-system dynamics is described by the
time-evolution superoperator Ut = e−itH,H(X) = [H,X].
This superoperator is thought here of as a map of the space
of trace-class operators X into itself (‖X‖1 := tr

√
X†X < ∞).

Closed quantum systems cannot equilibrate in the strong sense,
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FIG. 1. Typical behavior of the Loschmidt echo for the Ising
model in transverse field. All curves refer to a size of L = 100. In the
upper left panel the relaxation time TR is indicated. Using arguments
as in Sec. III D (see also notes [23,24]) one is able to show that, in
the quantum Ising model at criticality, the first revival time is exactly
Trev = L (upper left panel).

as unitary evolutions Ut do not have nontrivial i.e., nonfixed,
limit points in the norm topology for t → ∞ [32]. One may
then wonder whether a weaker form of convergence can be
achieved for t → ∞.

Let us then consider the expectation value of an observable
A(t) := tr[Ut (ρ0)A] and write the spectral resolution of the
superoperator Ut as a formal sum Ut = ∑

E e−itE |E〉〉〈〈E |,
here E(|E〉〉) denote the eigenvalues (eigenvector) of H. In
finite dimensions the kernel of H is spanned by the �n’s
and gives rise to a time-independent contribution to A(t)
i.e., A∞

∑
n := tr(�nρ0�nA); the point is now to understand

whether the remaining components involving the nontrivial
time-dependent factors exp(−iE t)(E �= 0) admits a limit for
t → ∞. In finite dimensions the E are a (finite) discrete set of
differences of Hamiltonian eigenvalues, e.g., E = En − Em,
and correspondingly A(t) − A∞ is a quasiperiodic function:
the long-time limit of A(t) does not exist. On the other
hand in the infinite-dimensional case the spectrum of H
can be continuous and, if the function Â(E) 〈ρ0, E〉〈E, A〉 is
sufficiently well behaved, using the Riemann-Lebesgue
lemma, limt→∞

∫
dEÂ(E) exp(−iE t) = 0. Therefore in this

case

lim
t→∞ A(t) = A(t) = A∞ (1)

where A(t) := limT →∞ 1
T

∫ T

0 A(t)dt denotes the time average
over an infinite time interval. While this convergence cannot be
achieved uniformly for the whole set of system’s observables
(in that it would imply strong convergence) it can be proven
for specific families of A’s, e.g., local ones [22].

There is a third form of convergence that one can consider
here: the convergence in probability. In the following we shall
consider the above defined A(t) as a random variable over the
real line of t endowed with the uniform measure dt/T with
T → ∞. Suppose we have a sequence of {BL}L (think of L

as the system size), we say that the BL’s converge to zero in
probability if

lim
L→∞

Pr {t ∈ R/ |BL(t)| � ε} = 0, ∀ε > 0. (2)

The meaning of this type of convergence should be clear:
for large L the probability of observing a value of BL(t)
different from zero is vanishingly small. In other words the
fractions of t’s for which BL(t) �= 0 is going to zero for
L → ∞. As a matter of fact this is the type of convergence,
with BL(t) = AL(t) − AL,∞, that has been considered in
[10,12]. The stochastic convergence [Eq. (2)] implies that
the probability distributions of the random variables AL i.e.,
PL(α) := δ[α − AL(t)] are converging to the one of A∞ :=
limL→∞AL,∞ i.e., limL→∞PL(α) = δ(α − A∞). In this con-
text we say that the initial state ρ0 relaxes or equilibrates to
ρeq if it happens that A∞ = tr(Aρeq) [33].

A typical strategy to demonstrate this kind of unitary
equilibration is to prove Eq. (2) by showing that (i) BL(t) = 0
(ii) var(BL) goes to zero sufficiently fast for L → ∞. If this
is the case one can use a basic probability theory result
Pr{t ∈ R/|BL(t) − BL(t)| � ε} � var(BL)/ε2. Since, under
the assumption (ii) the RHS of this latter relation can be made
arbitrarily small and given (i), Eq. (2) holds true.

Notice that yet another way to formulate the kind of
convergence [Eq. (2)] is by means of the concept of typicality
[8,9]; the probability of observing a “nontypical” value i.e.,
one that deviates significantly from the mean one becomes
negligible in the large L limit.

A. Loschmidt echo

The time dependent quantity we are going to focus on in
the rest of this paper is the Loschmidt echo (LE),

L(t) = |〈ψ |e−itH |ψ〉|2, (3)

where the state |ψ〉 is possibly, but not necessarily, the ground
state of the Hamiltonian H at a different coupling. In the
sequel, statistical averages are always taken with respect to
this state.

In the following we will consider L(t) as a random variable
with uniformly distributed t � 0. Ideally we are interested not
only in the first moment but in the whole probability distribu-
tion function. The probability of L to have value in � is given
by P (L ∈ �) = limT →∞T −1µ(L−1(�) ∩ [0, T ]). For those x

for which the probability density is well defined, it is given by

P (x) = δ[x − L(t)] = lim
T →∞

1

T

∑
0<tn<T

L(tn )=x

1∣∣ dL
dt

tn
∣∣ .

In a realistic setting it can be convenient for the experimenter
to prepare many copies of the state |ψ〉, let each of them evolve
with H and measure the LE’s after given times tmes,i . In this
situation the experimenter will naturally form the histogram
of the measured data which gives an approximation to P (x).
Mathematically the distribution P (x) can as well be defined by
its moments. The kth moment of this probability distribution
is given by µk := ∫

xkP (x)dx = Lk(t). Notice that the
Loschmidt echo can be written as L(t) = 〈ρψ, e−iHt (ρψ )〉,
where: ρψ := |ψ〉〈ψ |, H(X) := [H,X] and 〈X, Y 〉 :=
tr(X†Y) denotes the Hilbert-Schmidt scalar product.
From this it follows Ln(t) = 〈ρ⊗n

ψ , e−iH(n)t (ρ⊗n
ψ )〉, where

H(n) := ∑n
i=1

⊗(i−1) ⊗ H⊗⊗(n−i). Performing the time
average [34] one finds µn = 〈ρ⊗n

ψ ,P (n)(ρ⊗n
ψ )〉, where P (n)

projects onto the kernel of H(n). In particular the time average
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L̄ = µ1 is given by

L̄=〈ρψ,P (1)(ρψ )〉 = 〈P (1)(ρψ ),P (1)(ρψ )〉 = tr
(
ρ2

eq

)
, (4)

where ρeq := P (1)(ρψ ). From the general discussion in
Sec. II we know that P (1)(X) = ∑

n �nX�n. The effective
equilibrium state ρeq = P (1)(ρ0) is just the ρ0 totally dephased
in the H eigenbasis.

Experimentally to obtain this state one has to perform
a projective measurement of H on ρ0 (with no postselec-
tion). This remark suggests a way to give to the average
[Eq. (4)] a direct operational meaning. Let us first rewrite L̄ as
Tr(S[P (1)(ρψ ) ⊗ P (1)(ρψ )]) where S denotes the swap opera-
tor overH⊗2. Now the protocol goes as follows: (i) prepare two
copies of ρψ (ii) measure H on both copies, this prepares the
state �P (1)(ρψ )⊗2 (iii) resort to the interferometric techniques
described e.g., in [25] to extract Tr(S�). Alternatively, by
observing that S is an Hermitian operator, i.e., an observable,
instead of (iii) one could just (iii)’ measure S and obtain
its expectation value in �. Of course this procedure can
be generalized straightforwardly to the nth moment µn [35]
Therefore we see that the probability distribution P can be in
principle reconstructed with higher and higher accuracy by a
series of direct measurements on multiple copies of the system
without the necessity of measuring the time-series of L(t).

