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Dissipation-induced Tonks-Girardeau gas of polaritons
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A scheme for the generation of a Tonks-Girardeau (TG) gas of polaritons with purely dissipative interaction is
described. We put forward a master equation approach for the description of stationary light in atomic four-level
media and show that, under suitable conditions, two-particle decays are the dominant photon loss mechanism.
These dissipative two-photon losses increase the interaction strength by at least one order of magnitude as
compared to dispersive two-photon processes and can drive the polaritons into the TG regime. Characteristic
correlations of the TG gas, including quantities that distinguish it from free fermions, can be measured via
standard quantum optical techniques. Our scheme thus allows one to feasibly generate highly correlated photon
states, which can be of considerable use in quantum-information processing and precision measurements.
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Quantum mechanics categorizes particles into fermions
or bosons. In three dimensions, only these two categories
are possible, whereas more exotic anyons can exist in two
dimensions [1]. In one dimension, the particle statistics cannot
be considered without taking interparticle interactions into
account [2]. A prominent example are bosons that interact
via strong repulsive forces in a one-dimensional setting and
can enter a Tonks-Girardeau (TG) gas regime [3], where they
behave with respect to many observables as if they were
fermions. A TG gas can be described as the strong interaction
limit of the Lieb-Liniger model [4].

Strong correlations in many-particle systems, such as in
the TG gas, give rise to interesting and partly not yet well
understood physics. A substantial research effort is currently
devoted to these systems, and progress in cooling and trapping
of atoms and ions has led to very precise experimental studies
of many-body systems. Eventually, this progress enabled the
observation of a TG gas of atoms in an optical lattice [5].
Later, an experiment [6] with cold molecules showed that
not only elastic interactions but even two-particle losses
alone are able to create a TG gas. Here inelastic contact
interactions effectively result in a repulsion between particles
such that they never occupy the same position. Consequently,
the dissipation-induced repulsion eventually inhibits the dissi-
pation of particles. This counterintuitive result can be regarded
as a manifestation of the quantum Zeno effect [6].

A classical analog where absorption leads to repulsion is
given by a light wave in a medium with refractive index n1

propagating perpendicular to the interface with a medium with
refractive index n2 [6]. The light wave will be completely
reflected if |n2| → ∞, even if the medium n2 is highly
absorptive and hence n2 imaginary.

In contrast to atoms, photons do only interact in the presence
of nonlinear media, and usually these interactions are very
weak. Their robustness against decoherence makes photons
ideal carriers for quantum information, but the realization of
strongly correlated systems or photon gates calls for strong
photon-photon interactions. Recently, it has been shown that
effective many-body systems of photons and polaritons can be
generated via light matter interactions [7–10], and this concept
is currently receiving increasing attention [11–14]. Promising
experimental setups for entering the strongly correlated regime

in order to access its rich physics are arrays of coupled
microcavities doped with emitters [15] or optical fibers that
couple to atoms [11,16,17]. In all these setups, the major
challenge for realizing strong correlations is to make the
polariton-polariton interactions significantly stronger than
photon losses which are inevitably present in every experiment.

Here we present an effective many-body system of polari-
tons where the ubiquitous but usually undesired dissipative
processes become the essential ingredient for the creation of
strong many-particle correlations. This paradigm shift allows
us to relax some conditions on the model parameters such
that the achievable nonlinearities in our approach are at least
an order of magnitude larger than their conservative coun-
terparts [7,11,14]. In particular, we show that the dissipative
nonlinearities in our system give rise to a TG gas of polaritons.
For this regime, fermionic (e.g., Friedel oscillations) as well as
nonlocal (e.g., the single-particle density matrix) correlations
of the TG gas can be measured via standard quantum optical
techniques.

We consider photons guided in an optical fiber that interact
with nearby atoms [11,16], where stationary light [18] is
created via electromagnetically induced transparency (EIT)
[19]. As compared to coupled microcavities, the fiber approach
is appealing because of the low photon loss of the fiber and
because the longitudinal trapping of light is done optically, thus
avoiding the need to build many mutually resonant cavities.
We thus focus on this setup here. However, our mechanism for
building up correlations works equally well in cavity arrays,
and the dissipative nonlinearities we discuss here are always
stronger than their conservative counterparts independent of
the geometry of the experimental device.

