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Rigorous results for tight-binding networks: Particle trapping and scattering
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We investigate the particle trapping and scattering properties in a tight-binding network, which consists of
several subgraphs. The particle trapping condition is proved under which particles can be trapped in a subgraph
without leaking. Based on exact solutions for the configuration of a π -shaped lattice, it is argued that the
bound states in a specified subgraph are of two types, resonant and evanescent. We also link the result to the
scattering problem. The scattering features of the π -shaped lattice is investigated in the framework of the Bethe
ansatz.
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I. INTRODUCTION

Trapping and scattering of a particle is an important feature
in many quantum information processing systems. Due to the
development of technology, the implementation of quantum
information processing in quantum systems with periodic
potentials such as optical lattices [1], arrays of quantum
dots [2], photonic crystal [3], and coupled-resonator optical
waveguide [4] has attracted intensive investigations. The
design of quantum devices based on these promising technolo-
gies relies on the particle trapping and scattering properties
in a discrete system. A heuristic example shows that the
quantum confinement in a discrete system is distinct from its
counterpart in continuum media [5] due to the Wannier-Stark
localization [6].

This article focuses on noninteracting particles on a discrete
lattice, which is treated by using the tight-binding approxima-
tion. Intuitively, the particle trapping is implemented by the
sufficient strong on-site potential as the continuous system.
In contrast to the continuum, however, different dynamical
properties emerge in the lattice system due to its distinct
dispersion relation. A local wave packet can be confined
by the linear potential distribution [5] and the degree of
spreading of a propagating wave packet can be controlled by
the judicious choice of the particle energy [7–9]. Recent studies
show that Fano resonance may be employed to construct the
perfect mirror or transparency so as to control particles in a
region of the lattice [10–12] via engineered configurations.
Because of the numerous varieties of the possible geometry
of the quantum network, we believe it is beneficial to have
lattice-based exact solutions for the design of quantum devices.
In this article, we rigorously show that the perfect particle
trapping without any leakage can be achieved in simple
tight-binding networks. This provides a method to devise
the quantum network to confine particles with the required
mode. We also link the results to the scattering problem.
This general finding is illustrated by a practical network
consisting of a waveguide with an embedded π -shaped
subgraph. Exact solutions for such types of configurations
are obtained to demonstrate and supplement the rigorous
results.

*songtc@nankai.edu.cn

II. RIGOROUS RESULTS FOR PARTICLE TRAPPING

A general tight-binding network is constructed topologi-
cally by the sites and the various connections between them
and is also represented as a vertex-edge graph. By cutting off
some of the connections a graph is decomposed into several
subgraphs. So when a particle is strictly trapped within a
certain region of a network one can say that it is confined in a
specified subgraph. The main aim of this article is to answer
the questions of what kind of subgraphs can trap a particle
as a bound state and of how such subgraphs scatter a particle
when it is embedded in a waveguide. The Hamiltonian of a
tight-binding network, or a graph that consists of n0 subgraphs,
reads as

H =
n0∑
l=1

Hl +
∑
lm

Hlm,

Hl = −
∑
〈ij〉

(
κ

[l]
ij a

†
l,ial,j + H.c.

) +
Nl∑
i=1

µ
[l]
i a

†
l,ial,i , (1)

Hlm = −
∑
i,j

(
κ

[lm]
ij a

†
l,iam,j + H.c.

)
,

where label l denotes the lth subgraph of the Nl site, the
subgraph of which is defined by the distribution of the hopping
integrals {κ [l]

ij } and the on-site potentials {µ[l]
i } and a

†
l,j is the

boson or fermion creation operator at the j th site in the lth
subgraph. Here, Hl and Hlm represent the Hamiltonians of the
subgraphs and the couplings between them. In terms of Hlm,
site i(j ) is the joint site of subgraph l(m) for the connections
to the other subgraphs. Obviously, the decomposition of
subgraphs is arbitrary and can be implemented at will.
Figure 1 shows a schematical example. Note that the Hamil-
tonians Hl and H are quadratic in particle operators and can
be diagonalized through the linear transformation