B. Short time regime and criticality

As already pointed out, typically the LE decays from its
maximum value 1 at t = 0 and, after an initial transient, starts
oscillating erratically around its mean value. In this section
we will analyze the universality content of this initial transient
and its dependence on the interplay between the initial state
|ψ〉 and the evolving Hamiltonian H .

We start by noticing that the LE Eq. (3) is the square
modulus of a characteristic function χ (t) = 〈e−itH 〉 which is
the Fourier transform of the energy probability distribution:
χ̂(ω) ≡ 〈δ(H − ω)〉. Both χ and the LE can be expressed in
terms of the cumulants of H ,

χ (t) = exp
∞∑

n=1

(−it)n

n!
〈Hn〉c, (5)

L(t) = exp 2
∞∑

n=1

(−t2)n

(2n)!
〈H 2n〉c, (6)

where 〈·〉c stands for the connected average with respect to
|ψ〉. The sums above starts from n = 1 because the zero order
cumulant is zero: 〈H 0〉c = 0. Since H is a local operator, i.e., a
sum of local “variables,” we can expect in some circumstances,
the central limit theorem (CLT) to apply. More specifically
the version of the CLT we are going to consider here,
is the following. In the thermodynamic limit, the probability
distribution of the rescaled variable Y ≡ (H − 〈H 〉)/

√
〈H 2〉c

tends to a Gaussian (with variance 1 and mean zero). In other
words, all but the second connected moments of Y tend to zero
when the volume goes to infinity.

When the CLT applies, for sufficiently large system sizes,
the distribution of H will be of the form

χ̃(ω) = 1√
2πσ 2

exp

[
− (ω − 〈H 〉)2

2σ 2

]
, σ 2 ≡ 〈H 2〉c.

One can systematically compute corrections to this formula
and order them as inverse powers of the system size L. Fourier
transforming back we obtain the characteristic function and
the LE

χ (t) = eit〈H 〉e−1/2t2σ 2 ⇒ L(t) = e−t2σ 2
. (7)

It may seem that this expression for the LE could have be
obtained right away by keeping only the first term in the
expansion of the exponential in Eq. (6),

L(t) � 1 − t2σ 2 � e−t2σ 2
.

This is simply a quadratic approximation, that does not rely
on the CLT. Its validity requires t2σ 2 � 1 that in turn implies
t � 1/

√〈H2〉 (as will be explained later this means roughly
t � L−d/2 where d is the space dimension). From Fig. 1
we see that typically L(t) decays from 1 and after an initial
transient, starts oscillating around an average value L̄ which
will be computed below. Now, when the CLT applies, Eq.
(7) can help us to define this transient or relaxation time
TR given by e−T 2

Rσ 2 = L̄. Roughly after this time one starts
seeing oscillations in L(t). Since in general (see below)
one has L̄ � e−f Ld

, and when the CLT applies σ 2 scales
like the system volume, the relaxation time scales as TR =√

−lnL̄/σ 2 = O(L0). The situation is different when one
considers small variations of the parameters δh. In this limit the
average LE is related to the well studied ground-state fidelity
F = |〈ψ (1) | ψ (2)〉|. More precisely one has L̄ � F 4 [18].
Close to critical points the behavior of the fidelity is dictated
by the scaling dimension � of the most relevant operator in H

with respect to the critical state |ψ〉 [26]. The precise scaling
is the following: F ∼ 1 − const × δh2L2(d+ζ−�), where ζ is
the dynamical critical exponent. Similarly one can show (see
below) that σ 2 ∼ L2(d−�). All in all this amounts to saying that
the relaxation time for small variation δh around a critical point
(roughly δh � L−(d+ζ−�)) increases from O(1) to TR ∼ Lζ .
In the thermodynamic limit instead, i.e., taking first the limit
L → ∞, using standard scaling arguments, one can show
that for δh small and h close to the critical point hc, the
relaxation times diverges as TR ∼ |h − hc|−ζν , ν being the
correlation length exponent. In Fig. 2 we plot the relaxation
time for a concrete example that will be studied thoroughly
in Sec. III, the Ising model in transverse field. There one has
� = ζ = ν = 1, and so the singularities observed in Fig. 2 are
of simple algebraic type: TR ∼ |h − hc|−1 around the critical
points hc = ±1.

Let us now turn to discuss when we expect the CLT to
work. Consider first the case when |ψ〉 is the ground state of a
gapped Hamiltonian and the connected energy correlators go to

zero exponentially fast: 〈H (x)H (y)〉〈H (x)〉 |x−y|→∞→ 〈H (y)〉
(exponential clustering). In this case the connected averages
of H scale as the volume: 〈Hn〉c ∼ Ld . As a consequence the
cumulants of the rescaled variable satisfy 〈Yn〉c ∼ L−(nd−2d)/2

for n � 2, which immediately implies the CLT in the sense
given above.

Therefore we can have violation of the CLT only in the
gapless case when the state |ψ〉 is critical or when clustering
fails. Let us then consider a critical state |ψ〉. Connected
averages have a regular extensive part and a singular part
which scales according to the most relevant component of
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FIG. 2. (Color online) Relaxation time for the Loschmidt echo in
the Ising model in transverse field. The critical points are at hc = ±1.
Clearly we observe divergences at critical points when δh is small.
On the line h(1) = h(2) L(t) = 1 and so there is no relaxation or even
dynamics.

H with scaling dimension �. When |ψ〉 is the ground state of
H at a different coupling, � is the scaling dimension of the
perturbation δH to the critical Hamiltonian. At leading order,
we can write 〈Hn〉c ∼ AnL

d + BnL
n(d−�), and so the rescaled

variable satisfies

〈Yn〉c ∼ AnL
d + BnL

n(d−�)

(A2Ld + B2L2(d−�))n/2
.

If � < d/2 the cumulants of the rescaled variable Y do not go
to zero but to universal constants [27,28] given by

〈Yn〉c → Bn

B
n/2
2

.

In this case the probability distribution of the energy is a,
non-Gaussian, universal distribution. This kind of universal
behavior has been observed for instance in [29] on an example
where the scaling dimension is � = 1/8. In the opposite
situation where � > d/2, all the cumulants of Y go to zero
except for the first two, and the distribution function ap-
proaches a Gaussian in the large size limit. In the intermediate
case � = d/2 the cumulants of Y do not go zero but to a
constant which is however not universal due to extensive
contributions coming from the denominator. We recall that in d

dimensional, zero temperature quantum mechanics, operators
are classified into relevant, irrelevant, and marginal if their
scaling dimension is, respectively, smaller, larger, or equal
to d + ζ where ζ is the dynamical exponent. Hence we see
that, even in the critical case, we observe deviation from the
Gaussian behavior only if the perturbation δH is sufficiently
relevant, specifically � < d/2.

To finish let us remind the reader that the CLT also breaks
down when clustering fails. To summarize, when the CLT
applies, the LE tends to a Gaussian and plotting the function
LL(t/

√
〈H 2〉2) for different sizes L one should observe data

collapse (see Fig. 3).