We start with a more detailed description of our one-
dimensional model shown in Fig. 1. Each of the N atoms
interacts with control and probe fields denoted by �± and Ê±,
respectively. The control fields of frequency ωc are treated
classically, and �+ (�−) labels the Rabi frequency of the
control field propagating in the positive (negative) z direction.
In addition, we assume that the control fields are spatially
homogeneous but may depend on time. The probe fields Ê+
and Ê− are quantum fields that propagate in the positive
and negative z direction, respectively. They are defined as
Ê±(z) = ∑

K a±Ke±iKz, where a±K are photon annihilation
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Ê+ Ê−

| 1 〉
| 2 〉

| 3 〉
| 4 〉

δ
∆

ε

Ê±
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FIG. 1. (Color online) (a) Considered setup of N atoms confined
to an interaction volume of length L and transverse area A. �± are
the Rabi frequencies of the classical control fields, and Ê± are the
quantum probe fields. (b) Atomic level scheme. γij is the full decay
rate on the |i〉 ↔ |j〉 transition, δ and � label the detuning of the probe
fields with states |3〉 and |4〉, respectively, and ε is the two-photon
detuning.

operators. The wave numbers K are positive and of the order
of the wave number kc of the control field.

We model the time evolution of the atoms and the quantized
probe fields by a master equation [20] for their density operator
�, �̇ = − i

h̄
[H, �] + Lγ �, where Lγ � describes spontaneous

emission from states |3〉 and |4〉, and the full decay rate on the
transition |i〉 ↔ |j 〉 is denoted by γij (see Fig. 1). In a rotating
frame that removes the time dependence of the classical laser
fields, the system Hamiltonian H reads H = H0 + H� + HNL,
where

H0 = − h̄
∑
K

(ωp − ωK )(a†
KaK + a

†
−Ka−K )

− h̄

N∑
µ=1

[
εA

(µ)
22 + δA

(µ)
33 + (� + ε)A(µ)

44

]
(1)

describes the free time evolution of the atoms and the probe
fields. A

µ

ii = |iµ〉〈iµ| is a projection operator onto state |iµ〉
of atom µ, the energy of level |i〉 is h̄ωi (we set ω1 = 0),
and transition frequencies are denoted by ωij = ωi − ωj . We
denote the central frequency of the probe pulse by ωp. The
detuning of the probe field with respect to the transitions |3〉 ↔
|1〉 and |4〉 ↔ |2〉 is labeled by δ = ωp − ω31 and � = ωp −
ω42, respectively, and ε = (ωp − ωc) − ω2 is the two-photon
detuning. The interaction between the atoms and the probe and
control fields is described by H� + HNL, with

H� = −h̄

N∑
µ=1

{
S

(µ)
32 [�+(t)eikczµ + �−(t)e−ikczµ]

+ g1S
(µ)
31 [Ê+(zµ) + Ê−(zµ)]

} + H.c., (2)

HNL = −h̄g2

N∑
µ=1

S
(µ)
42 [Ê+(zµ) + Ê−(zµ)] + H.c. (3)

Transition operators of atom µ at position zµ are defined as
S

(µ)
ij = |iµ〉〈jµ| (i �= j ), and g1 and g2 are the single-photon

Rabi frequencies on the |3〉 ↔ |1〉 and |4〉 ↔ |2〉 transitions,

respectively. In the following, we assume that the Rabi
frequencies of the control fields are identical (and real), and
set �+ = �− = �c. With this choice, the interaction of the
probe and control fields with the � subsystem formed by
states |1〉, |2〉, and |3〉 allows us to store the probe field inside
the medium [18]. On the other hand, the coupling of the
probe fields to the |4〉 ↔ |2〉 transition creates an effective
photon-photon interaction [21].

