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Squeezing the collective spin of a dilute atomic ensemble by cavity feedback
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We propose and analyze a simple method to squeeze dynamically and unconditionally the collective spin of a
dilute atomic ensemble by interaction with a driven mode of an optical resonator, as recently demonstrated [I. D.
Leroux, M. H. Schleier-Smith, and V. Vuletić, Phys. Rev. Lett. 104, 073602 (2010)]. We show that substantial
squeezing can be achieved in the regime of strong collective ensemble-resonator coupling. The squeezing is
ultimately limited either by photon emission into free space or by the curvature of the Bloch sphere. We derive
both limits and show where each prevails.
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While techniques for preparing single-particle spin states
in atomic ensembles (coherent spin states [1]) are well
established, the manipulation of arbitrary quantum mechanical
many-body states remains far out of reach, and only a tiny frac-
tion of a many-spin Hilbert space is experimentally accessible
to date. The preparation of even weakly quantum-correlated
(entangled) states requires a controllable interaction between
the particles [2] that induces system evolution that is fast
compared to system decoherence. Only a few (pseudo-)spin
systems offer such favorable interaction-to-decoherence ratios,
notably trapped ions, where entangled states of up to eight
particles have been prepared [3,4], and colliding atoms in a
Bose-Einstein condensate [5]. In those systems, squeezed spin
states [2,6,7]—in which the quantum noise is redistributed
so that one noise component is smaller than possible for
unentangled states—have been generated [8,9].

In a dilute atomic ensemble, a common interaction of
the atoms with a light field can replace direct spin-spin
interactions [10–12]. Entanglement between the spin and light
degrees of freedom allows a measurement performed on the
light to reduce spin noise [11,13] and produce spin squeezing
conditionally, as recently demonstrated by two groups using
trapped atoms [14,15].

Pioneering proposals [16–18] have shown that repeated
light-ensemble interaction can produce spin squeezing dynam-
ically and deterministically, without requiring measurement of
the light field. Such processes can be viewed as quantum co-
herent feedback [19]: the ensemble spin imprints its quantum
fluctuations on the light, which acts back on the spin state to
reduce those fluctuations.

Here we propose a simple and robust method for squeezing
the spin of an atomic ensemble inside an optical cavity by co-
herent feedback. We show that a laser tuned to the slope of the
cavity resonance and off-resonant from the atomic transition
induces a one-axis twisting [2,18] of the spin state space [Bloch
sphere; Fig. 1(d)]. For an initial coherent spin state (CSS) [1]
orthogonal to the twisting axis, this reduces the quantum noise
in an oblique spin component. While photon shot noise in the
incident light and photon scattering into free space counteract
the noise reduction, substantial squeezing is possible provided
the collective cooperativity (resonant optical depth) is large,
even if single atoms are weakly coupled to the cavity.

For an ensemble of two-level (spin- 1
2 ) atoms, described by

a collective spin S, the squeezing is produced by an ensemble-

light interaction Hamiltonian of the form c†cSz that represents
the differential energy shift between the two atomic states due
to the intracavity light with photon number c†c. This photon
number depends on the population difference 2Sz between
the atomic states because the precise tuning of the resonator
mode relative to the driving laser depends on the atoms’ state-
dependent index of refraction. In particular, if c†c depends
linearly on Sz, the differential energy shift causes a precession
of the spin vector about the z axis at a rate proportional to
Sz, similar to the dynamics of a Hamiltonian ∝ S2

z [2]. The
initially circular uncertainty region of a CSS is then sheared
into an ellipse (Fig. 1(d)) that is narrower in one direction than
the original CSS, corresponding to spin squeezing. The spin
correlations between different atoms arise from the fact that
the phase between the two states in any individual atom now
depends on the state population difference 2Sz of the entire
ensemble.

We consider an ensemble of N identical three-level atoms
whose ground states |↑〉, |↓〉 (e.g., hyperfine states) are split
by an energy h̄ωa and coupled via optical transitions of
frequencies ωc ± ωa/2 to an excited state |e〉 with population
decay rate � [see Fig. 1(c)]. We assume that a resonator mode
of interest, with linewidth κ , is tuned to the frequency ωc, i.e.,
it has equal and opposite detunings ±� = ±ωa/2 from the
transitions |↑〉 ↔ |e〉, |↓〉 ↔ |e〉. For simplicity, we assume
that the two transitions have equal strength and that all atoms
are equally coupled to the resonator, with single-photon Rabi
frequency 2g. The Hamiltonian is then given by

H = h̄ωcc
†c + h̄

N∑
i=1

(ωa

2
[|↑〉i〈↑|i − |↓〉i〈↓|i] + ωc|e〉i〈e|i

+ g[c|e〉i〈↑|i + c|e〉i〈↓|i + H.c.]
)

, (1)

where c, c† are the photon annihilation and creation operators
for the cavity mode and the index i labels the individual atoms.