C. Equilibration and long-time behavior

After having discussed the short-time behavior of the LE
related to the initial transient, let us now turn to its long-
time behavior. We first rewrite Eq. (3) in the eigenbasis of
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FIG. 3. Rescaled Loschmidt echo LL(t/
√

L) for the Ising model
in transverse field. The state which defines the average is critical:
h(1) = 1 while H is at h(2) = 2.5. The same data collapse feature is
observed when choosing different h(i)s, although the variance of this
Gaussian is sensitive to that.

H = ∑
n En|n〉〈n|

L(t) =
∑
n,m

pnpme−it(En−Em), (8)

where pn = |〈ψ | n〉|2.
If the spectrum of H is non degenerate the superoperator

P (1) acts as a dephasing in the Hamiltonian eigenbasis, i.e.,
P (1)(X) = ∑

n 〈n|X|n〉|n〉〈n|. In other words the time average
of the exponentials in Eq. (8) gives simply δn,m and Eq. (4)
reduces to L̄ = ∑

n p2
n. As is well known this quantity is the

purity of an equilibrium, dephased, state: ρeq = ∑
n pn|n〉〈n|.

Time scales. In the preceding section we already defined
a relevant time scale, the relaxation time TR which is O(1)
off-criticality while TR = O(Lζ ) in the critical case and for
sufficiently small variations δh � L−(d+ζ−�).

In some situations it is useful to consider a finite observation
time T . We will write L̄ to indicate the corresponding average.
It is natural to ask about the interplay between the observation
time T and the linear size of the system L. In other words
in general limL→∞limT →∞LL �= limT →∞limL→∞LL. Since
taking larger system sizes has the effect of sending the revival
times to infinity and the LE attunes its maximum value 1
at t = 0, typically the function limL→∞LL(t) has only one
large peak at t = 0 whereas LL(t) has peaks at all the revival
times. Correspondingly we expect limL→∞limT →∞LL >

limT →∞limL→∞LL. This expectation has been confirmed for
the case of the one-dimensional quantum Ising model, see
Sec. III.

Another question which is relevant in the measurement
process is how large must the observation time be to effectively
measure L̄? That is, what is the condition to have LT1 = L̄
or more generally what is the smallest time Tn such that
one observes [(L)n]Tn = (L)n? Let us focus on T1. Looking
at Eq. (8) one realizes that it suffices to have T � �−1

min,
where �min is the smallest gap in the whole spectrum i.e.,
�min = minn,m(En − Em). We can address this question for
the class of quasifree Fermi systems in d spatial dimensions.
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In this case the energy has the form En = ∑
k nk�k where k is

a d-dimensional quasimomentumlike label and we can assume
the one-particle energy �k to be positive. Then the gap is given
by �min = minβk

|∑k βk�k| with βk = 0,±1. By choosing
βk = (−1)k , one obtains a �min which is exponentially small in
L in those (frequent) cases where �k is an analytic function of
k [30]. However in quasifree systems the weights pn decrease
exponentially with the number of excitations in n. In practice
the highest weight is given for energy differences between
the one and zero particle spectra: �(1,0) = mink�k which
is a constant of order 1 in the gapful case, while typically
scales as L−1 for the critical case. The next largest amount
of spectral weight is attained at a gap which is a difference
between one-particle energies �(1,1) = mink,q |�k − �q |. It
will be favorable to have k and q nearby in the region where �k

is flat or almost flat. So we get �(1,1) = mink|�k − �k+δk| �
mink|∇k�k · δk|. This gap is at least of order of L−2 (or at
least O(L−3) if there exists a k vector such that ∇k�k = 0).
From this discussion we estimate that, at least in quasifree
systems, to have LT1 � L̄ one must take T1 = O(1) in the
gapful case, while one has T1 = O(L) at criticality. If one
needs LT1 � L̄ with a larger degree of precision than one must
choose considerably larger time: T1 = O(L2) [or T1 = O(L3)
if ∇k�k = 0 has a solution within the allowed set of k vectors].
Related time scales are revival times. We define a revival time
to be that particular time for which a large portion of spectral
weight pnpm has revived. More precisely Trevωpeak = 2π ,
where ωpeak is a particular frequency En − Em such that the
weight pnpm is large. From the discussion above we expect
Trev = O(1) when H has a gap above the ground state, while
Trev = O(L) when H is critical. These expectations have been
confirmed (see Fig. 1) on the hand of a solvable model that
will be discussed in the next sections.

D. Moments of the Loschmidt echo

Having computed the time averaged LE we can now turn
to higher moments. In doing this one has to distinguish cases
where n = m from those where En = Em in Eq. (8). So we
write

L(t) = L̄ + X(t),

X(t) =
∑
n�=m

pnpme−it(En−Em),

and the nth moment is given by

[L(t)]n =
n∑

k=0

(
n

k

)
L̄n−k[X(t)]k.

The computation of the average [X(t)]k can be done assuming
a strong nonresonance condition. With this we mean the
following. We say H satisfies a k-nonresonance condition if
the only way to fulfill

∑k
l=1 Eil − Ejl

= 0 is to match the
Ei’s to the Ej ’s. Strong nonresonance is k-nonresonance for
any k. Note that this condition cannot be fulfilled when k

becomes of the order of the Hilbert’s space dimension. Now
to compute [X(t)]k draw 2k points in two rows of length k.
Imagine Ei(Ej ) are the points at the left (right). Now draw
all possible contraction between i’s and j ’s (no contraction

among i’s or j ’s since they have the same sing), which are
k!, but keep only those sets of contractions where there is no
horizontal line. This requirement corresponds to the constraint
il �= jl, l = 1, . . . , k. For example for [X(t)]2 we have only
one contribution

so

[X(t)]2 =
∑
i1 �=i2

p2
i1
p2

i2

For [X(t)]3 we have two diagrams,

Both these diagrams give the same contribution (simply swap
i’s with j ’s) and the result is

[X(t)]3 = 2
∑
i1 �=i2

i2 �=i3 ,i3 �=i1

p2
i1
p2

i2
p2

i3
.

The number of terms in [X(t)]k , N (k) is the number of all
permutations without fixed points and is given by

N (k) =
k∑

j=2

(−1)k−j

(
k

j

)
(j ! − 1).

However, among these N (k) terms, many of them give different
contributions. Look for instance at [X(t)]4,

[X(t)]4 = 3

⎛
⎝∑

i1 �=i2

p2
i1
p2

i2

⎞
⎠

2

+ 6
∑

i1 �=i2 ,i2 �=i3
i3 �=i4 ,i4 �=i1

p2
i1
p2

i2
p2

i3
p2

i4

Correctly one has 3 + 6 = N (4) = 9.
We collect here the first three moments

µ1 = L̄,

µ2 = L̄2 +
∑
i1 �=i2

p2
i1
p2

i2
,

µ3 = L̄3 + 3 L̄
∑
i1 �=i2

p2
i1
p2

i2
+ 2

∑
i1 �=i2

i2 �=i3 ,i3 �=i1

p2
i1
p2

i2
p2

i3
,

while the cumulants are

κ1 = L̄
κ2 =

∑
i1 �=i2

p2
i1
p2

i2

κ3 = 2
∑
i1 �=i2

i2 �=i3 ,i3 �=i1

p2
i1
p2

i2
p2

i3
.