Next we outline the approach we developed to reduce
the master equation �̇ = − i

h̄
[H, �] + Lγ � for the atoms and

quantized probe fields into a master equation solely for
dark-state polaritons [22], formed by collective excitations
of photons and atoms. We represent the quantum state of
dark-state polaritons by a density matrix �D comprised of dark
states |α〉 = ∏Nα

k=1(1/
√

nk!)
(
ψ

†
k

)nk |0〉 that satisfy H�|α〉 = 0,
and the vacuum state |0〉 = |{0}phot; 11, . . . , 1N 〉 is the state
where all photon modes of the probe fields are empty and all
atoms are in state |1〉. The operators ψk are defined as [23]

ψk = Ak cos θ − Xk
12 sin θ, (4)

where sin θ = √
Ng1/�0, cos θ = √

2�c/�0, and �0 =√
Ng2

1 + 2�2
c . The operator Ak = (akc+k + a−kc+k)/

√
2 is

a superposition of two counterpropagating probe field
modes, and Xk

12 describes the spin coherence, Xk
12 =

1√
N

∑N
µ=1 S

(µ)
12 e−ikzµ . Note that the wave number k can be

positive or negative, and for all relevant k we have |k| � kc. We
assume that initially all atoms are in state |1〉 and that the total
number of photons is much smaller than the number of atoms
N . In this case, the dynamics induced by the Hamiltonian
H is confined to a subspace HFE of the total state space
where 〈ψ |∑N

µ=1 A
(µ)
11 |ψ〉 ≈ N for all |ψ〉 ∈ HFE. It follows

that the operators ψk obey bosonic commutation relations in
HFE, [ψk,ψ

†
p] = δkp, where we neglected corrections of order

1/N .
The dark-state polaritons are eigenstates of H�, but the

remaining parts H0 and HNL of the system Hamiltonian
give rise to a nontrivial time evolution of �D. Fortunately,
this dynamics can be studied entirely in terms of bosonic
quasi-particle excitations if the system dynamics is restricted
to the subspace HFE. In particular, the free time evolution
H0 introduces a coupling of dark-state polaritons to bright
polaritons, φk = Ak sin θ + Xk

12 cos θ , and photons, Dk =
(akc+k − a−kc+k)/

√
2. These excitations are in turn coupled

to the excited state |3〉. Furthermore, HNL introduces a direct
coupling of dark-state polaritons ψk to the excited state |4〉 via
a two-particle process [24]. Excitations in the states |3〉 and
|4〉 are created by P

†
k,+, P

†
k,− and U

†
k,+, U

†
k,−, respectively,

where P
†
k,± = ∑N

µ=1[S(µ)
31 ei(kc+k)zµ ± S

(µ)
31 e−i(kc−k)zµ ]/

√
2N ,

U
†
k,± = ∑N

µ=1[S(µ)
41 ei(kc+k)zµ ± S

(µ)
41 e−i(kc−k)zµ]/

√
2N . Sponta-

neous emission from states |3〉 (|4〉) results in decays of
excitations created by P

†
k,± (U †

k,±).
We employ projection operator techniques [20] to derive a

master equation for �D which is obtained from � by a partial
trace over all excitations except for the dark-state polaritons
ψk . We restrict our analysis to the so-called slow-light regime,
where sin2 θ ≈ 1 and cos2 θ � 1. In this case, the coupling
of dark-state polaritons to excitations in states |3〉 and |4〉
is much slower than the decay of the relevant correlation
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functions 〈φkφ
†
p〉(τ ), 〈DkD

†
p〉(τ ), and 〈Uk,+U

†
p,+〉(τ ), which

happens on a time scale given by the lifetimes of the exited
states |3〉 and |4〉. This existence of two different time scales
allows us to derive a master equation in the Born-Markov
approximation if 4g2

2 cos2 θNph � γ 2
42, cos2 θc2k2

max/�2
0 � 1,

cos2 θ�ω2/�2
0 � 1, and �0 � γij , |δ|. Here c is the speed of

light, �ω = ωp − ωc is the frequency difference between the
probe and control fields, and Nph is the number of photons in
the pulse. We describe the polariton pulse by the field operator
ψ(z) = (1/

√
L)

∑
k eikzψk which obeys the commutation re-

lations [ψ(z), ψ†(z′)] = δ(z − z′). The maximal wave number
contributing to ψ is kmax. For a small two-photon detuning
ε = − cos2 θ�ω, we obtain

h̄�̇D = −iHeff�D + i�DH
†
eff + I�D + L1�D + L2�D, (5)

where Heff is a non-Hermitian Hamiltonian,

Heff = h̄2

2meff

∫ L

0
dz ∂zψ

† ∂zψ + g̃

2

∫ L

0
dzψ†2ψ2, (6)

meff = −h̄�2
0/(2δc2 cos2 θ ) is the effective mass of the po-

laritons, g̃ = 2h̄Lg2
2 cos2 θ/(� − cos2 θ�ω + iγ42/2) is the

complex coupling constant, and

I�D = −Im(g̃)
∫ L

0
dzψ2�Dψ†2, (7)