As we are interested in effects of the light shift and not
in populating the excited state, we assume a large detuning
|�| � κ, �, g. For sufficiently low intracavity photon number
〈c†c〉 � (�/g)2, we can adiabatically eliminate the excited
state [21] to arrive at an effective Hamiltonian for the dynamics
in the two ground states:

Heff = h̄ωcc
†c + h̄�c†cSz + h̄ωaSz, (2)
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FIG. 1. (Color online) Scheme for spin squeezing by cavity
feedback. An ensemble of atoms is uniformly coupled to a laser
field in an optical resonator (a). A laser tuned to the slope of a
cavity resonance (b), at equal and opposite detunings from transitions
|↑〉 → |e〉 and |↓〉 → |e〉 (c), shears a coherent spin state prepared
along the x axis into a squeezed spin state (d), illustrated by a
tomographic probability distribution [20] on the Bloch sphere.

where Sz = ∑N
i=1(|↑〉i〈↑|i − |↓〉i〈↓|i)/2 and � = 2g2/|�|.

(We shall later treat semiclassically the effect of spontaneous
emission from |e〉 into free space.) The first term in Heff

describes the energy of the free field in the cavity, while
the last term represents the energy of the atomic system
with population difference 2Sz between the two states. The
interaction term h̄�c†cSz can be alternatively grouped with
the first term to describe the shift of the cavity resonance
by an amount �Sz due to the atomic-state-dependent index
of refraction originating from the transitions |↑〉 ↔ |e〉 and
|↓〉 ↔ |e〉 or with the last term to describe the light shifts
±h̄�c†c/2 experienced by the atoms in states |↑〉 and |↓〉.

We adopt an interaction picture where the spin state
vector evolves with the atomic Hamiltonian Ha = h̄ωaSz

and the spin operator S evolves with the Hamiltonian H0 =
h̄(ωc + �Sz)c†c. Causality requires [c(†)(t), S(t)] = 0 [22,23].
It follows that Sz is a constant of motion, while S+ =∑N

i=1 |↑〉i〈↓|i = Sx + iSy , which characterizes the phase on
the Bloch sphere, evolves as

dSn
+

dt
= ih̄−1[H0, S

n
+] = in�c†Sn

+c (3)

for any positive integer n.
The equation of motion for the cavity annihilation operator

c arises from the interaction both with the atomic system,
through H0, and with the bath modes outside the cavity, and
can be derived with the standard input-output formalism for
cavity fields [22,23]:

ċ =
(
−κ

2
− iωc − i�Sz

)
c +

√
κ

2
(b1 + b2), (4)

where b1, b2 are the annihilation operators for the input fields
from the two sides of the cavity (Fig. 1). The term i�Sz

describes the atomic tuning of the cavity frequency.
We consider a monochromatic driving field, input from

one side, in a coherent state |β〉ω defined by b1(t)|β〉ω =√
κe−iωtβ|β〉ω and b2(t)|β〉ω = 0, where the frequency ω =

ωc + κ/2 is tuned to the slope of the resonator mode. In order

to resolve the cavity resonance, we consider interaction times
t � κ−1, and we assume that the field is turned on adiabatically
so that its transient behavior can be neglected. We consider an
atomic system prepared initially in a CSS along the x axis
[1], satisfying Sx(0)|ψ0〉 = S|ψ0〉. To obtain a linear shearing
of the CSS uncertainty region, we assume �

√
S/2 � κ so

that the fluctuations of Sz with variance �S2
z = S/2 induce

proportional fluctuations in intracavity power.
The steady-state solution to Eq. (4) yields c(t)|β〉ω =

e−iωt κβ/(
√

2(γ − iω))|β〉ω, where the complex frequency
γ = κ/2 + i(ωc + �Sz) accounts for the leakage through the
cavity mirrors as well as the phase evolution of the field. We
substitute this result into Eq. (3) to obtain the time evolution
of arbitrary powers of S+ in the spin subsystem,

d〈Sn
+〉β

dt
= ifn(Sz)〈Sn

+〉β, (5)

where 〈Ô〉β ≡ 〈β|ωÔ|β〉ω denotes a trace over the field state.
To lowest order in (�/κ)|Sz| <∼ (�/κ)

√
S/2 � 1 and for

n <∼
√

S,

fn(Sz) = n�|β|2(1 + n(i − 1)�/κ + 2(�/κ)Sz). (6)

