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Origin of complex quantum amplitudes and Feynman’s rules
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Complex numbers are an intrinsic part of the mathematical formalism of quantum theory and are perhaps its
most characteristic feature. In this article, we show that the complex nature of the quantum formalism can be
derived directly from the assumption that a pair of real numbers is associated with each sequence of measurement
outcomes, with the probability of this sequence being a real-valued function of this number pair. By making
use of elementary symmetry conditions, and without assuming that these real number pairs have any other
algebraic structure, we show that these pairs must be manipulated according to the rules of complex arithmetic.
We demonstrate that these complex numbers combine according to Feynman’s sum and product rules, with the
modulus-squared yielding the probability of a sequence of outcomes.
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I. INTRODUCTION

Complex numbers are perhaps the most characteristic
mathematical feature of quantum theory. In recent years, there
has been growing interest in elucidating the physical origin
of this (and other) mathematical features of quantum theory
by deriving—or reconstructing—the quantum formalism from
one or more physical principles, and signicant progress has
been made [1–19]. For example, many approaches are able to
derive specific equations or predictions such as Schrödinger’s
equation or Malus’ law [5,6,8,9,17,18]. However, the deriva-
tion of a significant part of the quantum formalism has thus
far relied upon abstract assumptions such as the introduction
of the complex number field [10,12] or upon several disparate
features of quantum phenomena [13–15].

In this article, we present a reconstruction of Feynman’s
reformulation of quantum theory [20]. Our approach differs
from previous approaches in that it avoids ad hoc introduction
of the complex number field and in that it rests essentially on
the following single postulate:

Pair postulate. Each sequence of measurement out-
comes obtained in a given experiment is represented by
a pair of real numbers, where the probability associated
with this sequence is a continuous, nontrivial function
of both components of this real number pair.

Since the probability is the only information which is ac-
cessible in a given experiment, this postulate expresses the
simple idea that it requires twice as many degrees of freedom
to describe a physical system than one can access through a
given measurement. This idea has played an important role in
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some previous attempts to reconstruct quantum theory1 and
can also be regarded as one way of stating Bohr’s principle of
complementarity [23].

Using symmetry and consistency conditions that arise
naturally in an operational framework, and making a few
elementary physical assumptions, we show that this postulate
leads to Feynman’s rules of quantum theory. Most importantly,
we show that the number pairs assigned to each sequence
of measurement outcomes must be manipulated according to
the rules of complex arithmetic, without assuming this at the
outset. Specifically, in the language in which Feynman’s rules
are usually expressed [20], we show that if the pair associated
with a path which a system classically can take from an initial
event, Ei , to a final event, Ef , is written as a complex number,
or amplitude, then

(a) if a system classically can take more than one path from
Ei to Ef , then the total amplitude for the transition is
given by the sum of the amplitudes associated with
these paths;

(b) if the transition from Ei to Ef takes place via inter-
mediate event Em, the total amplitude is given by the
product of the amplitudes for the transitions Ei → Em

and Em → Ef ; and
(c) the probability of the transition from Ei to Ef is pro-

portional to the modulus-squared of the total amplitude
for the transition.

Our approach is partly inspired by two previous recon-
structions of Feynman’s rules due to Tikochinsky [7] and

1For example, in [13,14], this idea is used to reconstruct the quantum
formalism from a point of view different from that pursued here;
in [21], it is used in a partial reconstruction of quantum theory. It
has also been used in [22] as the key idea to create a toy model of
quantum theory.
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FIG. 1. Schematic representation of a Stern-Gerlach experiment performed on silver atoms. A silver atom from a source (an evaporator) is
subject to a sequence of measurements, each of which yields one of two possible outcomes registered by nonabsorbing wire-loop detectors. A
run of the experiment yields outcomes m1, m2, m3 of the measurements M1, M2, M3 performed at times t1, t2, t3, respectively.

Caticha [11]. Tikochinsky postulates that a complex number
is associated with each path that a system can take between
events. By identifying a set of symmetries associated with
these paths, he adapts an argument used by Cox [24,25] to
derive probability theory to show that these complex numbers
must combine according to Feynman’s rules. Caticha’s ap-
proach is similar, except that he operationalizes the classical
notion of “path” within an experimental framework. Both of
these authors assume at the outset that complex arithmetic is
to be used and also implicitly assume that certain complex
functions are analytic. Such assumptions are given no a priori
physical justification, which detracts from the physical insight
that these reconstructions can provide. We show the complex
structure of quantum theory need not be assumed, but can in
fact be derived. The remainder of this article is organized as
follows.

In Sec. II, we present an experimental framework which
provides the basis for the reconstruction. The experimental
framework provides a fully operational language which we
use in place of the classical language of paths employed in
Feynman’s original formulation. Sequences of measurement
outcomes, and two operators that can be used to combine them
in series and in parallel, are introduced. Five fundamental
symmetries associated with these operators are derived. We
then obtain a representation of this space of sequences by
representing each sequence by a number pair and by requiring
that these pairs combine through pair operators which share
the same symmetries.

In Sec. III, we use the symmetry constraints on the pair
operators to determine their form. This restricts their form to
a few possibilities. We then impose the requirement that the
probability associated with a sequence is determined by the
number pair that represents that sequence. This requirement
eliminates all but one of these possibilities and completes the
derivation by yielding the modulus-squared relation between
the probability and the pair.

We conclude in Sec. IV with a discussion of the results
obtained and of potential future developments.

II. EXPERIMENTAL FRAMEWORK

We consider experimental setups in which a physical system
is subject to successive measurements M1, M2, M3, . . . , at

successive times t1, t2, t3, . . . . The system is allowed to un-
dergo interactions in the intervening intervals. We summarize
the outcomes obtained in a given run of the experiment as a
sequence, A = [m1,m2,m3, . . .]. The measurements can be of
different features of the system, but we shall label the outcomes
of each measurement as 1, 2, 3, 4, . . . , as far as needed in each
case.

Consider, for example, the Stern-Gerlach setup shown
in Fig. 1. Here, a source supplies silver atoms which pass
through the apparatus, undergoing successive measurements
of components of spin. Each measurement is performed by a
magnet equipped with two wire-loop detectors (as sketched
in the figure) which do not absorb the atoms. Between the
measurements, the spins may interact with a uniform magnetic
field. For silver atoms, it is found experimentally that each
measurement can only have two possible outcomes, which we
label 1 and 2. These measurements are repeatable in that the
same result is always obtained if the same measurement is
immediately repeated.

