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Entanglement is not a critical resource for quantum metrology
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We investigate high-precision measurements beyond the standard quantum limit, utilizing nonclassical states.
Although entanglement was considered a resource for achieving the Heisenberg limit in measurements, we
show that any advantage expected from using entanglement is dependent on the measurement in question. We
investigate several measurement scenarios and illustrate the role of entanglement as a resource for quantum
high-precision measurement. In particular, we demonstrate that there is a regime wherein entanglement not only
does not help, but prevents the achievement of the fundamental limit.
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I. INTRODUCTION

Quantum metrology is a field that investigates charac-
teristic fundamental properties of measurements under the
laws of quantum mechanics [1]. Quantum high-precision
measurements, in particular, focus on realizing more precise
measurements, that is, measurements beyond their classical
counterparts. They have the ultimate goal of achieving the
information theoretical bounds allowed by the laws of quantum
mechanics. The typical and classic examples are measure-
ments utilizing squeezed states. It is well known that squeezed
states exhibit sensitivities beyond the standard quantum limit
[2] both theoretically and experimentally. Squeezed states can
approach the Heisenberg limit with infinite squeezing, which
indicates the infinite amount of energy necessary to achieve
the fundamental quantum limit.

In recent years, quantum-information science has rapidly
developed and quantum measurement schemes, as information
gathering processes, were widely investigated from a quantum-
information point of view. The development of experimental
quantum-information processing (QIP) [3–9] ignited a strong
motivation to realize quantum measurements beyond the
squeezed-state regime and to test the ultimate limits for
measurements. The fundamental technologies necessary for
QIP led us to this new stage of quantum metrology research
where entanglement plays a natural role.

Now that nonclassical states, typically entangled states, are
available in laboratories, a number of protocols to implement
quantum metrology were considered and several of them
were actually implemented [3–9]. Given that entanglement
has a central role in most QIP protocols, naturally, QIP
developments invoked strong interest in whether the theory
for nonclassicality including entanglement can contribute
to investigations of quantum high sensitivities. Entangled
photon number states were shown to help phase estimation
and lithographic resolution beat the standard quantum limit
[10,11]. Also, more general entangled light states were shown
to greatly improve photodetector calibration [12], quantum
imaging [13], and lidar [14]. In all of these successful
protocols, entanglement has indeed played the central role

*ttilma@nii.ac.jp

in achieving super-sensitivity below the shot-noise limit [1].
These results cultivated a belief that entanglement is essential
to the mechanism to allow us to access the Heisenberg limit
with a finite amount of energy.

The main aim of this article is to challenge this belief.
Entanglement is a key resource for a large number of QIP
applications and there are a number of indications that
entanglement is the necessary element for achieving high-
precision measurements [15,16]. However, there are somewhat
different views about the role of entanglement in quantum
mechanical and quantum computational processes [17,18]. For
instance, the Gottesman-Knill theorem was the first to show
that entanglement alone is not sufficient for universal quantum
computation [19,20]. Although entanglement is necessary
for scalable universal quantum computation [21], scalability
might not necessarily be applicable to quantum metrology.

In this article, we demonstrate how the fundamental limits
on sensitivity can be achieved under the principles of quantum
mechanics. The scaling of the sensitivities approaching the
Heisenberg limit will be investigated using several characteris-
tic quantum states. We employ several states and Hamiltonians
to illustrate the characteristics of the fundamental measure-
ment limits, however, the discussion applies to a broad class
of states and the main results hold, in general.

II. THE MODEL

To begin, we consider a physical parameter θ to be
estimated, which is associated with the evolution represented
by the unitary transformation

U (θ ) = eiθĤ/h̄, (1)

where Ĥ is the effective Hamiltonian of the system. We
assume Ĥ = ∑N

i=1 Ĥi = h̄
∑N

i=1 n̂k
i , where N is the number

of subsystems involved, n̂i = â
†
i âi is the number operator for

subsystem i, and k is the order parameter of the nonlinearity.
k = 1 corresponds to a linear phase shift on the state of
the system and k = 2 gives the well known nonlinear Kerr
phase shift [22]. We can also consider nonintegers for k, such
as k = 1/2, which represents a square-root-type phase shift
useful for the preparation of Schrödinger-cat-like states [23].
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Equation (1) can be written in the form

U (θ ) = U1(θ ) ⊗ U2(θ ) ⊗ · · · ⊗ UN (θ ), (2)

as each Ĥi acts only on its own subspace. We assume this
nonentangling operation and the no-cost resource on the
evolution so as to first demonstrate the role of entanglement in
high-precision measurements. However, more generally, the
Hamiltonian can be an entangling interaction and the unitary
transformation might be realized with a resource cost. We will
later extend our discussion beyond these assumptions.