For easier visualization, after application of the squeezing light
the spin is quickly rotated back about z, S̃+ ≡ S+(t)e−if1(0)t ,
by the angle f1(0)t corresponding to the light level for Sz = 0.
It is useful to introduce the dimensionless shearing strength
Q = Sp0(2�/κ)2, proportional to the spin S, average photon
number p0 = |β|2κt/2 transmitted for Sz = 0 in the time t ,
and square of the differential atomic phase shift per transmitted
photon 2�/κ � 1. Equations (5) and (6) then yield, in terms
of the initial spin operators S+(0) and Sz,

〈S̃+〉β = eiQSz/SS+(0) (7)

〈S̃2
+〉β = e−(1+i)Q/Se2iQSz/SS2

+(0). (8)

Using Eqs. (7) and (8) and Ref. [1], we can evaluate various
spin expectation values of interest for the atomic input state
|ψ0〉. In particular,

�S̃2
y = S2

2
+ S

4
−

(
S2

2
− S

4

)
e−Q/SGS(Q), (9)

〈S̃ySz + SzS̃y〉 = (2S2 − S) sin

(
Q

2S

)
GS(Q/2), (10)

and �S2
z = S/2, where GS(u) ≡ cos2S−1(u/S). The correla-

tion term 〈S̃ySz + SzS̃y〉, which is zero for a CSS (Q = 0),
displays the quantum correlations between S̃y and Sz induced
by the Sz-dependent spin precession. In the limit of a large
ensemble, S � 1, and small phase |QSz/S| ∼ Q/

√
S � 1,

we have

�S̃2
y ≈ S

2
(1 + Q + Q2). (11)

The three terms in this expression represent the variance
S/2 of the initial CSS, the variance increase due to photon
shot noise QS/2 ∝ p0 ∝ t , and the variance increase due to
cavity-mediated coherent feedback Q2S/2 ∝ p2

0 ∝ t2. Thus,
for Q> 1 feedback stretches the uncertainty region more
quickly than does photon shot noise. This allows spin squeez-
ing by one-axis twisting in the open quantum system, even
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though tracing over the output light field results in dissipative
dynamics of the spin subsystem.

To verify that the spin state is squeezed, we calculate the
spin variance along the z axis after rotation about the x axis
by an angle −α:

�S2
α = 1

2
(V+ −

√
V 2− + W 2 cos[2(α − α0)]), (12)

where V± = �S̃2
y ± �S2

z , W = 〈S̃ySz + SzS̃y〉, and tan 2α0 =
W/V− are specified by Eqs. (9) and (10).

For moderate squeezing 1 � Q2 � S, the minimum and
maximum variances, normalized to the CSS variance, are
σ 2

α0
≈ 1/Q and σ 2

α0+π/2 ≈ Q2, where σ 2
α ≡ �S2

α/(S/2). While
the antisqueezing increases as Q2 due to cavity feedback
[Eq. (11)], the minimum variance decreases only as Q−1

because of the uncertainty in spin precession angle resulting
from photon shot noise. The growth in the uncertainty product
σα0σα0+π/2 ≈ √

Q results from ignoring information in the
outgoing light, which is entangled with the ensemble spin.

For a given atom number 2S, the squeezing improves with
photon number p0 until the curvature of the Bloch sphere leads
to reduced correlation between S̃y and Sz [2,18]. Expanding
�S2

α0
to lowest order in the characteristic phase variance

Q2/(2S), we find σ 2
α0

= Q−1 + Q4/(24S2). The curvature
of the Bloch sphere thus limits the minimum uncertainty
to σ 2

curv = (5/4)6−1/5S−2/5, reached at a shearing strength
Qcurv = 61/5S2/5. This is the same scaling with atom number
as derived for a related scheme in free space [18].

The attainable squeezing is also limited by photon emission
into modes other than the mode of interest [17,24,25].
Squeezing requires twofold light-atom interaction, namely
the tuning of the cavity by the atoms in combination with
the light shift by the modified intracavity intensity. As each
process is proportional to the real part Re(α) ∝ � of the atomic
polarizability α, the shearing strength Q ∝ �2 ∝ Re(α)2 ∝
�−2 ∝ Im(α) is proportional to the average number of photons
2r emitted into free space per atom during the squeezing
process. Therefore, free-space scattering cannot be ignored at
any light-atom detuning �, as is also evident if we express the
shearing strength Q in terms of the single-atom cooperativity
η = 4g2/(κ�) as Q = 4Sηr . This expression furthermore
shows that achieving Q > 1 at low photon scattering prob-
ability, r � 1—as is necessary to maintain coherence in the
system—requires a large collective cooperativity, Sη � 1.