η
†
l,k =

∑
j

gl
k,j a

†
l,j , (2)

which leads to

Hl =
∑

k

εl,kη
†
l,kηl,k, (3)

where εl,k is the corresponding eigenvalue of Hl for the
eigenfunction gl

k,j . Site j is defined as the wave node for
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FIG. 1. (Color online) An arbitrary graph of a tight-binding
network within part of which particles may be confined without any
leakage. (a) The graph can be decomposed into two subgraphs l and l′,
which are connected via the coupling between the joint sites (i, j, h)
and (i ′, j ′, h′). (b) The perfect bound states can be formed in subgraph
l when the eigen functions of Hl have wave nodes on all the joint
sites (i, j, h), which are denoted by empty circles. The existence of
more wave nodes (as in site g) may allow multiple bound states.

the eigenmode k of graph l if we have gl
k,j = 0. We denote

the wave node as j (l, k), which reflects the property of the
eigenstate η

†
l,k|0〉 of Hl

al,j η
†
l,k |0〉 = 0, (4)

where |0〉 is the vacuum state. Now we consider the case that
all the joint sites of the subgraph l are the wave nodes of
eigenmode k. Under this condition, we have

H (η†
l,k|0〉) = Hl(η

†
l,k|0〉) = εl,k(η†

l,k|0〉), (5)

that is, the eigenstate η
†
l,k|0〉 is also the eigenstate of the whole

graph H . Then such a state represents the trapping or bound
state of a particle within the subgraph l with infinite lifetime.
This rigorous conclusion has important implications in the
design of a quantum network to store particles in the target
region at will. Figure 1 represents an arbitrary graph of a tight-
binding network within part of which particles can be confined
without any leakage. The whole graph can be decomposed into
two subgraphs l and l′, which are connected via the couplings
between the joint sites (i, j, h) and (i ′, j ′, h′). The perfect
bound state can be formed in subgraph l as the eigenfunction
of Hl when it has wave nodes on all the joint sites (i, j, h). The
existence of additional wave nodes indicates that the multiple
bound states can be formed.

III. DEMONSTRATION CONFIGURATIONS

Now we investigate a class of practical examples to
demonstrate the application of the previous result. We consider
a system of a π -shaped lattice (Fig. 2), consisting of an infinite
chain side coupling to two finite chains of length N0 at the joint
sites 1 and L, which has the Hamiltonian

H = Ha + Hb + Hc + Hjoint,

Ha + Hb = −κ0

N0∑
i=1

(a†
i ai+1 + b

†
i bi+1 + H.c.), (6)

Hc = −κ

∞∑
i=−∞

(c†i ci+1 + H.c.),
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FIG. 2. (Color online) Configuration of a π -shaped lattice that
admits the formation of trapping particles. It consists of three chains
A, B, and C. (a) Two three-site chains A and B are side coupled
to the chain C with an arbitrary number of sites. This graph can be
decomposed into three subgraphs, one of which is an 11-site chain
enclosed by the dashed rectangle. The single-particle eigen states of
the 11-site chain with quasimomenta k = π/4, π/3, and π/2 have
two, three, and four wave nodes, denoted by the empty circles in (b),
(c), and (d). For states with k = π/4 and π/2, the joint sites being all
wave nodes, the particle can be trapped in the 11-site chain, while a
state with k = π/3 is not a bound state. States with other values of k

can be analyzed accordingly.

Hjoint = −κ0(a†
1c1 + b

†
1cL + H.c.),

where a
†
j (b†j and c

†
j ) is the boson or fermion creation operator

at the j th site in the chain a (b and c). The side coupling model
was employed to depict the coupled-cavity system for stopping
and storing light coherently [13]. For the simple case with the
shortest side chains, N0 = 1, the configuration is equivalent to
the atom-cavity system with single excitation [10,11] where
the side-site state represents the excited state of the two-level
atom.