We can notice that each term in [X(t)]k has the same form
of L̄k except for a number of nonresonance constraints of the
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form il �= im. Correspondingly [X(t)]k < N(k)L̄k . Using now∑n
k=0

(
n

k

)
N (k) = n! we obtain the simple bound Ln < n!L̄n

for n � 2. This means that

eλL̄ � χ̃(λ) = eλL <
1

1 − L̄λ
,

and so we obtained a bound on the characteristic function χ̃ .
We see that, when L̄ → 0 the probability distribution of L
becomes a delta function at zero (the characteristic function
becomes identically one). The distribution function of the
upper bound is

ϑ(x)
e−x/L̄

L̄
.

Later we will encounter situations where this function gives
a good approximation to the Loschmidt echo probability
distribution.

III. ISING MODEL IN TRANSVERSE FIELD

From now on we will give a detailed description of the
Loschmidt echo for the case of an exactly solvable model. The
model we consider is the Ising model in transverse field with
Hamiltonian

H = −
∑

i

(
σx

i σ x
i+1 + hσ z

i

)
.

This model can be mapped to quasifree fermions and so
diagonalized exactly. At zero temperature we distinguish two
phases: (i) an ordered one in the longitudinal direction in
which 〈σx

i σ x
j 〉m2, for |h| < 1, and (ii) a paramagnetic phase

for |h| > 1. The points h = ±1 are critical points where the
system is described by a conformal invariant field theory with
central charge c = 1/2.

The LE is given in this case by [16] (superscripts, inserted
here for clarity, refer to different values of the coupling
constant h)

L(t) = |〈ψ (1)|e−itH (2) |ψ (1)〉|2
=

∏
k>0

[
1 − sin2

(
ϑ

(1)
k − ϑ

(2)
k

)
sin2

(
�

(2)
k t/2

)]
, (9)

where tan(ϑ (i)
k ) = − sin(k)/[h(i) + cos(k)] and the

single particle fermionic dispersion is �
(i)
k =

2
√

[h(i) + cos(k)]2 + sin(k)2. The band minimum
(maximum) is at Em = 2 min{|1 − h(2)|, |1 + h(2)|}(EM =
2max{|1 − h(2)|, |1 + h(2)|}). Finally, for periodic boundary
conditions that will be used throughout, the quasimomenta
satisfy kn = π (2n + 1)/L, n = 0, 1, . . . , L/2 − 1. Exploiting
the fact that H decomposes into a direct sum of L/2 blocks
4 × 4, we are able to compute the complete dephased
equilibrium state ρeq = ∑

n pn|n〉〈n|. The result is

ρeq =
∑
α∈ZL

2

p (α) |α〉 〈α|, (10)

where the multi-index α is α = (α1, . . . , αL), αi = 0, 1, the
state is |α〉 = ⊗k>0|αk〉 with |0k〉 = cos(ϑ (2)

k /2)|0, 0〉k,−k −
i sin(ϑ (2)

k /2)|1, 1〉k,−k and |1k〉 = i sin(ϑ (2)
k /2)|0, 0〉k,−k −

cos(ϑ (2)
k /2)|1, 1〉k,−k . Finally the weights are given by

p (α) =
∏
k>0

tan2αk (δϑk/2)

1 + tan2 (δϑk/2)
. (11)

Using Eq. (10) together with Eq. (11) one can show (cf. Ref.
[31]) that the dephased state has the following totally factorized
form:

ρeq = ⊗
k>0

(ak |0k〉 〈0k| + bk |1k〉 〈1k|) ,

where ak = [1 + tan2(δϑk/2)]−1, and bk = 1 − ak .

A. Short time regime

Let us first discuss the short-time, transient regime. Looking
at the function ln L(t) one can readily see that all its n

derivatives at t = 0 are the Riemann sums of a summable
function irrespective of the h(i)s being critical. This means that
all the derivatives of ln L(t) grow linearly with L, and together
with Eq. (6) implies that the cumulants are linear even at
criticality, i.e., 〈H 2n〉c ∝ L. The same result could have been
derived by noting that for |h| �= 1 the system is gapful and
clustering. When |ψ (1)〉 is critical, i.e., |h(1)| = 1, the scaling
dimension of δH = H (2) − H (1) = −δh

∑
i σ

z
i is one and so

according to the reasoning in Sec. II B the cumulants of H

grows linearly with L.
Accordingly the CLT applies. Since all the cumulants,

including the variance, grow as L, plotting the function
LL(t/

√
L) for different sizes L, one observes data collapse.

This behavior is illustrated in Fig. 3. Clearly the plot repro-
duces a Gaussian with variance limL→∞〈H 2〉c/L.

B. Long time, large sizes, and the order of limits

Consider now a physical situation where an experimenter
computes LL. We inserted the labels T and L to stress that
both size and expectation time are finite, as is required in a
true experiment. Here we want to study the interplay between
T and L. Consider first the case where we send L to infinity,
or more physically L is the largest scale of our system. In this
situation the spectrum of H is practically continuous, and we
can write the LE as

L(t) = exp

{
L

2π

∫ π

0
ln

[
1 − sin2 (

ϑ
(1)
k

−ϑ
(2)
k

)
sin2

(
�

(2)
k t/2

)]
dk

}
.

≡ e−Ls(t).

In this approximation we sent all the revival times to infinity
and so the functionL(t) is no longer almost periodic, but rather
tends to a precise limit as t → ∞. We can calculate the limit
s(∞) and also the first corrections, as t → ∞. The procedure
is outlined in the Appendix. The result is

s(t) = s(∞) − Am

|t |3/2 cos

(
tEm + 3

4
π

)
+ (m ↔ M) , (12)

where s(∞) is the limiting value and Am/M are constants which
depend on h(i) and are given in the appendix. The result (A1)
has already been found in [4], here we provide the explicit
form of the asymptotic value, s(∞).
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Since the function L(t) = e−Ls(t) has a limit at infinity, its

time average is precisely this limit
=
L e−Ls(∞). More precisely

the distribution function becomes a delta function P (x) =
δ(x − e−Ls(∞)).

Consider now performing first the time average of Eq. (9).
According to the discussion in Sec. II C, this requires at least
observation times as large as T � L (if we are at criticality).
The result in this case is (for the explicit computation see the
following section)

L̄ = exp
∑
k>0

log
[
1 − sin2

(
ϑ

(2)
k − ϑ

(1)
k

)/
2
]
. (13)

If now L is large, we can approximate the sum with the integral:
L̄ = e−Lg(h(1),h(2)). Calling δϑk = ϑ

(2)
k − ϑ

(1)
k the two functions,

g and s(∞) are given by

g = − 1

2π

∫ π

0
ln[1 − sin2(δϑk)/2]dk, (14)

s(∞) = − 1

π

∫ π

0
ln{[1 + |cos(δϑk)|]/2}dk. (15)

We observed that the two averages e−Lg—obtained by first
doing the time average and then taking large L—or e−Ls(∞)—
obtained by first considering L large and then doing the time
average—are qualitatively very similar for most values of the
parameters h(i). The only region where there is an appreciable
difference is when h(1) and h(2) correspond to different phases
(either |h(1)| < 1 and |h(2)| > 1 or vice-versa).