To evaluate the parameter θ , we first prepare a probe in a
quantum state |ψ〉. Due to the assumption of no-cost resource
on the unitary transformation, we do not need to consider
strategies for efficient use of the physical resource to generate
the unitary transformation, the state simply evolves via
Eq. (1) to a state |ψ ′〉 = U (θ )|ψ〉. Using |ψ ′〉 we can estimate
the smallest θ that can be detected or resolved with the
following Cramer-Rao uncertainty relation [24,25]〈(

θest

∂〈θest〉θ /∂θ
− θ

)2〉
� ∂θ2

4M(1 − d)
, (3)

where d = |〈ψ |ψ ′〉|2 is the distinguishability and M the
number of classical measurements employed. If d ∼ 0 (i.e.,
the states |ψ〉 and |ψ ′〉 are effectively orthogonal) then the
inequality is most easily satisfied and so d ∼ 0 will be our
metric here.

For illustrative purposes we employ several initial states |ψ〉
to highlight the effect of entanglement on the distinguishability
d. The initial states undergo the unitary transformation
given by U (θ ), where θ is the parameter that indicates the
sensitivity. The first choice of initial states are several, distinct,
nonclassical states

|ψ〉C = 1√
2

(|0〉 + |
√

Nα〉), (4)

|ψ〉E = 1√
2

(|0〉1 · · · |0〉N + |α〉1 · · · |α〉N ), (5)

|ψ〉S = 1√
2N

(|0〉 + |α〉)⊗N , (6)

where α2 � 1 for the state normalization. These three states
typically exhibit different superposition and entanglement
properties, nonetheless each of these states has the same mean
photon number n̄ = N |α|2/2, which gives the same energy
constraint on these states [26,27].

Now, let us see the effect of Eq. (1) on the initial states in
Eqs. (4) through (6). This is best seen through the calculation
of the distinguishability for each state

dC ∼ 1
2 {1 + cos[θ (N |α|2)k]}, (7)

dE ∼ 1
2 {1 + cos[θN |α|2k]}, (8)

dS ∼ 1

2N
{1 + cos[θ |α|2k]}N, (9)

where we assumed that θ2|α|2k � 1 [28,29]. By setting d =
δ � 1 we may determine the sensitivity for θ in each case. For
instance, the distinguishability between |ψ ′〉C and |ψ〉C gives

θC ∼ cos−1[2δ − 1]

(N |α|2)k
∼ [(2l + 1)π − 2

√
δ]

(N |α|2)k
, (10)

TABLE I. The minimal detectable θmin for the unitary transfor-
mation given by Eq. (1) with the initial states (4) through (6). The
general k case is given, as well as the special cases k = 1/2, 1,
and 2. These show that the entangled coherent state superposition is
better in the region 0 < k < 1 while the single mode coherent state
superposition is better for k > 1, indicating entanglement makes the
precision worse. For k = 1 (the linear phase shift case) there is no
real advantage from entanglement.

k θminC θminE θminS

Ĥ = n̂1/2 π√
2n̄

π√
2Nn̄

π√
2n̄

Ĥ = n̂
π

2n̄

π

2n̄

π
√

N

2n̄

Ĥ = n̂2 π

4n̄2

πN

4n̄2

πN
3
2

4n̄2

Ĥ = n̂k
π

(2n̄)k
πNk−1

(2n̄)k
πNk− 1

2

(2n̄)k

where l is a nonnegative integer. Setting l = 0 gives the first
minimum, which corresponds to the highest precision the
scheme can provide. Applying this line of reasoning to the
other cases and recalling n̄ = N |α|2/2 we have

θminC ∼ π − 2
√

δ

(2n̄)k
, (11)

θminE ∼ (π − 2
√

δ)Nk−1

(2n̄)k
, (12)

θminS ∼ (π − 2
√

δ)Nk− 1
2

(2n̄)k
. (13)

III. RESOLUTION

We can now investigate the scaling for these three states
with respect to the nonlinear phase shifts. Equations (11)
through (13) are scaling as 1/n̄k , as expected, but the precision
limit for each scheme is critically dependent on the factors
N and k in the coefficient. The precision limits comparing
Eqs. (12) and (13) definitely indicate that entanglement always
helps. However, it depends on k as to whether Eq. (11) is better
or worse than Eq. (12), that is, whether entanglement helps or
not. For the case 0 < k < 1, a large N is optimal. We obtain an
improvement by dividing our given mean energy resource over
distributed modes using entanglement. The precision given
by θminE is the optimal choice and achieves the Cramer-Rao
bound. This agrees with the previous results [30,31].

