
RAPID COMMUNICATIONS

PHYSICAL REVIEW A 81, 021606(R) (2010)

Collective motion of polarized dipolar Fermi gases in the hydrodynamic regime
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Recently, a seminal stimulated Raman adiabatic passage (STIRAP) experiment allowed the creation of 40K87Rb
molecules in the rovibrational ground state [K.-K. Ni et al., Science 322, 231 (2008)]. To describe such a polarized
dipolar Fermi gas in the hydrodynamic regime, we work out a variational time-dependent Hartree-Fock approach.
With this we calculate dynamical properties of such a system, for instance, the frequencies of the low-lying
excitations and the time-of-flight expansion. We find that the dipole-dipole interaction induces anisotropic
breathing oscillations in momentum space. In addition, after release from the trap, the momentum distribution
becomes asymptotically isotropic, while the particle density becomes anisotropic.
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Even before the realization of Bose-Einstein condensation
(BEC) with 52Cr [1], much experimental and theoretical
interest was dedicated to ultracold quantum gases interacting
through the long-range and anisotropic dipole-dipole inter-
action (DDI) [2]. For bosonic dipolar particles, the starting
point of the theoretical investigations was the construction
of a corresponding pseudopotential by Yi and You [3]. After
that, an exact solution of the Gross-Pitaevskii equation in the
Thomas-Fermi regime was found for cylinder-symmetric traps
[4]. Moreover, the DDI has been shown to shift the BEC critical
temperature in a characteristic way in polarized systems [5]
and to give rise to the Einstein–de Haas effect, when spinorial
degrees of freedom are considered [6]. From the experimental
point of view, time-of-flight (TOF) techniques demonstrated
both the first DDI signature through small mechanical effects
[7] and strong dipolar effects in quantum ferrofluids [8].
Furthermore, the shape of the trap was manipulated to stabilize
a purely dipolar BEC against collapse [9].

Concerning fermionic dipolar systems, recent theoretical
studies have considered interesting properties of homogeneous
gases such as zero sound [10], Berezinskii-Kosterlitz-Thouless
phase transition [11], and nematic phases [12]. In harmon-
ically trapped systems, amazing predictions like anisotropic
superfluidity [13], fractional quantum Hall physics [14], and
Wigner crystallization [15] have been made. With respect
to experimental investigations, the most promising atomic
candidate is the fermionic chromium isotope 53Cr [16],
which has a magnetic moment of m = 6 Bohr magnetons.
For these atoms, calculations of equilibrium properties have
shown that the DDI is only a small perturbation [17,18].
However, by applying a stimulated Raman adiabatic passage
(STIRAP) process, it has recently been achieved to cool and
trap 40K87Rb molecules into their rovibrational ground state,
where they possess an electric dipole moment of d = 0.566
Debye [19–22]. Due to the resulting strong DDI a considerable
deformation of the momentum distribution is expected [17,18].
Once these systems would have been further cooled into the
quantum degenerate regime, the main task will be to identify
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unambiguously the presence of the DDI. In this respect,
TOF experiments and oscillation frequency measurements
represent the most fundamental diagnostic tools in the field
of ultracold quantum gases. Their outcomes reveal important
information on the nature of the system under investigation.
They differ drastically depending on whether the system is
in the collisionless (CL) regime, where collision rates are
small, or in the hydrodynamic (HD) regime, where collisions
take place so often that they lead to local equilibrium. To
date, investigations of dynamical properties of trapped dipolar
Fermi gases either have been restricted to the CL regime [23]
or have excluded a deformation of the momentum distribution
in the HD regime [24]. Since experiments with ultracold polar
molecules are performed under strong dipolar interactions, one
should expect them to lead the system into the HD regime, and
thus an analysis allowing for anisotropy in the momentum
distribution must be carried out. In this article, we use a
variational time-dependent Hartree-Fock approach to address
this question.