C. Moments of the Loschmidt echo in presence of degeneracy

Having the explicit form of the LE Eq. (9) we can compute
its time average and also other moments. Since the Ising model
is mapped to a free Fermi system on a finite lattice, and
given the form of the quasiparticle dispersion �k , its spectrum
is nondegenerate. In other words the Ising Hamiltonian is
1-nondegenerate. However, for the same reason, it is not
k-nondegenerate for k � 2. This means that to compute
moments higher than the first, we really need to use the
explicit form Eq. (9) and cannot rely on the results of Sec.
II C. For the first moment this problem does not arise, and we
can either use L̄ = ∑

n p2
n or do the time average of Eq. (9).

Correctly the results coincide, and they rely on the fact that∑
k (nk − mk)�k = 0, implies nk = mk , i.e., that the spectrum

is nondegenerate. The result is

L̄ =
∏
k>0

[
1 − sin2 (

ϑ
(1)
k − ϑ

(2)
k

)/
2
]
. (16)

For later convenience we define αk = sin2(ϑ (1)
k − ϑ

(2)
k ). To

compute higher moments we first rewrite Eq. (9) as

L(t) =
∏
k>0

[1 + Xk(t)],

Xk(t) = −αk sin2(�kt/2) =
∑

β=0,±1

ck
βeiβ�kt ,

ck
0 = −αk

2
, ck

±1 = αk

4
.

We write the nth power of the LE as

[L(t)]n =
∏
k>0

[
1 + Y

(n)
k (t)

]
,

Y
(n)
k (t) =

n∑
m=1

(
n

m

)
[Xk(t)]m ≡

∑
γ=0,±1,...,±m

g
(n)
γ,ke

iγ�kt .

Now, when computing M products of Y
(n)
k terms, only the

γ = 0 term will survive after taking the time average. In other
words

Y
(n)
k1

· · · Y (n)
kM

= g
(n)
0,k1

· · · g(n)
0,kM

,

and so we have

[L(t)]n =
∏
k>0

(
1 + g

(n)
0,k

)
.

An explicit formula for g
(n)
0,k is

g
(n)
0,k =

n∑
m=1

(
n

m

) ∑
β1 ,...βm∑

βi=0

ck
β1

· · · ck
βm

.

Noting that∑
β1 ,...βm∑

βi=0

ck
β1

· · · ck
βm

=
∑

n1
n0+2n1=m

m!

(n1!)2 n0!

(
ck

0

)n0
(
ck

1

)2n1
,

we obtain

g
(n)
0,k =

n∑
m=1

(−αk

4

)m (
n

m

)
∂m
t (2t − t2 − 1)mt=0

m!

=
n∑

m=1

(−αk

4

)m (
n

m

) (
2m

m

)
.

For example we have

g
(1)
0,k = −αk

2
,

g
(2)
0,k = −αk + 3

8
α2

k ,

g
(3)
0,k = −3

2
αk + 9

8
α2

k − 5

16
α3

k ,

g
(4)
0,k = −2αk + 9

4
α2

k − 5

4
α3

k + 35

128
α4

k .

The variance of the LE is then given by

�L2 =
∏
k>0

(
1 − αk + 3

8
α2

k

)
−

∏
k>0

(
1 − αk + 1

4
α2

k

)
.

(17)

The first moment and the variance are plotted in Fig. 4. One
should note that close to the critical points hc = ±1 there
appears a small region δh where the variance is large.

Equation (17) gives explicitly the variance in a case
where the nonresonant hypothesis is violated. Since |αk| � 1
generally the variance is given by the difference between
two exponentially small quantities and so, a fortiori, is
exponentially small in the system size L. However, looking
at Fig. 4 one notes a small region of parameter close to the
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FIG. 4. (Color online) From top to bottom, mean, and variance
of Loschmidt echo at size L = 100. The region where the variance
is large shrinks when increasing the system size L. The height of the
peak however remains constant.

critical points, where the variance is large. As we will see this
fact has important consequences.

It is now interesting to compare the result in Eq. (17)
with what would have been obtained assuming a nonresonant
condition. Clearly the second moment computed assuming
nonresonance has less terms than the correct one. Since for the
LE all the contributions are positive, the nonresonant result
ought to be smaller. In other words, for the variance we must
have �L2 � �L2

nr.
Comparison with the nonresonant result. To compute the

variance assuming nonresonance we use

L2
nr = L̄2 + 2

∑
i<j

p2
i p

2
j = 2L̄2 −

∑
i

p4
i .

Using this formula together with Eq. (11) we obtain

�L2
nr = L̄2 −

∏
k>0

(
1 − αk + 1

8
α2

k

)

=
∏
k>0

(
1 − αk + 1

4
α2

k

)
−

∏
k>0

(
1 − αk + 1

8
α2

k

)
.

We have verified that the inequality �L2 � �L2
nr holds for

all values of the coupling constants h(1) and h(2). However the
qualitative behavior of �L2

nr is very similar to the true variance
�L2.
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x
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P
x

2 4 6 8 10
ω
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0.04

0.06

0.08

0.1

L
ω

(b)

(a)

FIG. 5. (Color online) Approximate exponential behavior. Pa-
rameters are L = 18, h(1) = 0.3, h(2) = 1.4. When δh is large this
behavior is observed even for moderate sizes (here L = 18), (upper
panel). The thick line reproduces ϑ(x)e−x/L̄/L̄ with L̄ given by
Eq. (16). In the lower panel we plot the Fourier series L̄disc(ω) given
by Eq. (20).

D. Loschmidt echo distribution function

We now turn to consider the whole probability distribution
of the LE. As we have noted earlier, for any L finite being the
spectrum discrete, L(t) is an almost-periodic function. Actu-
ally L(t) belongs to a smaller class, since it is a trigonometric
polynomial. In any case, most results we will present are valid
for the larger class of almost-periodic functions.

We now give the results for the whole LE probability
distribution function. We have observed three kinds of uni-
versal behavior emerging in different, well defined regimes.
(i) Exponential behavior where the probability distribution
is well approximated by ϑ(x)e−x/L̄/L̄ (Fig. 5), (ii) Gaussian
behavior, (Fig. 6), and (iii) a universal double peaked function
(Fig. 7). More precisely we have the following scenario:

(I) δh large. In this case, for L moderately large, the
distribution is approximately exponential. The feature
is more pronounced when h(1), h(2) are in different
phases, the limiting case being h(1) ≈ ±h(2).

(II) δh small. In this case we have to distinguish two
situations:

i. h(i) close to the critical point:
(a) L � |h(i) − 1|−1 ∝ ξ , universal double-

peaked distribution. Note that L � ξ is the
so-called quasicritical regime.

(b)L � |δh|−1, exponential distribution.
ii. Off critical:

(a) L � |δh|−2, exponential distribution.
(b) Otherwise Gaussian.
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FIG. 6. (Color online) Gaussian behavior for δh small but away
from criticality. Parameters are L = 20, h(1) = 0.1, h(2) = 0.11. Note
that the distribution function is an extremely peaked Gaussian (upper
panel). The thick line is a Gaussian with mean and variance given
by Eqs. (16) and (17). In the bottom panel one can notice that many
frequencies contribute to the LE. The one-particle contribution c(ω),
Eq. (22), is given by the black dots while the red curve gives the true
spectral decomposition L̄disc(ω) given by Eq. (20).