L1�D = −h̄��ω2D[ψ]

2�2
0

/
cos2 θ

, L2�D = −h̄�c2D[∂zψ]

2�2
0

/
cos2 θ

. (8)

Here D[X̂] = ∫ L

0 dz(X̂†X̂�D + �DX̂†X̂ − 2X̂�DX̂†) is a dis-
sipator in Lindblad form [20] for an operator X̂, and � =
γ31 + γ32 is the full decay rate of state |3〉. For optical fibers,
photon losses due to leakage are very low and can be neglected.
If they need to be taken into account, an additional decay
term with the same structure as L2�D but with a decay rate
κ cos2 θ appears (κ is the bare photon leakage rate). To confirm
the accuracy of our results, we compared the predictions
of the master equation (5) for the � subsystem (g̃ = 0) with
the results of a full numerical integration of Maxwell-Bloch
equations for classical fields and found excellent agreement.

Next we derive the essential results of this letter from the
master equation (5) that describes a one-dimensional system
of interacting bosons. The first contribution to Heff in Eq. (6),
(h̄2/2meff)

∫ L

0 dz∂zψ
†∂zψ , represents a kinetic-energy term

with quadratic dispersion relation for the polaritons. The term
proportional to g̃ in Eq. (6) and I�D in Eq. (7) account for
the elastic and inelastic two-particle interactions that originate
from the coupling of dark-state polaritons to the excited state
|4〉. More precisely, the real part of g̃ gives rise to a Hermitian
contribution to Heff that accounts for elastic two-particle
collisions. On the other hand, the imaginary part of g̃ together
with I�D gives rise to a two-particle loss term that can be
written in Lindblad form as Im(g̃/2)D[ψ2].

The contributionsL1�D andL2�D describe single-polariton
losses that can be omitted under the following conditions.
Since L1�D is proportional to �ω2, single-particle losses are
minimized by minimizing |�ω|. Note that this fact has not been
pointed out so far. From now on, we assume that �ω2 is small
enough such that L2�D represents the dominant single-particle

losses. This is reasonable if |�ω| is at most of the order of
GHz and implies |ε| � |γ24|. The term L2�D is negligible if
two conditions are met. First, the dynamics induced by the
kinetic-energy term proportional to meff in Eq. (6) must be fast
as compared to the inverse decay rate of polaritons introduced
by L2�D. This can be achieved if we set |δ| � �. Second,
losses due to L2�D must be negligible, which imposes a limit
on the maximal evolution time tmax � 2�2

0/(�c2k2
max cos2 θ ).

This implies that tmax can be of the order of 1/(cos2 θ�) �
1/�.

Under these conditions, the master equation (5) reduces to
h̄�̇D = −iHeff�D + i�DH

†
eff + I�D and can be identified with

the generalized Lieb-Liniger model [25] for a one-dimensional
system of bosons with mass meff and complex interaction
parameter g̃. All features of the Lieb-Liniger model [4,25]
are characterized by a single, dimensionless parameter G =
meff g̃/(h̄2Nph/L), where Nph is the number of photons in the
pulse. The absolute value of G is

|G| = g2
1g

2
2L

2N

c2|δ|
√

�2 + γ 2
42
4 Nph

= (1/16)�γ42(dopt)2

|δ|
√

�2 + γ 2
42
4 NNph

, (9)

where dopt = 4Ng2
1L/(c�) = 4Ng2

2L/(cγ42) is the optical
depth on the probe field transitions. Note that the parameters
g2