We might, for example, obtain the sequence A = [2, 1, 2],
or perhaps B = [2, 2, 1]. Under repeated trials of this exper-
iment, the probability distribution over the outcome of M3 is
observed to be independent of any interactions the system had
prior to M2, including the outcome of M1. In such a case, we
say that the earlier measurement M2 establishes closure with
respect to the later M3.2 Closure, in which current information
overrides past information, is a basic feature of experiments
on quantum systems.

We can also set up coarser experiments, such as the one
shown in Fig. 2. Here, the measurement M̃2 performed at t2
uses only a single detector whose field of sensitivity includes
outcomes 1 and 2 of M2 in the original experiment. Now, if
the coarser M̃2 registers an atom, only outcome 1 or 2 could be
obtained if measurement M2 was then performed immediately
afterward. Accordingly, we write the outcome of M̃2 as (1, 2),
and we say that the measurement M̃2 coarsens outcomes 1 and
2 of the original M2. Using M2, outcome (1, 2) can be refined
to finer outcomes 1 and 2, but those latter outcomes cannot be
further refined. An outcome that cannot be further refined is

2See Sec. IIA of Ref. [13] for a fuller discussion of closure.
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FIG. 2. A Stern-Gerlach experiment where the field of sensitivity of the intermediate measurement detector spans the fields of sensitivity
of both of the detectors of the corresponding measurement in Fig. 1.

said to be atomic. If a measurement, such as M2, has all of its
outcomes atomic, we shall call the measurement itself atomic.
The notation for nonatomic outcomes is naturally extended to
the case where an outcome can be refined into more than two
outcomes.

Generalizing the Stern-Gerlach example, we consider
setups where the measurements (of a particular property) are
repeatable and either atomic or coarsened versions of such and
where the first and last measurements in the setups are atomic.
We also take the observed system to be sufficiently simple that
the atomic measurements establish closure with respect to any
future measurement and that any interaction with the system
between measurements preserves this closure.

A. Combining sequences

We now consider different ways in which sequences of
measurement outcomes can be combined with one another
to generate other sequences. We use two kinds of relations
between sequences, namely parallel and series combination.

1. Sequences in parallel

First, consider an experimental setup consisting of three
measurements, M1, M2, and M3, performed in succession.
On one run, this generates sequence A = [m1,m2,m3] and
on another run this generates sequence B = [m1,m

′
2,m3],

with m2 �= m′
2. Then consider a second setup, identical to the

first except that the intermediate measurement M̃2 coarsens
outcomes m2 and m′

2 of M2, and suppose that this generates
the sequence C = [m1, (m2,m

′
2),m3]. We shall say that the

sequence C combines A and B in parallel (Fig. 3). We
symbolize this relation by defining a binary operator, ∨, which
here acts on A and B to generate the sequence

C = A ∨ B. (1)

Generally, the binary operator ∨ combines any two sequences
obtained from the same experimental setup differing in only
one outcome.

From the aforementioned definition, it follows at once that
∨ is commutative and associative. To establish the first, notice
that

B ∨ A = [m1, (m′
2,m2),m3],

and since (m2,m
′
2) = (m′

2,m2), it follows that ∨ is commuta-
tive,

A ∨ B = B ∨ A. (2)

To establish the second property, consider the three sequences
A = [m1,m2,m3], B = [m1,m

′
2,m3], and C = [m1,m

′′
2,m3],

with m2, m′
2, and m′′

2 distinct.
These sequences can be combined to form D =

[m1, (m2,m
′
2,m

′′
2),m3] in two different ways, namely,

D = (A ∨ B) ∨ C and D = A ∨ (B ∨ C),

which implies that ∨ is associative,

(A ∨ B) ∨ C = A ∨ (B ∨ C). (3)

2. Sequences in series

Consider the two sequences A = [m1,m2] and B =
[m2,m3], in which outcome m2 is the same in each (see Fig. 4).
We now define the binary operator, ·, which chains two such
sequences in series. This acts on A and B to generate the
sequence

C = A · B = [m1,m2,m3]. (4)

=

m1

m2 m2

m3

m1

m3

m1

m2

m3

m2

A B C

=

FIG. 3. Combination of sequences in parallel. Graphical depic-
tion of the sequences A = [m1, m2, m3], B = [m1, m

′
2, m3], and

C = [m1, (m2, m
′
2),m3], respectively.
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FIG. 4. Combination of sequences in series. Graphical depiction
of sequences A = [m1, m2], B = [m2, m3] and C = [m1, m2, m3],
respectively.

Generally, the binary operator · combines together any two
sequences obtained from experimental setups where the last
measurement (and the outcome) of one sequence coincides
with the first measurement (and the outcome) of the other.

By considering the three sequences A = [m1,m2], B =
[m2,m3], and C = [m3,m4], we see that · is associative,

(A ·B) · C = A · (B ·C). (5)

Finally, consider the sequences A = [m1,m2,m3], B =
[m1,m

′
2,m3], and C = [m3,m4]. These can be combined in

two equivalent ways to yield D = [m1, (m2,m
′
2),m3,m4],

namely,

D = (A ∨ B) ·C and D = (A · C) ∨ (B ·C).