In contrast to the scaling for 0 < k < 1, the regime for k >

1 typically shows that large N actually reduces the precision.
In this regime, entanglement does not help the precision and
is a major disadvantage. The disadvantage from the energy
distribution over multiple modes exceeds the precision gain
provided by entanglement and so it is better to consider a single
mode superposition of coherent states (4). Such a strategy al-
lows one to also reach the Cramer-Rao bound. The k = 1 case,
in between these two regimes, is where the gain and loss are
balanced and there is no difference in θminC and θminE . We sum-
marize the scaling properties in Table I for the δ = 0 situation.

As shown in Table I, the scaling properties are defined by
the energy distribution and the entanglement in the states,
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so our results can be easily extended to different types
or superpositions of coherent states. We can, for instance,
consider the more general state

|φ〉 =
∑

i1,i2,...,iN

ci1,i2,...,iN |αi1〉|αi2〉 . . . |αiN 〉. (14)

This state does not require the even distribution of energy
over the modes and there is a large class of states that can be
categorized by the same scaling. In fact it is straightforward to
show, once the total mean energy is fixed, that the optimal |φ〉
corresponds to Eq. (5) for 0 < k < 1 and Eq. (4) for k > 1.
We also do not need to restrict our attention to superposi-
tions of coherent states. We can employ superpositions of
number states instead, typically giving the equivalent states
(1/

√
2)(|0〉 + |N〉) and (1/

√
2)(|0〉1 · · · |0〉N + |1〉1 · · · |1〉N ),

where the same scaling properties can be obtained. We note
that the same generalization holds with the number state as
well as the coherent states (see the Appendix).

The k > 1 situation is interesting because it places entan-
gled resources at a disadvantage. We can consider possibil-
ities where entanglement regains the capability to achieve
the sensitivity limit θminC by using an entangling unitary
transformation. Changing the Hamiltonian in Eq. (1) from
Ĥ = h̄

∑N
i=1 n̂k

i to Ĥ = h̄(
∑N

i=1 n̂i)k , an N -body interaction
[15,16], the entangled state case (5) gives the sensitivity
θmin = π/(2n̄)k , the same as the one given in Eq. (4). The
entangled state merely regains the same sensitivity as the
nonentangling state.

Next we need to consider the scenario where there is no
a priori knowledge about the magnitude of the parameter θ

to estimate. We can evaluate the scalability with respect to
the cost associated to achieve the sensitivity and compare
it to the scaling on the sensitivity limit given by Eqs. (11)
through (13). In that calculation, θmin requires θ to be restricted
to the range 0 < θ � π/n̄. This requires a priori knowledge
that we may not have. However, a simple solution exists. We
can start with 0 < θ � 2π and use some of our resources to
iteratively refine our θ region. This requires, at most, doubling
our total mean photon number and log2(n̄) + 1 steps. For
instance, with our superposition of coherent states, the total
mean photon number required becomes n̄tot = 2n̄ − 1 where
n̄ is the mean photon number required for the measurement in
the range 0 < θ � π/n̄. This means we can easily write θmin in
Eqs. (11) through (13) in terms of n̄tot and thus observe the
scaling in terms of the total mean photon number.

So far we focused our attention on the sensitivity when
the unitary transformation acts equally on the modes. In some
cases, such as gravitational wave detection, this is the case.
However, there are applications where the total resource to
generate the unitary transformation U (θ ) can be limited. In
these applications, we can potentially be using N times the
unitary resources of the single mode case. Here we extend our
analysis to estimate the precision limit in such a scenario.
Consider the situation where the total amount of unitary
resource is fixed to U (θ ), but is allowed to be split into smaller
pieces, with each piece used only once. The minimum θmin for
the three states of interest becomes

θminC = π

(2n̄)k
, (15)

θminE = πNk

(2n̄)k
, (16)

θminS = πNk+ 1
2

(2n̄)k
. (17)

This result clearly shows that the single mode coherent state
superposition given by Eq. (4) always achieves the best
sensitivity limit, independent of the value of k. Naturally,
entanglement is always a disadvantage. With constrained
resources, θminE and θminS are worse than before by a factor of
N .