First of all, we consider a simplest case: The hopping
integrals are identical for all chains κ = κ0. This graph can
be decomposed into three subgraphs: left chain, right chain,
and central chain of � = 2N0 + L sites. The eigenfunctions
of the central chain are given by

gk,j =
√

2

� + 1
sin kj, j ∈ [1,�], (7)

where k = nπ/(� + 1), n ∈ [1,�], with corresponding eigen-
values −2κ cos k. These states possess the wave nodes at

jk = (� + 1)m

n
, (8)

where m are certain integers that ensure the existence of integer
jk for a given n. Then, in the case that {jk} covers the joint
sites N0 + 1 and N0 + L simultaneously, the corresponding
eigenstates are the trapping states and a particle can be held
along the central chain indefinitely. An example of N0 = 3,
L = 5 is depicted in Fig. 2, where only typical cases with
k = π/4, π/3, and π/2 are presented. Actually, Eq. (8) shows
that states with k = π/4, π/2, and 3π/4 have wave nodes
at the joint sites. Therefore, there are three resonant bound
states for this configuration. It was proposed that such a kind
of trapping state can act as a cavity when a boson system
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is considered [11]. Remarkably, two peculiar features are
identified. First, the bound state has infinite lifetime in the ideal
case without decoherence since it is based on the mechanism
of Fano interference rather than two potential barriers. Second,
the number of the cavity mode does not solely depend on the
size of the cavity L as in the case of using an infinite potential
well for particle trapping. For example, taking N0 = 1, one can
achieve a single mode cavity with k = π/2 for arbitrary odd
L but none for even L. Meanwhile, it will be shown later that
there is another type of bound state, evanescent bound state.
Besides these exact bound states, there exist eigenstates of the
subgraph that have nonzero, but very small probability at the
joint sites in the case of large L. Such kinds of states have
finite but long lifetimes, which are called quasiresonant bound
states. To demonstrate these concepts we present a numerical
simulation of the damping process for various modes in two
typical systems with N0 = 2, L = 4 and N0 = 3, L = 123,
respectively. A particle is initially located in the subgraph in
the eigenstates |k〉 [Eq. (7)]. We investigate the dynamics of
the states by computing the quantity

P (k, t) =
〈

N0∑
i=1

(a†
i ai + b

†
i bi) +

L∑
i=1

c
†
i ci

〉
k,t

, (9)

where 〈. . .〉k,t denotes the expectation value of the probability
of the particle within the subgraph for an evolved state
exp (−iH t)|k〉. Figure 3 shows the numerical simulation of
P (k, t) as functions of the mode k and time t for a short
L in the upper plot while for a longer L in the lower plot.
There are three types of curves in the two plots: (i) remaining
unitary; (ii) damping slowly; and (iii) dropping drastically
and then keeping at a finite value. Case (i) occurs in both
configurations, corresponding to the perfect resonant bound
states. Case (ii) occurs in the large-L system, corresponding
to the quasiresonant bound state (we omit such a type of curve
in the lower panel). Case (iii) occurs in the small-L system,
corresponding to another type of bound state, the evanescent
bound state, which will be discussed in detail later.

A resonant bound-state configuration can be understood
from the point of view of interference. The bound state we
constructed in this manner is the standing-wave-like state in
the subgraph. In general, the formation of a standing wave
in a quantum system is due to the infinite potential barriers
that reflect the wave with any momentum. Then there is no
additional condition for the distance between the two barriers.
In a tight-binding network, a side coupled chain can act as the
infinite potential barriers for the incident wave with certain
momentum. As an example, it can be readily shown by the
following method that for an incident wave with k = π/2, the
transmission coefficient T through one side coupled chain of
length N0 can be expressed as T = [1 + (−1)N0 ]/2. This was
discussed in Refs. [10,11] for the case of N0 = 1. Besides the
mirror condition T = 0, a matching distance between the two
side coupled chains is also required to form a standing wave.
This will be discussed in the following in the aid of exact
results.