Consider N spin-polarized fermionic dipoles of mass M

trapped in a cylinder-symmetric harmonic potential Utr(x) =
Mω2

x(x2 + y2 + λ2z2)/2 with trap anisotropy λ at ultralow
temperatures. Since the Pauli principle inhibits a contact
interaction, they interact dominantly through DDI. As we
assume that the fermionic cloud is polarized along the
symmetry axis of the trap, the DDI potential reads Vdd(x) =

Cdd
4π |x|3 [1 − 3 z2

|x|2 ]. For magnetic dipole moments m the DDI is

characterized by Cdd = µ0m
2, whereas for electric moments

d we have Cdd = 4πd2. In the following we restrict ourselves
to the normal phase in the limit T → 0 because the critical
temperature for superfluidity is very low, depending expo-
nentially on add = MCdd/(4πh̄2) [13]. Furthermore, this limit
is restricted by the HD requirement that the relaxation time
τR is small in comparison with the time scale 1/ω defined
by the average trap frequency ω = (ω2

xωz)1/3. The necessity
of an HD approach can be inferred as follows. As τR is not
kown for dipolar interactions, we estimate it by assuming the
DDI to be equivalent to a contact interaction with scattering
length add. Then we use the fact that for a two-component,
degenerate, normal Fermi gas with contact interaction, one
has (ωτR)−1 = (N1/3add

√
Mω/h̄)2F (T/TF), where F (T/TF)

is of the order 0.1 in the quantum temperature regime (see,
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e.g., [25]). Thus, we expect for the one-component, dipolar
gas to enter the HD regime for N1/6εdd � 1, with the dimen-
sionless parameter εdd = Cdd(M3ω/h̄5)

1
2 N

1
6 /4π measuring

the strength of the DDI. In the current setup of Ref. [22]
one has 4 × 104 40K87Rb molecules with a radial trapping
frequency of ωx = ωy ≈ 2π × 175 Hz. Assuming an average
trap frequency of that value yields at least εdd ≈ 5.3 and
(ωτR)−1 ≈ 0.1 × (N1/6εdd)2 ≈ 96, which drives the system
into the HD regime.

In this article we work out a time-dependent Hartree-
Fock approach by extremizing the action A = ∫

dt〈�|ih̄ ∂
∂t

−
Ĥ |�〉, where �(x1, . . . , xN , t) = 〈x1, . . . , xN |�〉 is a Slater
determinant and Ĥ denotes the underlying Hamilton operator.
To describe the HD regime, we follow a standard procedure
of nuclear physics [26] and assume that frequent particle
collisions assure that all one-particle orbitals have the same
local phase χ (x, t), yielding the velocity field v = ∇χ . Thus,
we can factorize out the phases and define a Slater determinant
through �0(x1, . . . , xN , t) = e−iM

∑
i χ(xi ,t)/h̄�(x1, . . . , xN , t),

which contains only the moduli of the one-particle or-
bitals and, therefore, is invariant under time reversal. This
yields a time-even one-body density matrix ρ0(x, x ′; t) =
e−iM[χ(x,t)−χ (x ′,t)]/h̄ρ(x, x ′; t) [27]. With this the action reduces
to

A = −M

∫
dt

∫
d3x

{
χ̇(x, t)ρ0(x; t)

+ ρ0(x; t)

2
[∇χ (x, t)]2

}
−

∫
dt〈�0|Ĥ |�0〉, (1)

where ρ0(x; t) = ρ0(x, x; t) denotes the particle density and
〈�0|Ĥ |�0〉 consists of the kinetic energy Ekin, the trapping
potential Etr, and the interaction. The latter is divided into the
direct or Hartree term ED

dd and the exchange or Fock term EE
dd.

Due to the exchange term, the ground-state energy 〈�0|Ĥ |�0〉
is not a function of the particle density ρ0(x; t) alone but also
contains the nondiagonal part ρ0(x, x ′; t).

As it is not possible to solve analytically the resulting
Euler-Lagrange equations for χ (x, t) and ρ0(x, x ′; t), we
propose here a variational extremization of the action. To
this end, we express each energy contribution in terms
of the Wigner transform of the one-body density matrix
ν0(X, k; t) = ∫

d3s ρ0(X + s
2 , X − s

2 ; t) e−ik·s. The kinetic and
trapping energies are then given by

Ekin/tr =
∫

d3xd3k

(2π )3
ν0 (x, k; t) εkin/tr (x, k) , (2)

with εkin = h̄2k2/2M and εtr = Utr(x), respectively. The direct
term, which accounts for the deformation of the particle
density, and the exchange term, which is related to the
momentum space deformation, read

ED
dd =

∫
d3xd3kd3x ′d3k′

2(2π )6
ν0(x, k; t)Vdd(x − x′)ν0(x′, k′; t),

EE
dd = −

∫
d3Xd3kd3sd3k′

2(2π )6
ν0(X, k; t)Vdd(s)ν0(X, k′; t)

× eis·(k−k′) . (3)