Hence, the operation · is right-distributive over ∨,

(A ∨ B) ·C = (A ·C) ∨ (B · C). (6)

Similar considerations show that · is also left-distributive
over ∨,

C · (A ∨ B) = (C ·A) ∨ (C ·B). (7)

B. Sequence pairs

Following the first part of our pair postulate, we represent
each sequence, A, by a real number pair, a = (a1, a2)T. We
have determined that the parallel and series operators, ∨ and ·,
possess the symmetries given in Eqs. (2), (3), (5), (6), and (7).
These symmetries must be reflected in the representation.
For example, if pairs a, b represent the sequences A,B,
respectively, then the pair c that represents C = A ∨ B must
be determined by a, b through the relation

c = a ⊕ b, (8)

where ⊕ is a pair-valued binary operator, assumed continuous,
to be determined. Then, since ∨ is commutative, we have
A ∨ B = B ∨ A, so that

a ⊕ b = b ⊕ a. (S1)

In addition, since ∨ is associative,

(a ⊕ b) ⊕ c = a ⊕ (b ⊕ c). (S2)

Similarly, if the sequences A, B, and C are related by
C = A · B, then the pair c that represents C must be determined
by a, b through the relation

c = a � b, (9)

where � is another pair-valued binary operator, assumed
continuous, also to be determined. From the associativity of ·,
it follows that � also has associative symmetry,

(a � b) � c = a � (b � c). (S3)

Finally, since · is right- and left-distributive over ∨, it follows
that the pair operators also have distributive symmetry,

(a ⊕ b) � c = (a � c) ⊕ (b � c), (S4)

a � (b ⊕ c) = (a � b) ⊕ (a � c). (S5)

III. DERIVATION OF FEYNMAN’S RULES

In Sec. III A, we use the symmetry equations, (S1)–(S5), to
fix the form of ⊕ and to restrict � to one of five possible forms.
Then, in Sec. III B, we introduce a connection between pairs
and probabilities. This will restrict � to a unique form and fix
the functional connection between pairs and probabilities.

A. Solution of the symmetry equations for ⊕ and �
1. Solution of commutativity and associativity equations for ⊕
Commutativity and associativity of ⊕ impose strong con-

straints on the possible forms that the operator can take.
To illustrate the nature of this constraint, consider a binary
operator, ◦, which acts over the real numbers. In this one-
dimensional case, there exist a number of theorems which
show that, if operator ◦ is continuous and associative, and
possesses a small number of additional properties,3 then the
operator must satisfy the equation

f (x ◦ y) = f (x) + f (y), (10)

where f is a continuous and strictly monotonic function.
That is, given a binary operator over the real numbers
satisfying the aforementioned conditions, one can always
invertibly transform the real line such that, in the transformed
space, the operator ◦ is represented by the addition operator.
Hence, without any loss of generality, one can choose to
perform the composition operation in the transformed space.
Parenthetically, this result forms the basis of Cox’s derivation
of probability theory [24,25] and is the rationale for additivity
in measure theory [27].

In the two-dimensional case with which we are concerned
here, an analogous result holds, namely, that, for continuous,
associative and commutative ⊕, the operator must satisfy the

3For example, Aczél [26] shows that the additional property
of cancellativity suffices, namely, that, in general, x1 ◦ y = x2 ◦ y

implies x1 = x2 and, similarly, x ◦ y1 = x ◦ y2 implies y1 = y2.
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equation

F(a ⊕ b) = F(a) + F(b), (11)

where F is an invertible and continuous pair-valued function.
This was proved by Aczél and Hosszú [28] with the aid of
minor technical assumptions.

Hence, without any loss of generality, we can transform the
space of pairs such that the operator ⊕ becomes represented
in standard form by the additive operator. Explicitly, in this
standard form,(

a1

a2

)
⊕

(
b1

b2

)
=

(
a1 + b1

a2 + b2

)
, (12)

which we refer to as the sum rule. Note that the only freedom
left in the sum rule is a real invertible linear transformation of
the space of pairs,(

x ′
1

x ′
2

)
=

(
S T

U V

) (
x1

x2

)
, (13)

with SV − T U �= 0. That is, whenever the sum rule holds
between pairs, it also holds between the corresponding
transformed pairs. We make use of this fact below.

2. Solution of associativity and distributivity equations for �
Having shown that ⊕ corresponds to component-wise addi-

tion of number pairs, we proceed to show that � corresponds
to a form of multiplication.

a. Distributivity of �. First, define

G(a, b) = a � b,

where the pair-valued function G is to be determined through
Eqs. (S4) and (S5), which become

G(a + b, c) = G(a, c) + G(b, c),

G(a, b + c) = G(a, b) + G(a, c).

Defining ra = r(a1, a2)T ≡ (ra1, ra2)T, in accordance with
Eq. (12), with r real, it follows that

G(r1a, r2b) = r1r2G(a, b).

Introducing two-dimensional basis pairs e1 and e2, it then
follows that

G(a, b) = G(a1e1 + a2e2, b1e1 + b2e2)

= a1b1G(e1, e1) + a1b2G(e1, e2) + a2b1G(e2, e1)

+ a2b2G(e2, e2)

= a1b1

(
γ1

γ5

)
+ a1b2

(
γ2

γ6

)
+ a2b1

(
γ3

γ7

)

+ a2b2

(
γ4

γ8

)
,

where γ = (γ1, γ2, γ3, γ4; γ5, γ6, γ7, γ8) is a real-valued vector
to be determined, in which the semicolon partitions γ into
components that, respectively, effect the first and second part
of the real pair. Hence, the left- and right-distributivity of �
over ⊕ implies that a � b has the bilinear multiplicative form(

a1

a2

)
�

(
b1

b2

)
=

(
γ1a1b1 + γ2a1b2 + γ3a2b1 + γ4a2b2

γ5a1b1 + γ6a1b2 + γ7a2b1 + γ8a2b2

)
.

(14)

b. Associativity of �. Substituting this form of a � b
into the �-associativity condition, Eq. (S3), and solving the
resulting equations (see Appendix A), one finds that γ can take
one of three possible forms, namely, a commutative form,

γ = (θ − ψε, φε, φε, φ; θε, θ, θ, ψ + φε), (15)

with real constants θ , φ, ψ , and ε, and two noncommutative
forms,

γ = (θ, φ, 0, 0; 0, 0, θ, φ), (16)

γ = (θ, 0, ψ, 0; 0, θ, 0, ψ). (17)

Using the freedom described in Eq. (13), we can transform
these solutions to standard forms. To do so, we note that,
under the transformation of Eq. (13), the relation c = a � b
transforms to(

c′
1

c′
2

)
=

(
S T

U V

)(
γ1a1b1 + γ2a1b2 + γ3a2b1 + γ4a2b2

γ5a1b1 + γ6a1b2 + γ7a2b1 + γ8a2b2

)