In other words, say that we fixed h(i) in order to have either
a Gaussian or a double-peaked distribution. We can always
find an L large enough such that the distribution becomes
exponential in both cases. However, for the Gaussian case we
must reach considerably larger sizes: L � |δh|−2 (compare
Figs. 8 and 9).

We have observed an exponential distribution in the region
of parameters where the average LE is much smaller than one:
L̄ � 1. Due to the bound L2 < 2L̄2, one has �L < L̄2 so
that when L̄ � 1 even the variance is small. Since the LE is
supported in [0, 1] and in particular L(t) must be positive we
expect in the region L̄ � 1 a distribution with positive support,
with a large peak very close to zero, and rapidly decaying tail.
We have verified that an exponential distribution of the form
ϑ(x)e−x/L̄/L̄ gives a pretty good approximation in the region
L̄ � 1. Note in any case, that the exponential form is always
an approximation. In particular, for x → 0 the true distribution
P (x) tends to zero for any value of the parameters. This
happens since we have always L(t) > 0 strictly. And so gener-
ally 0 < Lmin � L � 1. This feature can be accounted for by
adding a (small) ε term to the exponential: P (x) ∝ e−x/L̄−ε/x .

Let us now investigate the conditions under which the
first moment is small and so we expect an approximately
exponential behavior. Looking at Eq. (13) we see that L̄ � 1
holds when Lg(h(1), h(2)) � 1 where g is given by Eq. (14).
Clearly the function g is zero (its minimum) when h(1) = h(2),
and is quadratic in the difference on the diagonal. Quite
interestingly the function g is appreciably different from zero
only when h(1) and h(2) correspond to different phases (i.e.,

0.94 0.96 0.98 1
x
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25

30

P
x

0.2 0.4 0.6 0.8 1 1.2 1.4
ω

0.005
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0.035
0.04

c
ω

(b)

(a)

FIG. 7. (Color online) Typical double-peak structure behav-
ior. Parameters are L = 40, h(1) = 0.99, h(2) = 1.01. Upper panel:
probability distribution (histogram) together with the result of the
approximation given in Eq. (18) (thick line). The mean L̄ is taken
from Eq. (9) while the parameters A and B are obtained by computing
the two largest spectral weights [see Eq. (21)]. Lower panel: the light
curve (red online) is the Fourier series L̄disc(ω) (projected spectral
density), black curve shows the highest coefficient c(ω) given by
Eq. (22), together with allowed frequencies (black dots).

either |h(1)| < 1 and |h(2)| > 1 or vice versa) so that in these
cases we observe exponential behavior even for moderately
small lattices. When h(1) is close to h(2), but away from critical
points, the function g is quadratic in the difference δh so
that L̄ ≈ exp(−const × Lδh2). Hence to have L̄ � 1 and so
to observe approximate exponential behavior we obtain the
relation L � δh−2. At criticality and for δh small instead,

0
0.25

0.5
0.75

1
x

10
20

30
40

80
L

0

0.02

0.06

P x

0
0.25

0.5
0.75x

10
20

30
40L

FIG. 8. (Color online) Double-peak distribution approaching an
exponential one when increasing system size L at fixed h(i). Parame-
ters are h(1) = 0.9, h(2) = 1.2 and chain length are L = 10, 20, 30, 40.

022113-9



LORENZO CAMPOS VENUTI AND PAOLO ZANARDI PHYSICAL REVIEW A 81, 022113 (2010)

0
0.25

0.5
0.75

1
x

20
30

40
80

120
L

0

0.1

0.2

P x

0
0.25

0.5
0.75x

20
30

40
80L

FIG. 9. (Color online) Gaussian distribution approaching an
exponential one when increasing system size L at fixed h(i).
Parameters are h(1) = 0.2, h(2) = 0.6 and chain length are L =
20, 30, 40, 80, 120.

we can use L̄ ≈ F 4 where F is the fidelity which
scales as F ∼ 1 − const × δh2L2(d+ζ−�) (see Sec. II B and
Ref. [26]). In the quantum Ising model we are considering
we have d = ζ = ν = � = 1 and so the average behaves
as L̄ ≈ exp(−const × L2δh2). This means that for δh small
around a critical point hc = ±1, the condition to have an
exponential distribution becomes L � δh−1.

We now turn to consider the origin of the double-peak
shaped distribution function. As we have already noticed,
the LE is a (finite) sum of cosines with given frequencies
and amplitude. We can imagine a situation where only few
frequencies contribute to the LE. In the limiting case, only two
nonzero terms. That means that the LE can be approximated
by

L(t) = L + A cos(ωAt) + B cos(ωBt). (18)

where we can assume A,B positive.
We have devoted some attention to the probability dis-

tribution generated by such a function. If ωA and ωB are
rationally dependent, the function is periodic and the dis-
tribution function has square root singularities at all values
of L where ∂tL(t) = 0. However in our case the frequencies
ωA/B are always rationally independent. In this case the vector
x(t) = (ωAt, ωBt) wraps around the torus in a uniform way.
We can then invoke ergodicity and transform the time average
into a “phase space” average [in this case the phase space is
x = (x1, x2)]. Hence the probability distribution function is
given by

P (L(t) = �) = 1

(2π )2

∫ 2π

0
dx1

∫ 2π

0
dx2δ [L (x1, x2) − �].

By using Eq. (18) this probability density can be written as

P (� + L̄) = 1

π2A

∫ min{1,(�+B)/A}

max{−1,(�−B)/A}

× dz√(
�+B
A

− z
) (

z − �−B
A

)
(1 − z2)

. (19)

The integral above can be expressed in terms of elliptic
functions, but we would not need its explicit expression.
Typically the function (19) is double-peak shaped function
(see Fig. 7), with support in [L̄ − |A + B|, L̄ + |A + B|] and
two peaks at � = L̄ ± |A − B|. The divergence at the peaks
position is of logarithmic type: close to the peaks, setting
� = L̄ ± |A − B| + ε, one has

P (�) = − ln (ε)

2π2
√|AB| + O(1).

Note that we never observe the limiting case where B = 0
and L(t) becomes a periodic function. This means that even
a very small spectral weight on B cannot be discarded. On
the other hand the distribution function (19) seems to be quite
stable against the presence of other oscillating terms with small
spectral weight. This stability can be seen in Fig. 7 where one
clearly has at least three frequencies with reasonable spectral
weight, but the probability density is still well approximated
by a double-peaked structure.

Spectral analysis. To understand the behavior of P (L = x)
we do a spectral analysis of L(t) to see which frequencies
contribute most. In fact, for almost-periodic functions there
is a similar Fourier decomposition as for periodic functions.
The Fourier expansion is given in this case by L̂disc(ω) =
L(t)eiωt . Taking into account Eq. (8) L̂disc(ω) can be
written as

L̂disc(ω) =
∑
n,m

pnpmδω,En−Em
. (20)

We would like to know which frequencies have the largest
weight. This is achieved by expanding the product in
Eq. (9) [36]

L(t) = 1 +
∑
k>0

Xk(t) +
∑

k1>k2>0

Xk1 (t)Xk2 (t) + · · ·

= L̄
∑
k>0

X̃k(t) +
∑

k1>k2>0

X̃k1 (t)X̃k2 (t) + · · ·

with X̃k(t) =
∑

β=±1

ck
βeiβ�kt = αk

2
cos (�k t) .