At this point, we adopt the variational ansatz χ (x, t) =
[αx(t)(x2 + y2) + αz(t)z2]/2 for the phase and ν0(x, k; t) =

�(1 − x2+y2

Rx (t)2 − z2

Rz(t)2 − k2
x+k2

y

Kx (t)2 − k2
z

Kz(t)2 ) for the Wigner phase
space function, with �(·) being the step function. We are now
in the position to extremize the action (1) with respect to
the time-dependent variational parameters αi(t) for the phase
as well as Ri(t) and Ki(t) for the Thomas-Fermi radii and
the Fermi momenta. At first, one obtains αi = Ṙi/Ri , which
is used to eliminate the parameters αi from the rest of the
formalism. Under conservation of the particle number,

R̃2
xR̃zK̃

2
x K̃z = 1, (4)

the equations of motion for the Thomas-Fermi radii read

1

ω2
x

d2R̃x

dt2
= −R̃x + 2K̃2

x + K̃2
z

3R̃x

+ εddA(R̃x, R̃z, K̃x, K̃z),

(5)

1

ω2
z

d2R̃z

dt2
= −R̃z + 2K̃2

x + K̃2
z

3R̃z

+ εddB(R̃x, R̃z, K̃x, K̃z).

(6)

Here we use a tilde to represent the quantity expressed
in units of the noninteracting Thomas-Fermi radius R

(0)
i =√

2EF /Mω2
i and the Fermi momentum KF =

√
2EF /h̄2 with

the Fermi energy EF = (6N )1/3h̄ω. The auxiliary functions
are defined according to

A = − cd

R̃3
xR̃z

[
1 − 3R̃2

xλ
2fs(R̃xλ/R̃z)

2
(
R̃2

z − R̃2
xλ

2
) − fs

(
K̃z

K̃x

)]
,

B = − cd

R̃2
xR̃

2
z

[
−2 + 3R̃2

z fs(R̃xλ/R̃z)(
R̃2

z − R̃2
xλ

2
) − fs

(
K̃z

K̃x

)]
,

with the numerical constant cd = 238/3

323/6·5·7·π2 ≈ 0.2791. Further-
more, the anisotropy function

fs(x) ≡
{

2x2+1
1−x2 − 3x2 tanh−1

√
1−x2

(1−x2)3/2 , x 
= 1,

0, x = 1,
(7)

decreases monotonically from 1 at x = 0 to −2 at x = ∞,
passing through zero at x = 1 [4,5]. In addition, the variational
parameters are restricted to obey

K̃2
z − K̃2

x = εddC(R̃x, R̃z, K̃x, K̃z), (8)

with C = 3cd

R̃2
x R̃z

[1 − (2K̃2
x +K̃2

z )fs (K̃z/K̃x )
2(K̃2

x −K̃2
z )

]. This equation can be

traced back to the exchange term and shows explicitly that a
nonzero εdd implies a deformed momentum distribution K̃z 
=
K̃x for finite R̃x , R̃z as first pointed out in Ref. [17].

Equations (4)–(6) and (8) govern the static as well as the
dynamic properties of a polarized dipolar Fermi gas in the
HD regime and represent the main result of this article. They
determine the temporal evolution of both the spatial and the
momentum distribution of a dipolar Fermi gas, which are
directly experimentally accessible via TOF techniques. The
static solutions agree precisely with the ones obtained in
Refs. [17] and [18]. In Fig. 1 we present our findings for
the spatial aspect ratio as a function of the dipolar strength
εdd. The characteristic feature is that a minimal value of λ is
required for stabilizing a system with a given εdd. Thus, for
future experiments with 40K87Rb molecules in the quantum

021606-2



RAPID COMMUNICATIONS

COLLECTIVE MOTION OF POLARIZED DIPOLAR FERMI . . . PHYSICAL REVIEW A 81, 021606(R) (2010)

0 2 4 6 8
0

1

2

3

4

5

6

εdd

R̃
x
λ
/R̃

z

λ = 5

λ = 6

λ = 5

λ = 4

λ = 3

λ = 2
λ = 1

FIG. 1. (Color online) Spatial aspect ratio for different trap
anisotropies λ; the upper (solid) branches correspond to the local
minimum of the mean-field energy, and the lower (dotted) branches
to the maximum. Note that the critical value εcrit

dd , where two branches
meet, decreases more slowly for lower values of λ. The dashed vertical
line marks the estimated value of the interaction strength for 40K87Rb
molecules, εdd ≈ 5.3.

degenerate regime, one should choose the anisotropy λ to
be larger than the minimal value λmin ≈ 3.89 to render the
system stable against collapse. Amazingly, the minimum value
of λ supporting stability decreases slowly, and samples with
λ = 0.05 are stable if εdd � 1.6.