=
(

γ ′
1a

′
1b

′
1 + γ ′

2a
′
1b

′
2 + γ ′

3a
′
2b

′
1 + γ ′

4a
′
2b

′
2

γ ′
5a

′
1b

′
1 + γ ′

6a
′
1b

′
2 + γ ′

7a
′
2b

′
1 + γ ′

8a
′
2b

′
2

)
,

where(
a′

1

a′
2

)
=

(
S T

U V

) (
a1

a2

)
and

(
b′

1

b′
2

)
=

(
S T

U V

) (
b1

b2

)

and

(
c′

1

c′
2

)
=

(
S T

U V

) (
c1

c2

)
, (18)

and where γ ′ = (γ ′
1, . . . , γ

′
8) is the representation of γ in the

space of the transformed pairs. Equating coefficients of a′
1, a′

2,
b′

1, and b′
2 identifies γ ′ as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ ′
1

γ ′
2

γ ′
3

γ ′
4

γ ′
5

γ ′
6

γ ′
7

γ ′
8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1

SV − T U

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S2V SUV SUV U 2V −S2T −ST U −ST U −T U 2

ST V SV 2 T UV UV 2 −ST 2 −ST V −T 2U −T UV

ST V T UV SV 2 UV 2 −ST 2 −T 2U −ST V −T UV

T 2V T V 2 T V 2 V 3 −T 3 −T 2V −T 2V −T V 2

−S2U −SU 2 −SU 2 −U 3 S3 S2U S2U SU 2

−ST U −SUV −T U 2 −U 2V S2T S2V ST U SUV

−ST U −T U 2 −SUV −U 2V S2T ST U S2V SUV

−T 2U −T UV −T UV −UV 2 ST 2 ST V ST V SV 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ1

γ2

γ3

γ4

γ5

γ6

γ7

γ8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (19)
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Using this transformation, Eqs. (15), (16), and (17) can be
reduced to standard forms.

In particular, Eq. (15) takes the standard form

γ = (1, 0, 0, µ; 0, 1, 1, 0), (20)

where µ = sgn(4θφ + ψ2) can be −1, 0, or +1. Through
Eq. (14), case µ = −1 gives what we recognize as complex
multiplication, while the cases µ = 0 and µ = +1 give
variations thereof. The transformation needed to recover
Eq. (15) from this standard form is(

S T

U V

)
= 1

2

(
2θ − ψε 2φε + ψ

ε� �

)
,

where

� =
{√

|4θφ + ψ2| if µ = ±1
1 if µ = 0.

When SV − T U �= 0, the inverse of this transformation exists,
so that Eq. (15) can be returned to the standard form, Eq. (20).
Note that this standard form with µ = +1 can be reached from
the even simpler form

γ = (1, 0, 0, 0; 0, 0, 0, 1), (21)

which we use later, by applying the invertible
transformation (

S T

U V

)
=

(
1 −1
1 1

)
.

When, on the other hand, SV − T U = 0, the transforma-
tion would be singular and hence disallowed. This would
happen if θ = ζ ε where ζ = ψ + φε. Equation (15) would
then have been

γ = (φε2, φε, φε, φ; ζ ε2, ζ ε, ζ ε, ζ ).

Observing the linear relation ζc1 = φc2 between the compo-
nents of any product c = a � b thus defined, we note that this
could be transformed by rotation to c′ = (c′

1, 0)T. This lacks
the two components that we demand of an arbitrary pair, so
the singular case is inadmissible.

Continuing in this style, Eq. (16) takes the standard
form

γ = (1, 0, 0, 0; 0, 0, 1, 0). (22)

The transformation needed to recover Eq. (16) from this
standard form is(

S T

U V

)
=

(
θ φ

−φ θ

)
,

which is invertible unless θ and φ both vanish. Similarly, the
other noncommutative form, Eq. (17), has the standard form

γ = (1, 0, 0, 0; 0, 1, 0, 0). (23)

This transforms to Eq. (17) through(
S T

U V

)
=

(
θ ψ

−ψ θ

)
,

which is, again, invertible unless θ and ψ both vanish.

In summary, imposing associativity of � restricts γ to one
of five possible standard forms,

γ = (1, 0, 0,−1; 0, 1, 1, 0), (C1)

γ = (1, 0, 0, 0; 0, 1, 1, 0), (C2)

γ = (1, 0, 0, 0; 0, 0, 0, 1), (C3)

and

γ = (1, 0, 0, 0; 0, 1, 0, 0), (N1)

γ = (1, 0, 0, 0; 0, 0, 1, 0), (N2)

each of which, through Eq. (14), defines a way to multiply
pairs. The first three give complex multiplication (C1) followed
by two variations thereof [Eqs. (C2) and (C3)], and the last two
give noncommutative multiplication [Eqs. (N1) and (N2)].

B. Probability of a sequence

At this point, symmetry alone can take us no further in
determining the precise form of the operator �. In order to
make progress, we make use of the second part of our pair
postulate and introduce a connection between the pair that
represents a sequence and the probability associated with that
same sequence.

We define the probability P (A) associated with sequence
A = [m1,m2, . . . , mn] as the probability of obtaining out-
comes m2, . . . , mn conditional upon obtaining m1,

P (A) = Pr(mn,mn−1, . . . , m2|m1). (24)

Following our pair postulate, we now require that P (A) is
determined by the pair, a, that represents sequence A, so that,
for any a,

P (A) = p(a), (25)

where p is a continuous real-valued function that depends
nontrivially on both of the real components of its argument.4

Our goal in this section is to determine the constraints imposed
by probability theory on the form of p and, in the process of
doing so, to show that only form (C1) can yield a form of p

which meets our stated requirements.

1. Probability equation

Consider the two sequences A = [m1,m2] and B =
[m2,m3] of atomic outcomes. Since outcome m2 is the
same in each, C = A · B is given by C = [m1,m2,m3]. The

4This is necessary in order that both of the components of a are
relevant insofar as making experimental predictions is concerned. If
p were to depend upon only one component of a, the other component
of the pair would be unused when computing probabilities. Therefore,
insofar as the making of physical predictions is concerned, the
unused component could be deleted. Thus, the pair representation
could be reduced to a scalar representation without affecting the
predictive ability of the formalism. Such a reduction would, however,
be unacceptable as such a scalar representation would violate the
requirement (which underlies the pair postulate) that a measurement
is only able to access one half of the degrees of freedom that are
needed to describe a physical system.
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probability, P (C), associated with sequence C is given by

P (C) = Pr(m3,m2|m1),

which, by the product rule of probability theory, can be
rewritten as

P (C) = Pr(m3|m2,m1)Pr(m2|m1).