For the symmetric level scheme considered here (Fig. 1),
Rayleigh scattering (where the atom returns to the same
ground state) occurs at equal rates for states |↑〉, |↓〉 and
causes no decoherence since it provides no information about
the atomic spin [26]. The random changes in Sz arising
from Raman scattering |↑〉 → |e〉 → |↓〉 or |↓〉 → |e〉 →
|↑〉, on the other hand, reduce the correlation between the
time average Sz during the squeezing, which determines
the evolution of Sy , and the final value Sz(t) when the
rotation about the x axis is performed. Replacing Sz by Sz

in Eqs. (7) and (8) and evaluating the modified variance �S̃2
y

and covariance 〈S̃ySz(t) + Sz(t)S̃y〉 in the large-S limit using
2〈Sz(t1)Sz(t2)〉/S = e−2r|t1−t2|/t , we apply Eq. (12) to calculate
the minimum normalized variance σ 2

α0,r
. To lowest order in

the number r � 1 of Raman-scattered photons, and ignoring
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FIG. 2. (Color online) Minimum normalized variance σ 2
α0,r as a

function of shearing strength Q for S = 104 and various single-atom
cooperativities η = 0.001, 0.01, 0.1, 1 (solid lines). The dashed line
shows the limit σ 2

curv due to the curvature of the Bloch sphere when
free-space scattering is ignored. The dotted line shows the variance
neglecting both free-space scattering and curvature, scaling as 1/Q

for Q � 1.

curvature effects for the moment,

σ 2
α0,r

≈
(

1

Q
+ Q

3Sη

)
=

(
1

4Sηr
+ 4r

3

)
. (13)

As a function of r or time, the variance first decreases below the
CSS variance due to the coherent feedback but eventually rises
again when the noise added by photon scattering into free space
becomes appreciable (Fig. 2). Consequently, there is an opti-
mum shearing strength Qscatt = √

3Sη, at which the dynamic
squeezing reduces the spin variance by a factor 1/σ 2

α0,r
=√

3Sη/2 below that of the CSS. (This is the same scaling as in
measurement-induced squeezing [17,24].) Squeezing is thus
possible even for a resonator that is weakly coupled to a single
atom (η � 1), as long as the collective cooperativity is large
(Sη � 1). The limit �S2

curv is only reached for Sη5 >∼ 1; this is
readily satisfied in moderately coupled resonators (η >∼ 1), but
in free-space-like [18] situations (η � 1), for any reasonable
atom number 2S, the squeezing is limited by scattering long
before the curvature of the Bloch sphere becomes significant.

By projecting atoms into |↑〉 and |↓〉, Raman scattering not
only adds noise but also shortens the spin vector. Provided
Sη � 1, however, this effect is negligible at the optimum
squeezing point ropt = √

3/(16Sη) � 1. Note also that it may
be possible to find other transition schemes where Raman
scattering is suppressed [25].

Figure 2 shows the minimum variance σ 2
α0,r

as a function
of shearing strength Q for various values of the cooperativity
η, calculated from the full expressions of Eqs. (9) and (10)
modified as described above to account for Raman scattering.
The parameters η = 0.1, S = 104 are similar to those used to
achieve squeezing in Refs. [15,27].

The three approximations of low saturation of the optical
transitions, adiabaticity of the input pulse on the scale of
the cavity lifetime, and small tuning of the cavity by the
atomic quantum noise are all realistic. Since the excited-state
population ε = 〈c†c〉g2/�2 is inversely proportional to the
interaction time t , with εκt = (κ/g)2Q/(8S), the first two
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conditions ε � 1 and κt � 1 are always consistent. For
S = 104, η = 0.1, κ = 2π × 1 MHz, g = 2π × 0.4 MHz, and
�/� = 500 [15,27], requiring, e.g., ε � 10−5 also ensures
that the optimum shearing parameter Q ≈ 50 is reached only
at t >∼ 400/κ . The dependence of intracavity power on Sz stays
well in the linear regime, as �

√
S/2 = 7 × 10−3κ .

The expressions derived here well describe recent results
using a dilute ensemble of 87Rb atoms inside an optical
resonator in the moderate-coupling regime [27]. Unlike
measurement-induced squeezing [14,15], the present method
does not require detection of the squeezing light and produces

unconditionally squeezed states. Such states may be used in an
atomic clock [28,29] to reduce the quantum projection noise
of the readout. Our scheme is applicable to both microwave
and optical clock transitions, as it can be generalized to any
configuration with different light shifts for the two ground
states.
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