Having summarized the most important aspects of the
static solutions, we turn now to their dynamical properties.
In a cylinder-symmetric system the mono- and quadrupole
low-lying oscillation modes couple to each other. To obtain
the frequency of these modes in the HD regime, we expand
the radii and momenta around their respective equilibrium val-
ues according to R̃i = R̃i(0) + ηie

i�t , K̃i = K̃i(0) + ζie
i�t ,

where ηi (ζi) denotes a small oscillation amplitude in the
ith direction in real (momentum) space and � represents
the oscillation frequency. Inserting these into the equations
of motion, (4)–(6) and (8), a linearization initially yields, for
the ratio of the momentum amplitudes,

ζx

ζz

= K̃x

K̃z

K̃2
x + K̃2

z − εddK̃z∂C/∂K̃z

2K̃2
z − εddK̃z∂C/∂K̃z

, (9)

where all terms are evaluated at equilibrium. This quantity
is plotted against εdd for λ = 5 in the lower (red) curve in
Fig. 2 and is compared to the corresponding equilibrium
momentum aspect ratio [upper (blue) curve]. Setting C = 0,
that is, removing the exchange term, one has ζx = ζz, whereas
for nonzero C, the ratio ζx/ζz decreases monotonically from 1
to about 0.28 in the interval 0 < εdd < εcrit

dd ≈ 7.34. This shows
that the exchange term induces characteristic anisotropic
breathing oscillations in momentum space, which can be
regarded as a trademark sign of the DDI in fermionic quantum
gases.

Eliminating the momentum amplitudes ζi yields a reduced
linear homogeneous system for the spatial amplitudes ηi .
Demanding nontrivial solutions, we obtain an explicit but
lengthy result for the monopole- (quadrupole-) oscillation
frequency �+ (�−), which depends, via the equilibrium
values of the Thomas-Fermi radii and the Fermi momenta,
on the trap anharmonicity λ and the dipolar strength εdd. In
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FIG. 2. (Color online) The lower (red) curve shows the ratio of
the amplitudes ζx/ζz as a function of εdd for λ = 5. For comparison,
the equilibrium aspect ratio in momentum space against εdd for λ = 5
is depicted by the upper (blue) curve.

the special case of an ideal Fermi gas, that is, εdd = 0, the
oscillation frequencies �± reduce to the correct noninteracting

values �
(0)
±

2 = ω2
x(5 + 4λ2 ± √

25 − 32λ2 + 16λ4)/3, which
were first obtained for λ = 1 in Ref. [28] and for λ 
= 1
in Ref. [29]. Figure 3 shows the oscillation frequencies of
the monopole (blue) and quadrupole (red) modes plotted
against εdd for λ = 5. As εdd becomes larger, we find that
the monopole frequency increases and that the quadrupole
frequency decreases, vanishing at εcrit

dd ≈ 7.34, the same value
for which the system becomes unstable (see Fig. 1). The inset
in Fig. 3 shows how the frequencies depend on the anisotropy
λ for εdd = 0.5 (dashed) and εdd = 1.0 (solid). It turns out that
the quadrupole frequencies are larger than in the noninteracting
case for λ < 1 and smaller for λ > 1, while the contrary is true
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FIG. 3. (Color online) Excitation frequencies for λ = 5 as func-
tions of the DDI strength εdd. The upper solid (blue) and lower
solid (red) curves represent the monopole (�+) and quadrupole
(�−) frequencies. The dashed (dotted) horizontal line represents the
monopole (quadrupole) frequency of the noninteracting gas from
Ref. [29]. Inset: Monopole-oscillation (blue) and quadrupole-
oscillation (red) frequencies of the dipolar Fermi gas normalized
by the noninteracting values from Ref. [29] against the trap aspect
ratio λ for different values of the dipolar strength εdd. The dashed
(solid) curves are for εdd = 0.5 (εdd = 1.0).
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FIG. 4. (Color online) Cloud aspect ratio in TOF expansion for
λ = 5 with εdd = 1, 3, and 7 (solid curves, top to bottom). The
dashed curves depict the corresponding momentum aspect ratios.
Inset: Asymptotic cloud aspect ratio against εdd.

for the monopole modes. This behavior agrees qualitatively
with dipolar BECs [4].