Since m2 is atomic, measurement M2 (with outcome m2)
establishes closure with respect to M3 (with outcome m3),
by definition overriding the earlier outcome m1. Therefore,
the probability of outcome m3 is independent of m1, and the
previous equation simplifies to

P (C) = Pr(m3|m2)Pr(m2|m1)

= P (B)P (A).

Hence, for any a, b, the function p must satisfy the equation

p(a � b) = p(a)p(b). (26)

Solving for the function p that satisfies this equation in each
of the five forms of γ given above, we obtain

Case (C1): p(a) = (
a2

1 + a2
2

)α/2
;

Case (C2): p(a) = |a1|αeβa2/a1 ;
Case (C3): p(a) = |a1|α|a2|β ;
Case (N1): p(a) = |a1|α;
Case (N2): p(a) = |a1|α;

with α, β real constants (see Appendix B). The solutions for p

in the case of the two noncommutative forms, (N1) and (N2),
depend only on the first component of its argument. That is not
admissible, so those two forms are rejected. Of the five possible
forms of γ , we are left with three: (C1), (C2), and (C3).

2. Reciprocity

Suppose that the sequence A = [m1, n2] is obtained from
an experiment where measurements M and N are performed
at times t1 and t2, respectively. Now consider the experiment
where the measurements are performed in the reverse order,
so that N is performed at time t1, followed by M at time
t2, and suppose that the sequence obtained is

←−
A = [n2,m1],

where the overarrow symbolizes a unary operator acting on
the sequence A.

Suppose M and N are Stern-Gerlach measurements as in
Sec. II. Then, in the limit as t2 → t1, it follows from rotational
symmetry and the empirical fact that the outcome probabilities
of N depend only on the magnitude of the angle between the
axes of M and N that the probability Pr(n2|m1) in the first
experiment is equal to the probability Pr(m1|n2) in the second
experiment. Therefore, a relation is indicated between the pairs
representing the sequences A and

←−
A .

For our purpose, it is sufficient to assume that the pair ←−a
that represents sequence

←−
A is determined by the pair a that

represents sequence A in the limit as t2 → t1, so that

←−a = R(a), (27)

where the reciprocity operator R is invertible [since R(←−a ) =
a] and is assumed continuous. We shall assume that the afore-
mentioned relation also holds more generally for sequences of
arbitrary length.

Now, consider the sequences A = [m1,m2,m3] and B =
[m1,m

′
2,m3], with m2 �= m′

2, obtained from some experimen-
tal setup, and the sequence, C, which combines these in
parallel, namely,

C = A ∨ B = [m1, (m2,m
′
2),m3], (28)

and take the limit as the times t1, t2, and t3 of the respective
measurements coincide. The pair that represents

←−
C can be

computed in two distinct ways, either as the pair R(c), or
as the pair R(a) + R(b) that represents

←−
A ∨ ←−

B . These two
expressions must agree. Therefore, for any a and b,

R(a + b) = R(a) + R(b), (29)

which implies linearity of R,

R(a) =
(

R1 R2

R3 R4

) (
a1

a2

)
. (30)

Similarly, by considering two sequences, A and B, that
can be combined in series to yield C = A · B, and noting that←−
C = ←−

B · ←−A , one obtains

R(a � b) = R(b) � R(a), (31)

which, for any selected form of multiplication �, constrains
the reciprocity coefficients R1, . . . , R4.

3. Repeated measurements

Consider an experiment in which measurements M and N
are performed at times t1 and t2, respectively [see Fig. 5(a)].
N allows only two atomic outcomes, 1 or 2. Sequences A =
[m, 1] and B = [m, 2] have pairs a and b, respectively. Since
either one outcome or the other occurs, P (A) + P (B) = 1, so
that

p(a) + p(b) = 1. (32)

Now consider an experiment where measurement M is
performed at almost-coincident times t1 and t3, interleaved
at intermediate time t2 by the trivial measurement Ñ which has
only one possible outcome (1, 2) [see Fig. 5(b)]. The sequence
[m, (1, 2),m] can be written as

C = [m, 1,m] ∨ [m, 2,m]

and, because the time offsets are negligible, we also have that

[m, 1,m] = [m, 1] · [1,m] = A · ←−A
and [m, 2,m] = [m, 2] · [2,m] = B ·←−B .

Therefore the pair that represents C is

c = [a � R(a)] + [b � R(b)] . (33)

Now, the intermediate measurement, Ñ, is trivial in that
it only registers that a physical system is detected in the
measuring device at time t2, but demonstrably does not
affect the outcome probabilities of subsequent measurements
performed upon the system. Because measurement M is
repeatable (see Sec. II), it follows that, in the limit as t1, t2,
and t3 coincide,

p(a) + p(b) = 1 =⇒ p(c) = 1. (34)

We are now in a position to eliminate forms (C2) and (C3),
leaving (C1) together with the specific form of p.
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=

A B C

N

M M

N

M

m m

1 2

m m

1 2

m m m

1 2

mt1

t2

t3

(a) (b)

FIG. 5. Experiment (a): For given m, the sequences A and B are mutually exclusive and exhaustive. The outcome of N must be 1 or 2, so
that P (A) + P (B) = 1. Experiment (b): Sequence C has associated probability P (C) = 1 in the limit as t1, t2, and t3 coincide.

Form (C2). Multiplication is via γ =
(1, 0, 0, 0; 0, 1, 1, 0), with p(x) = |x1|αeβx2/x1 .

On substituting the linear form of Eq. (30) into Eq. (31),
one finds that the only nontrivial reciprocity operator is

R(a) =
(

a1

0

)
.

This is not invertible, which at once eliminates (C2).
Form (C3). Multiplication is via γ = (1, 0, 0, 0; 0, 0, 0, 1),

with p(x) = |x1|α|x2|β .
On substituting the linear form of Eq. (30) into Eq. (31),

one finds that the only nontrivial reciprocity operators are

R(a) =
(

a2

a1

)
and R(a) =

(
a1

a2

)
.