Now, since each X̃k(t) is smaller than 1/2 in modulus, it is
reasonable to approximate the LE with the first two terms of
this expansion and we obtain

L(t) � L̄ +
∑
k>0

αk

2
cos (�k t). (21)

In this approximation we only wrote the zero-frequency con-
tribution, which corresponds to the mean, and the contribution
coming from the one-particle spectrum. The next term has
also contributions coming from the two particle spectrum.
To be more precise, call E(n) the energy of the n-particle
spectrum then E(1)

a − E
(0)
b ∝ �k , (first order contribution),

while E(1)
a − E

(1)
b ∝ �k1 − �k2 , and E(2)

a − E
(0)
b ∝ �k1 + �k2

(second order contribution with less spectral weight).
Note that we expect Eq. (21) to be approximately valid (with

a different form for the amplitudes and the frequencies) also for
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nonintegrable models in which a one-particle approximation
works well.

Now, if there is a regime where the amplitudes αk/2 are
highly peaked around few quasimomenta, in the limiting case
only two, then the LE can be approximated as in Eq. (18) and
we expect a double peaked distribution function. So we are led
to study the (one-particle) amplitude function

c(ω) ≡ αk

2

∣∣∣
ω=�k

, ω ∈ [Em,EM ] . (22)

Generally c(ω) is a bell-shaped function, starting linearly from
the band minimum Em, reaching a maximum value and then
decreasing to zero at the band maximum EM . It is not difficult
to show that [23], when δh is small and for roughly |1 − h(2)| <∼
10−1, c(ω) starts developing a peak, the width of which being
proportional to |1 − h(2)|. In the limiting case h(2) = 1, c(ω)
has its maximum at Em = 0 and then decreases monotonically
to EM = 2. So, for δh small and for |1 − h(2)| <∼ 10−1, c(ω)
is a peaked function. In order to have few frequencies fall
within the peak, and so to have large spectral weight on few
frequencies, we must additionally have L|1 − h(2)| � 1. This
is easily seen analyzing the dispersion �k for h(2) close to
the critical point [24]. All in all, the conditions to have a
double-peak distribution, are δh small and L|1 − h(2)| � 1.
The feature is more pronounced when the hi are not precisely
critical. In fact even though c(ω) is most peaked when h(2) = 1
(and the peak is at ω = 0), we have to remember that the
allowed values of ω are ωn = �kn

where kn = π (2n + 1)/L,
and the smallest frequency is ω1 = �π/L. If we perturb h(2)

from 1 the peak of c(ω) shifts to the right, approaching ω1, so it
is favorable to have h(2) �= 1. Not surprisingly, the conditions to
have a double-peak probability density, coincide with having
a large variance (see Fig. 4 bottom panel).

Generally fixing h(i) and increasing the size L, one
eventually violates the quasicritical condition L � ξ . At this
stage the double-peak feature tends to disappear and the
distribution approaches an exponential one. This can be clearly
seen in Fig. 8. From this figure one can have the impression
that the “double-peak feature” is a prerequisite of short sizes,
since in this case one has few frequencies anyway. As we have
tried to explain instead, this feature survives for larger sizes,
provided we shrink δh sufficiently (Fig. 7).

Instead, when δh is small but h(i) are far from the critical
point, then c(ω) is not peaked, and many frequencies have a
large spectral weight (see Fig. 6). In this case the distribution
becomes Gaussian. The emergence of a Gaussian distribution
can be qualitatively understood in the following way. First
write the LE according to its spectral decomposition L(t) =∑

n Ane
itωn where the amplitudes are precisely given by An =

L̂disc(ωn) and are positive. When the frequencies are rationally
independent the variables xn = tωn wrap uniformly around a
large dimensional torus. Then one can consider each An × eitxn

as an independent random variable. The assumption δh is small
but h(i) away from criticality corresponds to say that L(t) can
be considered as a sum of many independent random variables,
giving rise to a Gaussian distribution as a consequence of the
central limit theorem. When L � |δh|−2 the conditions of
independence breaks down and we recover an approximate
exponential behavior.

At this point it is worth to comment on the relation between
the different regimes observed (exponential, Gaussian, double
peak) and the equilibration dynamics. As we have recalled,
to have equilibration in probability, it is sufficient to have
a small variance. In the exponential regime (given by L̄ �
1) the variance is given approximately by k2 ≈ L̄2 and is
exponentially small in the system size. In the Gaussian regime
one can have a large mean but the variance will still be small (cf.
Fig. 6). Hence in these regimes (exponential and Gaussian) the
conditions to have unitary equilibration in the sense specified
in Sec. II, are satisfied: for the large majority of times one
will observe the LE very close to its mean. On the contrary in
the double-peak regime the variance is large. In fact, studying
numerically the variance given by Eq. (17) we have verified
that the condition to have a large variance is precisely the same
the defines the double-peak regime (cf. Fig. 4 bottom panel).
The lack of equilibration in the double-peak regime can also be
understood very intuitively. In this regime the system oscillates
among very few eigenstates of the evolution Hamiltonian and
equilibration cannot take place in any sense. Conversely in
the exponential and double-peak cases, the system has access
to many different states, and equilibration can take place in
probabilistic sense.

IV. PROBABILITY DISTRIBUTION FUNCTION FOR
THE MAGNETIZATION

In the same spirit we can compute the probabil-
ity distribution of a local operator. The first candidate
that comes to mind is the transverse magnetization. We
computed the following time-dependent observable m(t) =
〈ψ (1)|eitH (2)

σ z
i e−itH (2) |ψ (1)〉. Using again Eq. (10) one obtains

[37]

m(t) = 1

L

∑
k

cos
(
ϑ

(2)
k

)
cos(δϑk)

+ sin
(
ϑ

(2)
k

)
sin(δϑk)cos

(
t�

(2)
k

)
, (23)

where the quasimomenta range now in the whole Brillouin
zone: k = π (2n + 1)/L, n = 0, 1, . . . , L − 1. Correctly,
when h(1) = h(2) we recover the zero temperature equilibrium
result 〈σ z

i 〉 = L−1 ∑
k cos(ϑk).

From Eq. (23) we see that m(t) can be written—exactly—as
a constant term plus an oscillating part with frequencies
given by the single particle spectrum �k . The discussion
on characteristic times becomes simplified as all time scales
are uniquely determined by �

(2)
k . For example the time T1

necessary to observe the correct mean: mT1 = m̄ must simply
satisfy T1 � gap−1 which means T1 � L in the quasicritical
regime |h(2) − 1|−1 � L, while it suffices to have T1 � O(1)
away from criticality. Given Eq. (23) it is not difficult to
compute the mean and the variance, which are given by

m̄ = 1

L

∑
k

cos
(
ϑ

(2)
k

)
cos(δϑk), (24)

�m2 = 1

L2

∑
k

sin2
(
ϑ

(2)
k

)
sin2 (δϑk). (25)

Some comments are in order here. First fixing h(1), h(2) the
variance (Fig. 10) goes to zero as L−1 and not exponentially
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FIG. 10. (Color online) Variance of the magnetization as given
by Eq. (10) for L = 80. A signature of criticality are the cusps at
h(2) = ±1.

fast as was the case for the LE. Second, the spectral weight
associated to the frequency �

(2)
k is sin(ϑ (2)

k ) sin(δϑk). We
observed that there are always many frequencies with large
spectral weight. In other words the spectral weight function is
never peaked.