In the previous analysis, the trapping subgraph is the sim-
plest lattice, an open chain. There are some more complicated
subgraphs, the hierarchical lattices, as the demonstration con-
figurations. It was shown that [14–16] there are eigenfunctions
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FIG. 3. (Color online) The probability P (k, t) of a particle,
initially located in the state |k〉, remaining in the subgraph. The
simulations are performed in two typical systems with N0 = 2, L = 4
(upper panel) and N0 = 3, L = 123 (lower panel), respectively. The
shapes of all the curves can be classified into three types as mentioned
in the text.

of these hierarchical lattices, the amplitudes of which are
zero at certain sites. When these lattices are embedded in
a network by linking the nodes only the trapping states are
formed. Considering an arbitrary generation Vicsek fractal as
an example, there is an eigenfunction the amplitude of which
is zero at the center of every five-site cell. Then, when such a
lattice is embedded in a network by linking the center sites only,
the corresponding eigenstate is the trapping state with respect
to the network. Nevertheless, for the hierarchical lattice itself
this eigenstate becomes an extended state as its size increases.

IV. BETHE-ANSATZ RESULTS

We now turn to discussing the complete bound states in a
subgraph by taking the network of Eq. (6) as an example. It is
worth pointing out that the bound states constructed by the pre-
viously mentioned method are not complete. In the following it
will be shown that there are two types of bound states: resonant
and evanescent. The former describes a trapped particle in a
specified spatial region and the later describes a particle with an
exponentially decaying probability beyond a specified spatial
region. In the following, we investigate this problem based
on the Bethe-ansatz approach. Actually, the bound-state wave
functions ψ(j ) of the Hamiltonian (6) can be expressed as a
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piecewise function over all sites

ψc(j ) =

⎧⎪⎨
⎪⎩

C1e
−ik(j−1) for j � 1,

C2e
ikj + C3e

−ikj for 2 � j < L,

C4e
ik(j−L) for j � L,

ψa(j ) = A1e
iqj + A2e

−iqj for 1 � j � N0,

ψb(j ) = B1e
iqj + B2e

−iqj for 1 � j � N0.

Here ψa,b,c denote the wave functions along chains a, b, and
c, respectively. The coefficients and momenta C1,2,3,4, A1,2,
B1,2, k, and q are determined by matching conditions and the
corresponding Schrödinger equations [17]

ψ(j + 0+) = ψ(j + 0−), (10)

−κj+1,jψ(j + 1) − κj−1,jψ(j − 1) = Eψ(j ), (11)

where E is the eigen energy and κj±1,j are the corresponding
hopping integrals. The solutions can be classified in two
categories: resonant and evanescent, which correspond to zero
and nonzero C1,4, respectively.

For the resonant bound states, zero C1,4 leads to zero
particle probability at the joint points, which is consistent with
the previously mentioned results. In addition, the momenta k

and q are determined by equations

sin [k(L − 1)] = sin [q(N0 + 1)] = 0, (12)

E = −2κ0 cos q = −2κ cos k. (13)

For simplicity, only simple cases with κ0 = κ are considered
to demonstrate and explore the obtained results. The existence
of the solution requires (L − 1)m = (N0 + 1)n, where n ∈
[1, L − 2] and m ∈ [1, N0]. Obviously, the resonant bound
states in the previously mentioned example with N0 = 3
and L = 5 are the simplest case of m = n = 1, 2, and 3,
corresponding to momenta π/4, π/2, and 3π/4, respectively.

For the evanescent bound state, which possesses nonzero
particle probability at and around the joint points, the momenta
k and q are determined by equations

κζ (k)

ζ (k(L − 1))
[e−ik(L−1) ± 1] = κ0ζ (qN0)

ζ (q(N0 + 1))
, (14)

E = −2κ0η(q) = −2κη(k), (15)

where ζ (θ ) = (eiθ − e−iθ )/2 and η(θ ) = (eiθ + e−iθ )/2. Tak-
ing κ0 = κ , N0 = 3, and L = 5 as an example, we have
q = k = 0.382i, π + 0.382i, or 0.191i, π + 0.191i, which
correspond to symmetric and antisymmetric evanescent bound
eigenfunctions, respectively. Furthermore, for the case of
κ0 = κ , N0 = 2, and L = 4, plotted in Fig. 3, we have q = k =
0.382i or π + 0.382i. Accordingly, three initial states with
momenta π/9, 2π/9, and 4π/9, as well as their counterparts
have nonzero overlaps with the two evanescent bound states.
We are then able to obtain the long-time behaviors of P (t) as
0.5032, 0.0027, and 0.0058, which are in agreement with the
plots in the upper panel of Fig. 3.