As we have mentioned, these arguments can be readily
generalized. In particular, for application purposes, various
superpositions of number states may be of interest (see
the Appendix). For the use of number states of the type
(1/

√
2)(|0〉 + |N〉) and (1/

√
2)(|0〉1 · · · |0〉N + |1〉1 · · · |1〉N )

in the case where the unitary operation acts evenly for all
modes, we have θmin = π/(2n̄)k for the qudit superposition
and θmin = π/(2n̄) for the entangled state (here n̄ = N/2). In
the constrained resource case, we have θmin = π/(2n̄)k−1 and
θmin = π , respectively, showing that the previous argument
exactly follows in the same way. In fact, these states were
generated in optics from microwave to optical frequencies. In
the case where the direct creation of |0〉 + |N〉 is difficult, we
alternatively can use a “N00N” state of the form |0〉1|N〉2 +
|N〉1|0〉2 [32]. Although the “N00N” state is entangled, we
are not making use of this property during the metrology part
of the operation. Only one of the two modes interacts with
the unitary operation. The other mode is passive and does not
take an active part. This second mode can be measured in
a basis that gives no information about the photon number
components of that mode, in effect transforming the “N00N”
state to |0〉1 + |N〉1. Alternatively, it can be left there.

IV. CONCLUSION

In conclusion, we analyze the fundamental limitations on
high-precision measurements utilizing quantum nature. It is
clear that nonclassical states must be used to achieve the
Heisenberg limit, even with finite energy. However, entangle-
ment is not a necessary resource for quantum high-precision
measurements. Our analysis shows that there are scenarios
where entanglement can even be a disadvantage, preventing
us from achieving the fundamental sensitivity limit (that is
the Heisenberg limit). This result is rather counterintuitive.
Nevertheless, when we carefully consider the distribution of
resources for sensitivity, we observe that entanglement can
be used to recover the disadvantage caused from the energy
distribution over multiple modes to some degree. Yet the loss
in sensitivity cannot always be recovered. This is not to say
entanglement is not useful, it may just not be necessary during
the quantum metrology process, but can be used in generating
the initial quantum state resource. Finally, our considerations
so far have been highly ideal in the sense that we have not
considered loss and decoherence effects. Such effects might
prevent our schemes from achieving the ultimate sensitivity
shown in this article and additional mechanisms may be
required to compensate for it.
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APPENDIX: NUMBER STATES

Let us consider our superpositions of number states in
slightly more detail. For

|ψ〉C = 1√
2

(|0〉 + |N〉), (A1)

|ψ〉E = 1√
2

(|0〉1 · · · |0〉N + |1〉1 · · · |1〉N ), (A2)

|ψ〉S = 1
√

2
N

(|0〉 + |1〉)⊗N, (A3)

we can apply our transformation (1) and determine the
distinguishability d. This gives

dC = 1
2 (1 + cos[θNk]), (A4)

dE = 1
2 (1 + cos[θN ]), (A5)

dS = 1

2N
(1 + cos[θ ])N, (A6)

and it is straightforward to show

θC ∼ π

(2n̄)k
, (A7)

θE ∼ π

2n̄
, (A8)

θS ∼ π√
2n̄

, (A9)

where for Eq. (A9) there was an additional 1/
√

N improve-
ment from classical statistics. These results are summarized in
Table II for various k.

From Table II we can already see that, for the phase shift
case (k = 1), both N -mode entangled number states given by

TABLE II. The minimal detectable θmin for the unitary transfor-
mation given by Eq. (1) with the initial states (A1) through (A3). The
general k case is given, as well as the special cases k = 1/2, 1, and
2. These show that the N -mode entangled number state is better in
the region 0 < k < 1 while the single mode number state is better
for k > 1, indicating entanglement makes the precision worse. For
k = 1 (the linear phase shift case) there is no real advantage from
entanglement.

k θminC θminE θminS

Ĥ = n̂
1
2

π√
2n̄

π

2n̄

π√
2n̄

Ĥ = n̂
π

2n̄

π

2n̄

π√
2n̄

Ĥ = n̂2 π

(2n̄)2

π

2n̄

π√
2n̄

Ĥ = n̂k
π

(2n̄)k
π

2n̄

π√
2n̄

Eq. (A2) and single mode number states given by Eq. (A1)
are good to use. However, when we look at k values greater
than 1, states of the form (A1) offer better resolution, at higher
mean photon numbers than states of the form (A2). More
interestingly, when k < 1, the situation reverses itself. States
of the form (A2) become the better choice for high-precision
measurements.

Moving to the situation where we constrain both the mean
photon number of the system as well as the total resources
U (θ ) we find

θminC
′ = π

(2n̄)k−1
, (A10)

θminE
′ = π, (A11)

θminS
′ = π

√
(2n̄). (A12)

This clearly shows that Eq. (A1) offers the best resolution for
k > 0. Furthermore, both the unconstrained and constrained
cases show the same scaling as we saw previously for coherent
states.
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