These are invertible, as required.
Choosing R(a) = (a2, a1)T makes c = (a1a2 + b1b2,

a1a2 + b1b2)T so that Eq. (34) reads

|a1|α|a2|β + |b1|α|b2|β = 1 =⇒ |a1a2 + b1b2|α+β = 1.

The special case b1b2 = −a1a2 can satisfy the left condition
while contradicting the right, thereby disproving this choice.

The other choice is R(a) = (a1, a2)T, for which c = (a2
1 +

b2
1, a

2
2 + b2

2)T, so that Eq. (34) reads

|a1|α|a2|β + |b1|α|b2|β = 1 =⇒ (
a2

1 + b2
1

)α (
a2

2 + b2
2

)β = 1.

The special case a1 = b2 = rt and a2 = b1 = r/t with r, t �= 0
reduces this to the identity

(tα−β + tβ−α)2 = (t2 + t−2)α+β,

valid for arbitrary t . This requires either α = 2 with β = 0 or
α = 0 with β = 2. But α = 0 makes p(a) independent of a1,
and β = 0 makes p(a) independent of a2, whereas we require
p(a) to depend on both arguments. Hence, this choice too is
disproved, which eliminates (C3).

Form (C1). Multiplication is via γ = (1, 0, 0,−1; 0, 1,

1, 0), with p(x) = (x2
1 + x2

2 )α/2. On substituting the linear form
of Eq. (30) into Eq. (31), one finds that the only nontrivial

reciprocity operators are

R(a) =
(

a1

a2

)
and R(a) =

(
a1

−a2

)
.

These are invertible, as required.
Choosing R(a) = (a1, a2)T makes c = (a2

1 − a2
2 + b2

1 −
b2

2, 2a1a2 + 2b1b2)T, so that Eq. (34) reads(
a2

1 + a2
2

)α/2 + (
b2

1 + b2
2

)α/2 = 1

=⇒ [(
a2

1 − a2
2 + b2

1 − b2
2

)2 + 4(a1a2 + b1b2)2
]α/2 = 1.

The special case b1 = a2, b2 = −a1 can satisfy the left
condition while contradicting the right, thereby disproving this
choice.

The other choice is R(a) = (a1,−a2)T, for which c = (a2
1 +

a2
2 + b2

1 + b2
2, 0)T, so that Eq. (34) reads(

a2
1 + a2

2

)α/2 + (
b2

1 + b2
2

)α/2 = 1

=⇒ (
a2

1 + a2
2 + b2

1 + b2
2

)α = 1.

This requires α = 2, and this setting gives an admissible
solution. Hence

p(x) = x2
1 + x2

2 . (35)

We are left with just this one solution.

C. Summary

In order to combine sequences in parallel, we have the sum
rule of Eq. (12),(

a1

a2

)
⊕

(
b1

b2

)
=

(
a1 + b1

a2 + b2

)
,

which we recognize as complex addition. In order to combine
sequences in series, from Eq. (14) with γ given by the surviving
form (C1), we have(

a1

a2

)
�

(
b1

b2

)
=

(
a1b1 − a2b2

a1b2 + a2b1

)
,
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which we recognize as complex multiplication. Hence the
number pairs a, b, . . . behave as complex numbers, combining
according to the rules of complex arithmetic. For the proba-
bility associated with a sequence, Form (C1) gives Eq. (35),
namely,

p(x) = x2
1 + x2

2 .

These are Feynman’s rules.

IV. DISCUSSION

In this article, we have shown that the concept of com-
plementarity, regarded by Bohr [23,29,30] as one of the most
fundamental lessons of quantum phenomena for our physical
worldview, can be used to derive quantum theory. In particular,
once complementarity is postulated in the minimalist form
that there are two real degrees of freedom associated with each
sequence (or path), but that one can only access one real-valued
function of these degrees of freedom in a given experiment,
the complex arithmetic of the quantum formalism emerges
naturally.

It is also interesting to consider which nonclassical features
the derivation does not use. It has been suggested [19] that the
quantum formalism may owe at least a significant part of its
structure to the fact that quantum theory permits nonlocality
and no signaling to peacefully coexist, and a number of recent
reconstructive approaches [12,16,31] rely upon postulates that
concern the behavior of physically separated subsystems.
However, the derivation we present here takes place without
making reference to more than one physical system and thus
demonstrates that features such as nonlocality and no signaling
are not, in fact, essential to an understanding of the structure
of the quantum formalism. That is, from the point of view
of the present derivation, features such as nonlocality and no
signaling are not fundamental, but secondary.

The derivation also illuminates the nature of the relationship
between the quantum formalism and the fundamental concepts
of classical physics. The original formulations of quantum
theory both make explicit use of the structure of classical
physics—Schroedinger’s derivation [32] was based directly on
de Broglie’s wave-particle duality (itself based on the classical
models of waves and particles), while Heisenberg’s derivation
took the classical model of electromagnetic radiation from
atoms as its point of departure [33]. Hence, both of these
formulations presuppose the gamut of fundamental classical
concepts such as space, time, matter, energy, and momentum.
Therefore, the question naturally arises as to whether this is an
historical accident and whether the quantum formalism is, in
fact, prior to these concepts.

In contrast to Schroedinger’s and Heisenberg’s formula-
tions, the derivation presented here makes no explicit reference
to the classical concepts of space, energy, and momentum. The
only aspect of the concept of time which has been assumed
is the time ordering of events; in particular, quantification
of time (on the real number line) plays no role. Hence, the
derivation shows that the core of the quantum formalism is a
self-contained theoretical structure that makes minimal use of
the fundamental concepts of classical physics. Of particular
relevance to the program of quantum gravity, the derivation

clearly suggests that the Feynman rules are logically prior to
the structure of space or, more generally, of spacetime.

Since the formulation of quantum theory, numerous propos-
als have been made on how the formalism could be modified
in various ways, such as allowing nonlinear continuous
transformations [34,35] and modifying the formalism to use
quaternions [36] or p-adic numbers [37]. Although these
proposed modifications may be mathematically plausible, they
are rather ad hoc from a physical point of view since they
are not clearly driven by physical facts or principles, and
furthermore are difficult to subject to experimental tests. The
derivation of Feynman’s rules given here provides a natural
framework within which such proposals can be systematically
studied.