It remains to study the TOF expansion of a dipolar Fermi
gas. This is done by numerically solving Eqs. (4)–(6) and (8),
while removing the trap frequencies. The results are presented
in Fig. 4, where the spatial and momentum aspect ratios are
plotted as functions of time in units of ω−1 at λ = 5 for
different εdd. The characteristic of the hydrodynamic regime

is that the asymptotic value of the aspect ratio in real space
depends on εdd, while local equilibrium renders the momentum
distribution asymptotically isotropic. We can estimate the
validity of these results if we assume the previous HD criterion
to be valid also during the expansion. Since the equations
of motion imply d2R̃i/dt2 = 0 for large times, yielding
(R̃2

xR̃z)1/3 ∼ ωt , one obtains a HD expansion provided that
(ωt)2 · ωτR 
 1. For KRb molecules, the expansion is HD
only for small times ωt 
 10, whereas for molecules like
LiCs, with d ≈ 5.5 Debye, the expansion is HD for ωt 

1000.

In the present article we have investigated both low-lying
oscillation frequencies and TOF expansion data for a polarized
dipolar Fermi gas through a hydrodynamic approach. Our
findings have revealed different fingerprints of a strong
DDI. We have estimated the validity of our results and
found strong evidence for hydrodynamic behavior also in the
absence of superfluidity. The prospects for observing normal
dipolar hydrodynamics in the quantum degenerate regime are
enhanced by tight traps and the recently obtained large dipole
moments.

We acknowledge support from the DAAD, the Innovations-
fond FU-Berlin, and the DFG in SFB/TR12.

[1] A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau,
Phys. Rev. Lett. 94, 160401 (2005).

[2] M. A. Baranov, Phys. Rep. 464, 71 (2008); L. D. Carr et al.,
New J. Phys. 11, 055049 (2009); T. Lahaye et al., Rep. Prog.
Phys. 72, 126401 (2009).

[3] S. Yi and L. You, Phys. Rev. A 61, 041604(R) (2000).
[4] D. H. J. O’Dell, S. Giovanazzi, and C. Eberlein, Phys. Rev. Lett.

92, 250401 (2004).
[5] K. Glaum, A. Pelster, H. Kleinert, and T. Pfau, Phys. Rev. Lett.

98, 080407 (2007).
[6] Y. Kawaguchi, H. Saito, and M. Ueda, Phys. Rev. Lett. 96,

080405 (2006).
[7] J. Stuhler et al., Phys. Rev. Lett. 95, 150406 (2005).
[8] T. Lahaye et al., Nature 448, 672 (2007).
[9] T. Koch et al., Nat. Phys. 4, 218 (2008).

[10] J. B. S. Ronen, e-print arXiv:0906.3753; C.-K. Chan et al., Phys.
Rev. A (in press).

[11] G. M. Bruun and E. Taylor, Phys. Rev. Lett. 101, 245301 (2008).
[12] B. M. Fregoso et al., New J. Phys. 11, 103003 (2009); B. M.

Fregoso and E. Fradkin, Phys. Rev. Lett. 103, 205301 (2009).
[13] M. A. Baranov, L. Dobrek, and M. Lewenstein, Phys. Rev. Lett.

92, 250403 (2004), and references therein.

[14] M. A. Baranov, K. Osterloh, and M. Lewenstein, Phys. Rev.
Lett. 94, 070404 (2005).

[15] M. A. Baranov, H. Fehrmann, and M. Lewenstein, Phys. Rev.
Lett. 100, 200402 (2008).

[16] R. Chicireanu et al., Phys. Rev. A 73, 053406 (2006).
[17] T. Miyakawa, T. Sogo, and H. Pu, Phys. Rev. A 77, 061603(R)

(2008).
[18] J.-N. Zhang and S. Yi, Phys. Rev. A 80, 053614 (2009).
[19] K.-K. Ni et al., Science 322, 231 (2008).
[20] S. Ospelkaus et al., Nat. Phys. 4, 622 (2008).
[21] J. J. Zirbel et al., Phys. Rev. A 78, 013416 (2008).
[22] S. Ospelkaus et al., Faraday Discuss. 142, 351 (2009).
[23] T. Sogo et al., New J. Phys. 11, 055017 (2009).
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