V. SCATTERING PROBLEMS

In general, trapping and scattering are two contrary phe-
nomena, which always refer to localized and extended states. In
the context of this article, the resonant bound state is essentially

standing-wave-like, consisting of two constituents: incident
and reflected waves. On the other hand, the result for such
bound states has no restriction to the size and geometry of the
subgraph and is applicable to the scattering problem. This is
another main issue we want to stress in this article.

For the scattering problem, the input-output waveguides
and the center system should be involved. One can take
the input waveguide, which is usually a semi-infinite chain,
together with a part of the center system as the subgraph.
The resonant bound state in such a subgraph corresponds
to a total reflection. Actually, the trapping wave function
within the input waveguide region is the superposition of
two opposite traveling plane waves with identical amplitudes.
They correspond to the incident and total reflected waves
and the eigen energy E of this trapping state is exactly the
transmission zero, T (E) = 0. Taking the previous π -shaped
lattice as an illustrated example, the subgraph containing the
input waveguide is depicted by the Hamiltonian

Hin = −κ

(
N0∑
i=1

a
†
i ai+1 + a

†
1c1 +

1∑
i=−∞

c
†
i ci+1 + H.c.

)
, (16)

which is a uniform semi-infinite chain. The resonant bound
states must have a node at site c1 with energy E =
−2κ cos q, where q is determined by the position of the node
sin[q(N0 + 1)] = 0.

Now we consider the scattering problem of the π -shaped
lattice, demonstrating the relation linking the scattering state
and resonant bound state in the framework of the Bethe ansatz.
It is worth noting that much effort was devoted to discussing
critically the effect of a dangling side coupled chain on the
spectrum and transmission properties of a linear chain, includ-
ing the Fano resonance, by approximate approaches [18–21].

In a π -shaped lattice, the scattering wave function has the
form

ψc(j ) =

⎧⎪⎨
⎪⎩

eik(j−1) + re−ik(j−1) for j � 1,

Aeik(j−1) + Be−ik(j−1) for 2 � j < L,

teik(j−1) for j � L,

ψa(j ) = Cae
iqj + Dae

−iqj , for 1 � j � N0,

ψb(j ) = Cbe
iqj + Dbe

−iqj , for 1 � j � N0,

where r and t are the reflection and transmission amplitudes
for an incident wave with momentum k. Similarly, applying
the matching conditions [Eq. (10)] and the corresponding
Schrödinger equations [Eq. (11)], we then obtain

t = α2 sin2 k

α2 sin2 k − iαβ sin k + (β/2)2[ei2k(L−1) − 1]
, (17)

where α = κ sin[q(N0 + 1)] and β = κ0 sin(qN0). Note that
zero α leads to the vanishing of t , while zero β leads to
the vanishing of r . The former and latter are in agreement
with the conclusions of the previous analysis from the
interference point of view for the total reflection and resonant
transmissions, respectively.

From Eq. (17), the transmission probability has the form

T = α4 sin4 k

α4 sin4 k + (β/2)2(β2 + 4α2 sin2 k) sin2[k(L − 1) − δ]
,

(18)
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where tan δ = 2α sin k/β. Equation (18) allows the analytical
investigation on the transmission features. First, it is found that
the total reflection condition coincides with the resonant bound
condition Eq. (12). It indicates the conclusion that an incident
wave is totally reflected by the side coupled chains if its energy
is exactly equal to the resonant bound-state energy. The same
conclusion was obtained for some similar systems [18–21].
This is a direct result from the fact that the scattering of any
dangling side coupled chain is isotropic for the incident waves
from both sides along the waveguide. On the other hand, the
resonant transmission condition is also easy to understand from
the aspect of wave nodes in the subgraph. In fact equation
sin(qN0) = 0 indicates the effective disconnection of the wave
guide from the side coupled system.

Second, for a fixed N0, the common transmission zeros
and reflection zeros for arbitrary L can be simply deter-
mined by α = 0 and β = 0, respectively. More precisely,
for the incident waves with kmin = cos−1{(κ0/κ) cos[nπ/

(N0 + 1)]}, n ∈ Z, we have T = 0, while the one with kmax =
cos−1[(κ0/κ) cos(nπ/N0)], we have T = 1. The rest reflection
zeros are L dependent and determined by sin2[k(L − 1) −
δ] = 0.