Feynman’s rules do not exhaust the content of the standard
quantum formalism. For example, once translated into the von
Neumann-Dirac state picture (see, for example, Refs. [11,20]),
the Feynman rules imply that state evolution is linear, but do
not imply that it is unitary. Therefore, one must appeal to
additional arguments (such as Wigner’s theorem) to establish
unitarity. It has been shown elsewhere that, given unitarity,
the remaining standard structure—the tensor product rule,
the representation of reproducible measurements by means
of Hermitian operators, the general form of the temporal
evolution operator, and the explicit forms of commonly
used measurement operators—can all be systematically re-
constructed [11,13]. Hence, the present derivation provides
a sound basis for the reconstruction of the entirety of the
standard von Neumann-Dirac quantum formalism for finite-
dimensional quantum systems.
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APPENDIX A: SOLUTION OF �-ASSOCIATIVITY
EQUATION

Substituting Eq. (14) into Eq. (S3) and equating the first
and second components, respectively, yields the following two
equations:

(
γ 2

1 + γ3γ5
)
a1b1c1 + (γ1γ2 + γ4γ5)a1b1c2 + (γ1γ2 + γ3γ6)

× a1b2c1 + (
γ 2

2 + γ4γ6
)
a1b2c2 + (γ1γ3 + γ3γ7)a2b1c1

+ (γ2γ3 + γ4γ7)a2b1c2 + (γ1γ4 + γ3γ8)a2b2c1

+ (γ2γ4 + γ4γ8)a2b2c2

= (
γ 2

1 + γ2γ5
)
a1b1c1 + (γ1γ2 + γ2γ6)a1b1c2

+ (γ1γ3 + γ2γ7)a1b2c1 + (γ1γ4 + γ2γ8)a1b2c2

+ (γ1γ3 + γ4γ5)a2b1c1 + (γ2γ3 + γ4γ6)a2b1c2

+ (
γ 2

3 + γ4γ7
)
a2b2c1 + (γ3γ4 + γ4γ8)a2b2c2
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and

(γ1γ5 + γ5γ7)a1b1c1 + (γ1γ6 + γ5γ8)a1b1c2 + (γ2γ5 + γ6γ7)

× a1b2c1 + (γ2γ6 + γ6γ8)a1b2c2 + (
γ3γ5 + γ 2

7

)
a2b1c1

+ (γ3γ6 + γ7γ8)a2b1c2 + (γ4γ5 + γ7γ8)a2b2c1

+ (
γ4γ6 + γ 2

8

)
a2b2c2

= (γ1γ5 + γ5γ6)a1b1c1 + (
γ2γ5 + γ 2

6

)
a1b1c2

+ (γ3γ5 + γ6γ7)a1b2c1 + (γ4γ5 + γ6γ8)a1b2c2

+ (γ1γ7 + γ5γ8)a2b1c1 + (γ2γ7 + γ6γ8)a2b1c2

+ (γ3γ7 + γ7γ8)a2b2c1 + (
γ4γ7 + γ 2

8

)
a2b2c2.

These equations must hold for any a1, a2, b1, b2, c1, and
c2. Equating coefficients, we get 16 equations which, upon
factorization and removal of redundant equations, reduce to
12 equations:

γ2γ6 = γ4γ5, (A1)

γ3γ7 = γ4γ5, (A2)

γ4(γ2 − γ3) = 0, (A3)

γ4(γ6 − γ7) = 0, (A4)

γ5(γ2 − γ3) = 0, (A5)

γ5(γ6 − γ7) = 0, (A6)

γ2(γ1 − γ7) = γ3(γ1 − γ6), (A7)

γ4(γ1 − γ7) = γ3(γ3 − γ8), (A8)

γ7(γ1 − γ7) = γ5(γ3 − γ8), (A9)

γ7(γ2 − γ8) = γ6(γ3 − γ8), (A10)

γ5(γ2 − γ8) = γ6(γ1 − γ6), (A11)

γ2(γ2 − γ8) = γ4(γ1 − γ6). (A12)

To solve these equations, we select the nature of γ6 and
γ7, choosing from the cases γ6 = γ7 �= 0, γ6 �= γ7, or γ6 =
γ7 = 0.

1. Case γ6 = γ7 �= 0

In this case, the first two equations give

γ2 = γ3 = γ4γ5

γ6
,

while the remainder reduce to

γ4(γ1 − γ6) = γ2(γ2 − γ8),

γ6(γ1 − γ6) = γ5(γ2 − γ8),

which both read

γ1 = γ6 + γ5(γ2 − γ8)

γ6
.

Therefore,

γ =
[
γ6 + γ5

γ6

(γ4γ5

γ6
− γ8

)
,
γ4γ5

γ6
,
γ4γ5

γ6
, γ4; γ5, γ6, γ6, γ8

]
,

which we can write in the more symmetric form

γ = (θ − ψε, φε, φε, φ; θε, θ, θ, ψ + φε), (A)

with real constants θ , φ, ψ , and ε.

2. Case γ6 �= γ7

In this case, Eqs. (A4) and (A6) give γ4 = γ5 = 0, and the
remaining equations are

γ2γ6 = 0, (A1′)
γ3γ7 = 0, (A2′)

γ2(γ1 − γ7) = γ3(γ1 − γ6), (A7′)
γ3(γ3 − γ8) = 0, (A8′)
γ7(γ1 − γ7) = 0, (A9′)

γ7(γ2 − γ8) = γ6(γ3 − γ8), (A10′)
γ6(γ1 − γ6) = 0, (A11′)
γ2(γ2 − γ8) = 0. (A12′)

If both γ6 and γ7 are nonzero, then Eqs. (A9′) and (A11′) imply
γ6 = γ7 (= γ1), contrary to assumption. Hence exactly one of
them must be zero. Suppose, then, that γ6 = 0, with γ7 �= 0.
Then γ3 = 0, γ1 = γ7, and γ2 = γ8, giving

γ = (γ1, γ2, 0, 0; 0, 0, γ1, γ2). (B)

Similarly, suppose that γ7 = 0, with γ6 �= 0. Then γ2 = 0,
γ1 = γ6, and γ3 = γ8, giving

γ = (γ1, 0, γ3, 0; 0, γ1, 0, γ3). (C)

3. Case γ6 = γ7 = 0

Before considering this case, we consider the solution of
Eqs. (A1)–(A12) with respect to the nature of γ2 and γ3,
choosing from γ2 = γ3 �= 0, γ2 �= γ3, or γ2 = γ3 = 0. The
treatment mirrors that of γ6 and γ7 just given. The first choice
repeats solution (A) and the second repeats solutions (B)
and (C).