1L and g2
2L are independent of the length of the system,

since g1, g2 ∼ 1/
√

AL. It follows that the parameter G and
the optical depth depend only on the transverse area A of
the interaction volume, but not on the length L of the cell.
The absolute value of G characterizes the effective interaction
strength between the particles. In the strongly correlated
regime |G| � 1, the interaction between the particles creates
a Tonks-Girardeau gas, where polaritons behave like impene-
trable hard-core particles that never occupy the same position.
Formally, this result can be derived via the pair-correlation
function g(2)(z, z′) = 〈ψ†(z)ψ†(z′)ψ(z)ψ(z′)〉/[〈n̂(z)〉〈n̂(z′)〉]
with n̂(z) = ψ†(z)ψ(z). For the ground state of the general-
ized Lieb-Liniger model in the strongly correlated regime,
g(2)(z, z) = (1 − 1/N2

ph)4π2/(3|G|2) is close to zero and
vanishes in the limit |G| → ∞ [25]. Moreover, this ground
state is the same [25] as in the original model with repulsive
interaction for |G| → ∞. It follows that g(2)(z, z′) for z �= z′
exhibits Friedel oscillations [26] that indicate a crystallization
of photons in the fiber.

The parameter |G| is maximal if the interaction between the
polaritons is purely dissipative (� = 0). Since the realization
of a regime where the two-particle interactions are dominated
by elastic processes requires � � γ42/2, the conservative
nonlinearities are at least an order of magnitude smaller than
the dissipative counterparts for � = 0. It follows that purely
dissipative interactions between the polaritons we discuss
here are most effective for the generation of correlations.
Furthermore, we point out that |G| ∝ N/A2 and thus increases
linearly with the number of atoms N . In contrast to cavity QED
systems [14], the condition g2 � γ42 is thus not required to
obtain large values of |G|.

An analysis of dissipation-induced correlations (� = 0)
requires at least two photons. Assuming |δ|/� = 10 such that
the single-particle loss term L1�D in Eq. (5) is negligible
and Nph = 2, Eq. (9) shows that |G| is larger than unity
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for (dopt)2/N > 160. A recent experiment [16] with laser-
cooled atoms loaded into a hollow fiber reports a value of
(dopt)2/N ≈ 0.3 for N = 3000 atoms. Since (dopt)2/N ∝ N ,
the required value of (dopt)2/N > 160 could be achieved with
N > 1.6 × 106 atoms if the transverse area A of the fiber
core is kept fixed. For the experimental parameters [16] of
L = 3 cm and A = 11.3 µm2, the value of N > 1.6 × 106

atoms corresponds to a density of ρ > 4.7 × 1018 atoms/m3.
This value is comparable to both the typical density of
laser-cooled atoms and the density of hot atoms used in a
stationary light experiment [18].

The observation of the dissipation-induced TG gas regime
requires that the system can be prepared in low-energy states.
One possibility is the procedure described in [11] which relies
on an adiabatic state transfer realized by a time-dependent
detuning �. A second possibility does not require any
tuning of the two-particle losses. The master equation (5)
implies that losses due to inelastic two-particle interactions
are related to the pair-correlation function g(2)(z, z) via
∂t 〈n̂(z)〉 = (2/h̄)Im(g̃)g(2)(z, z)〈n̂(z)〉2. It follows that uncor-
related states with g(2)(z, z) ≈ 1 decay much faster than those
where g(2)(z, z) ≈ 0. Therefore, a regime where g(2)(z, z) < 1

should be entered on a time scale h̄/[2Im(g̃)Nph/L], which
is much shorter than the allowed evolution time tmax for
kmax � 2πNph/L and |G| > 1. Since the ground state of
the generalized Lieb-Liniger model decays at the smallest
rate [25], two-particle losses themselves are then able to drive
the system into states close to the ground state. A more rigorous
investigation of this point would require a numerical integra-
tion of equation (5), which is beyond the scope of this work.

For measurements, we note that the polariton pulse can be
released from the fiber without distortion if one control field
is adiabatically switched off [11,18]. It follows that spatial
correlations 〈ψ†(z)ψ(z′)〉 and 〈ψ†(z)ψ†(z′)ψ(z)ψ(z′)〉 of the
trapped pulse are mapped into first- and second-order correla-
tions in time of the output light, respectively. Since the latter
can be detected via standard quantum optical techniques, the
Friedel oscillations of g(2)(z, z′), the correlations 〈ψ†(z)ψ(z′)〉,
and the characteristic momentum distribution of the TG gas
can be measured with high precision.
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