These comments suggest us to expect a Gaussian behavior
for the probability distribution function of the magnetization
irrespective of the parameters approaching critical values. This
has indeed been observed (Fig. 11).

V. CONCLUSIONS

The unitary character of the dynamics of a closed quantum
system implies that whatever relevant notion of equilibration
one might have has to be a subtle one. In this paper we
investigated the unitary equilibration of a quantum system after
a sudden change of its Hamiltonian parameter. To this aim we
used a prototypical time-dependent quantity: the Loschmidt
echo. We established how the global features of L depend
on the physical properties of the initial state preparation and
on those of the quench Hamiltonian. The central object of
our analysis is given by the long-time probability distribution
for L: P (x) = δ(L(t) − x) := limT →∞T −1

∫ T

0 δ(L(t) − x)dt .
Broadly speaking concentration phenomena for P correspond
to quantum equilibration.

0.87 0.88 0.89 0.9
x

10
20
30
40
50
60
70

P
x

FIG. 11. (Color online) The probability distribution for the
magnetization has only Gaussian behavior. Here parameters are
L = 40, h(1) = 0.9, h(2) = 1.01. The continuous line is a Gaussian
with mean and variance given by Eqs. (24) and (25).

Here below for the reader’s sake we summarize the main
findings of the paper.

(i) Resorting to a cumulant expansion we characterized
the short-time behavior of L(t). Different regimes can be
identified depending on the most relevant scaling dimen-
sion of the quench Hamiltonian. When the central limit
theorem (CLT) applies one has a Gaussian decay over a
time scale O(1) for gapped systems. For the critical case
the time-scale becomes O(Lζ ) in a small region |δh| �
L−(d+ζ−�). At critical points the CLT can be violated and L(t)
takes a universal non-Gaussian form for sufficiently relevant
perturbations.

(ii) We discussed the general structure of the higher
momenta of P i.e., µk := Lk(t) = ∫

xkP (x)dx using the so-
called nonresonant hypothesis. We showed that all the µk are
bounded by those corresponding to a Poissonian distribution,
i.e., P (x) = ϑ(x)exp(−x/L̄)/L̄.

(iii) Using exact results for the quantum Ising chain we
rigorously analyzed the interplay between the chain length L

and the averaging time T . In particular we showed how the
limit limT →∞ and the thermodynamical one, i.e., limL→∞
do not commute. While in finite systems the L(t) is an
almost-periodic function, in the thermodynamical limitL∞ :=
limt→∞L(t) exists and P (x) → δ(x − L∞). We explicitly
computed L∞ and the way it is asymptotically approached for
large t . We gave a general closed form for the exact µk’s and
compared with that obtained with the nonresonant hypothesis.

(iv) For the quantum Ising chain we numerically inves-
tigated P (x). We identified three universal regimes (a) an
exponential one (P is Poissonian) when L is the largest scale
of the system; (b) a Gaussian one for intermediate L and
initial state and quench parameters close and off-critical; (c)
a double-peak shape for P when the parameters are close to
each other and close to criticality. This result holds in the
quasicritical region L|h(i) − 1| � 1, (i = 1, 2).

(v) Finally, for the sake of the comparison of the Loschmidt
echo with a prototypical observable, we computed the time-
dependent magnetization after the quench and studied its long-
time statistics. In this case only a Gaussian regime appears to
be reachable.

We have shown that the Loschmidt echo encodes sophisti-
cated information about the quantum equilibration dynamics.
For finite system vastly different time scales arise: short-time
relaxation is intertwined with a complex a pattern of collapses
and revivals and eventually Poincare recurrences. Unveiling
how these phenomena depend on spectral properties of the
underlying Hamiltonians, is one of the key challenges in
the way to understand emergent thermal behavior in closed
quantum systems.
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APPENDIX

Asymptotic of s(t)

Here we want to compute the asymptotic of s(t) for t → ∞,
that is the integral,

s(t) = − 1

2π

∫ π

0
ln

[
1 − sin2

(
ϑ

(1)
k − ϑ

(2)
k

)
sin2

(
�

(2)
k t/2

)]
dk

We can go to energy integration setting �
(2)
k = ω

s(t) = − 1

2π

∫ EM

Em

ln[1 − α(ω) sin2(ωt/2)]ρ(ω)dω.

where Em = 2 min{|1 + h(2)|, |1 − h(2)|} and EM =
2 max{|1 + h(2)|, |1 − h(2)|}. To be explicit,

ρ(ω) = 2ω√(
ω2 − E2

m

)(
E2

M − ω2
) ,

α(ω) =
(
ω2 − E2

m

)(
E2

M − ω2
)
(h(2) − h(1))2

4(h(2))2[4(h(2) − h(1))(1 − h(1)h(2)) + h(1)ω2]ω2
.

Note that α(ω) is zero at the band’s edge, positive otherwise
(and smaller than 1 in modulus). Instead ρ(ω) has square root
(van Hove) singularities at the band edges as a result of the
quadratic dispersion at those points (when h(2) �= 1). When
h(2) = 1 the dispersion is linear at the bottom of the band but
still quadratic at the upper band edge, hence in this case only
the square root singularity at the upper band edge survives.

Then expand the logarithm into an infinite series. Using the
Riemann-Lebesgue lemma we can show that,

lim
t→∞

∫
f (w) [sin (wt)]2k dw = 2−2k

(
2k

k

) ∫
f (w) dω,

provided that f is summable. The resulting series can be
summed

−
∞∑

k=1

xk

k
2−2k

(
2k

k

)
= 2 ln

(
1 + √

1 − x

2

)
, if |x| < 1.

So finally

lim
t→∞ s(t) = − 1

π

∫ EM

Em

ln

[
1 + √

1 − α(ω)

2

]
ρ(ω)dω

= − 1

π

∫ π

0
ln

[
1 + √

1 − α (k)

2

]
dk.
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FIG. 12. (Color online) Typical behavior of the function s(t)
(black line) in the thermodynamic limit. The red line is the
approximation given by Eq. (A1). Parameters are h(1) = 1.3,
h(2) = 2.

To compute the first correction to the limit note that
α(ω)k smoothen the singularity at the band edge, so that
for the leading correction we need only k = 1 in the ex-
pansion of the logarithm. The evaluation of the oscillat-
ing integral is done with a saddle point technique. The
result is

s(t) � s(∞) − 1

4π

∫ EM

Em

α(ω)ρ(ω)cos(ωt)dω

� s(∞) − Am

|t |3/2 cos

(
tEm + 3

4
π

)
+ (m ↔ M) , (A1)

with constants given by (we assumed here h(2) > 0 so that the
band minimum is Em = 2|1 − h(2)|)

Am = 1

16
√

π

(h(1) − h(2))2

(1 − h(1))2(h(2))3/2
√

|1 − h(2)|
,

AM = − 1

16
√

π

(h(1) − h(2))2

(1 + h(1))2(h(2))3/2
√

|1 + h(2)|
.

The result (A1) should be the same as the square modulus
of Eq. (12) in Ref. [4]. However in Ref. [4] there ap-
pears only one frequency, corresponding to the lowest band
edge. The discrepancy probably arises from a continuum
approximation which discards the effect of the van Hove
singularity present at the upper band edge. As we have seen
both terms give similar contributions. In particular, even at
criticality, the van Hove singularity at the upper band edge
survives. In Fig. 12 one can appreciate the validity of the
approximation (A1).
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