All that remains is γ2 = γ3 = 0, which we only need
analyze in the context of γ6 = γ7 = 0. The surviving equations
reduce to

γ1γ4 = γ4γ5 = γ5γ8 = 0,

whose solutions,

γ = (γ1, 0, 0, 0; γ5, 0, 0, 0),

γ = (γ1, 0, 0, 0; 0, 0, 0, γ8),

γ = (0, 0, 0, γ4; 0, 0, 0, γ8),

are special or limiting cases of solution (A).
Hence, the possible solutions for γ are the commutative

solution, (A), and the two noncommutative solutions, (B)
and (C).

APPENDIX B: SOLUTIONS OF PROBABILITY EQUATION

We solve the probability equation, Eq. (26), for each of
the five standard forms of γ with the aid of two of Cauchy’s
standard functional equations

f (xy) = f (x)f (y) and f (x + y) = f (x)f (y).

We quote as needed [38] their continuous solutions, respec-
tively,

f (x) = |x|α and f (x) = eβx.
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Form (C1): γ = (1, 0, 0,−1; 0, 1, 1, 0)
Explicitly, Eq. (26) reads

p(a1b1 − a2b2, a1b2 + a2b1) = p(a1, a2)p(b1, b2) (B1)

for arbitrary a1, a2, b1, and b2. Change variables by setting a1 =
r cos θ , a2 = r sin θ , b1 = s cos φ, b2 = s sin φ, with r, s � 0,
to obtain

p(rs cos(θ + φ), rs sin(θ + φ))

= p(r cos θ, r sin θ )p(s cos φ, s sin φ). (B2)

In case r = s = 1, this takes the form

f (θ + φ) = f (θ )f (φ),

with f (ψ) ≡ p(cos ψ, sin ψ), which has the solution f (ψ) =
eβψ . Since f (ψ + 2π ) = f (ψ), β = 0, so that

f (ψ) = p(cos ψ, sin ψ) = 1.

Using this in Eq. (B2) with s = 1 and θ = 0, we obtain

p (r cos φ, r sin φ) = p(r, 0), (B3)

which reduces Eq. (B2) to

p(rs, 0) = p(r, 0)p(s, 0).

This has solution p(t, 0) = tα . Hence, from Eq. (B3),
p(r cos φ, r sin φ) = rα . Rewriting the arguments of p yields

p(x1, x2) = (
x2

1 + x2
2

)α/2
. (B4)

This satisfies Eq. (B1) and so is the general solution.
Form (C2): γ = (1, 0, 0, 0; 0, 1, 1, 0)
Explicitly, Eq. (26) reads

p(a1b1, a1b2 + a2b1) = p(a1, a2)p(b1, b2) (B5)

for arbitrary a1, a2, b1, and b2. In case a1 = b1 = 1, this reduces
to p(1, a2 + b2) = p(1, a2)p(1, b2), whose solution is

p(1, x2) = eβx2 . (B6)

In case a2 = b2 = 0, Eq. (B5) reduces to p(a1b1, 0) =
p(a1, 0)p(b1, 0), whose solution is

p(x1, 0) = |x1|α. (B7)

In case a1 = b2 = 1, a2 = −1/b1, with b1 �= 0, Eq. (B5)
reduces to p(b1, 0) = p(1,−1/b1)p(b1, 1). Using Eqs. (B6)
and (B7), this gives

p(b1, 1) = |b1|αeβ/b1 . (B8)

In case a1 = b2 = 1, Eq. (B5) reduces to p(b1, 1 +
a2b1) = p(1, a2)p(b1, 1). Using Eqs. (B6) and (B8), this

gives

p(b1, 1 + a2b1) = |b1|αeβ(1+a2b1)/b1 ,

from which the solution can be read off as

p(x1, x2) = |x1|αeβx2/x1 . (B9)

This satisfies Eq. (B5) and so is the general solution.
Form (C3): γ = (1, 0, 0, 0; 0, 0, 0, 1)
Explicitly, Eq. (26) reads

p(a1b1, a2b2) = p(a1, a2)p(b1, b2) (B10)

for arbitrary a1, a2, b1, and b2. In case a2 = b2 = 1, this reduces
to

p(a1b1, 1) = p(a1, 1)p(b1, 1),

whose solution is

p(x1, 1) = |x1|α.

Similarly, by considering case a1 = b1 = 1, we obtain
p(1, x2) = |x2|β . Using these special solutions in Eq. (B10)
with (a1, a2) = (x1, 1) and (b1, b2) = (1, x2) yields

p(x1, x2) = |x1|α|x2|β. (B11)

This satisfies Eq. (B10) and so is the general solution.
Form (N1): γ = (1, 0, 0, 0; 0, 1, 0, 0)
Explicitly, Eq. (26) reads

p(a1b1, a1b2) = p(a1, a2)p(b1, b2) (B12)

for arbitrary a1, a2, b1, and b2. The left side is independent
of a2, so p cannot depend on its second argument (a2 on the
right). Hence, p(x1, x2) = f (x1). Equation (B12) thus reduces
to f (a1b1) = f (a1)f (b1), whose solution is f (x1) = |x1|α .
Hence, the solution of Eq. (B12) is

p(x1, x2) = |x1|α. (B13)

This satisfies Eq. (B12) and so is the general solution.
Form (N2): γ = (1, 0, 0, 0; 0, 0, 1, 0)
Explicitly, Eq. (26) reads

p(a1b1, a2b1) = p(a1, a2)p(b1, b2) (B14)

for arbitrary a1, a2, b1, and b2. Arguing as previously, the left
side is independent of b2, so p cannot depend on its second
argument (b2 on the right). Hence the solution of Eq. (B14) is
also

p(x1, x2) = |x1|α.

This satisfies Eq. (B14) and so is the general solution.
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