The transmission spectra are plotted for κ = κ0, N0 = 2,
3, and different L in Fig. 4 as illustration. We can see that
the common transmission zeros occur at E = −1 for N0 = 2;
E = −√

2 for N0 = 3, while the common reflection zeros
occur at E = 0 for N0 = 2; E = −1 for N0 = 3, which are
in agreement with the earlier analysis. From the plots, one
can find that it does not exhibit a perfect Fano line shape.
Nevertheless, the peak and dips profiles are the direct result
of an interference result from subwaves in different paths.
Actually, the formations of kmin and kmax correspond to the
complete destructive and constructive interferences.

Now we focus on the L-dependent reflection zeros. Con-
sider a system with fixed L = L0, the L-dependent reflection
zeros occur at k0, which satisfies

sin2[k0(L0 − 1) − δ] = 0. (19)

Meanwhile, for a system with L = L0 + m, the corresponding
transmission coefficient obeys

T (k0, L0 + m) = T (k0, L0 − m), (20)
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FIG. 4. The plots of T (E) from Eq. (18) for the systems of N0 = 2
(left) and 3 (right) with different L.

for L0 − m � 0, due to the identity

sin2[k0(L0 + m − 1) − δ] = sin2(mk0). (21)

This fact leads to an interesting conclusion. For a cer-
tain k0, if there are two systems L and L′ that satisfy
T (k0, L) = T (k0, L

′) = 1, there should exist a series of dif-
ferent L,L′, L′′, L′′′, . . . , to satisfy T (k0, L

′′) = T (k0, L
′′′) =

· · · = 1. Especially applying this conclusion for the m = 1
case, it follows that there is no k0 to satisfy T (k0, L) =
T (k0, L + 1) = 1, except the common reflection zeros. In
other words, there are no L-dependent reflection zeros for
L and L + 1 meeting at the same k. This feature enhances
the probability of the occurrence of the so-called peak-dip
swapping as L changes [20,21].

For a fixed N0, one can always find two systems with
successive L that have at least one peak (reflection zero)
located at each side of a common dip (transmission zero). Since
there is only one peak at each k0, the peak-dip swapping profile
is formed in the vicinity of a common dip. Here we exemplify
this point by investigating the cases with κ = κ0 and small N0.
For N0 = 2, one of the common transmission zero is kmin =
π/3, while the L-dependent reflection zeros are determined by
sin2[k0(L0 − 1) − δ] = 0. The closest (or closer) solution of k0
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FIG. 5. (Color online) Transmission probability T (E) for the
configurations with N0 = 2 (up panel), 5 (down panel), and L = 5
(solid blue line), L = 6 (dashed red line). The plots show the evident
swapping of peak-dip profiles.
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around kmin = π/3 is the left one k0L = 0.29π (E = −1.21)
for L = 5 and the right one k0R = 0.36π (E = −0.84) for
L = 6. The profiles of the corresponding transmission spectra
are plotted in Fig. 5 (upper), which exhibit the same character
as the one in Fig. 7 of Ref. [20]. Another example for
N0 = 5 and L = 5, 6 is also plotted in Fig. 5 (lower). One
can see the occurrence of the profile of the evident peak-dip
swapping.

VI. SUMMARY

In summary, we show in this article within the context
of a tight-binding model that a particle can be trapped in a
nontrivial subgraph. As an application, we examine concrete
networks consisting of a π -shaped lattice. Exact solutions for

such types of configurations are obtained to demonstrate and
supplement the results. It is shown that there are two types of
bound states: resonant and evanescent. We also link the results
to the scattering problem for such a subgraph being embedded
in a one-dimensional chain as the waveguide. It is shown that
an incident wave experiences total reflection under a certain
condition. Finally, we also investigate the scattering features
of the π -shaped lattice in the framework of the Bethe ansatz.
Such results are expected to be necessary and insightful for
quantum control and engineering.
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