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Quantum memory of a squeezed vacuum for arbitrary frequency sidebands
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We have developed a quantum memory that is completely compatible with current quantum information
processing for continuous variables of light, where arbitrary frequency sidebands of a squeezed vacuum can be
stored and retrieved using bichromatic electromagnetic induced transparency. The 2 MHz sidebands of squeezed
vacuum pulses with temporal widths of 470 ns and a squeezing level of −1.78 ± 0.02 dB were stored for 3 µs in
laser-cooled 87Rb atoms. Squeezing of −0.44 ± 0.02 dB, which is the highest squeezing reported for a retrieved
pulse, was achieved.
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Quantum-information processing (QIP) for continuous
variables of light has been developed using a squeezed
vacuum [1–3]. To generate the squeezed vacuum, a parametric
down-conversion process is used, in which a photon having
a frequency of 2ω0 is converted to two photons having
frequencies of ω0 ± �. The resultant squeezed vacuum is
an entangled state between two different frequency modes,
i.e., the sidebands. The range of � is determined by the
phase matching condition and the squeezing with the specific
value of � can be selectively monitored using the homodyne
technique, which has been critical to the development of
QIP of light [4,5]. In particular, quantum teleportation was
successfully demonstrated by monitoring the squeezing with
megahertz-order sidebands [4], which prevented signal from
being polluted by low-frequency environmental noise.

For the further development of QIP with light, quantum
memory is crucial. One promising technique involves the use
of electromagnetically induced transparency (EIT). Quantum
memories of the squeezed vacuum have been demonstrated
using EIT [6,7] and have been investigated in more detail
[8–10]. However, these quantum memories operate only when
the value of � is sufficiently small. This is because a narrow
transparency window is essential in order to spatially compress
the light pulse inside the atomic medium. In the present Rapid
Communication, we propose a method using bichromatic
control light, which realizes quantum memory for the squeezed
vacuum for an arbitrary value of �. Previously reported EIT
using bichromatic control light [11] does not provide 100%
transparency and cannot be applied to the quantum memory
process, whereas our method provides a perfect solution to this
problem.

Let us first explain the primary mechanism of the proposed
bichromatic EIT from an intuitive point of view (Fig. 1). Here,
we assume the probe and control lights to be classical. The
intensity of the control light beats due to the interference of the
two frequency components. When a single-mode probe light
is used, the probe light suffers from absorption, because the
intensity of the control light, which induces the transparency,
periodically disappears, while the intensity of the probe light is
constant. However, using a two-mode probe light, the intensity
of the probe also beats. When the phases of the beating

for both the probe and control lights are coordinated, 100%
transparency can be obtained for the probe light. In contrast,
when the beats are out of phase, the probe light are completely
absorbed by the atoms.

Next, we explicitly treat the proposed bichromatic EIT for
an arbitrary quantum state of the probe field. A two-mode
probe light denoted by the annihilation operators â(ω0 + �)
and â(ω0 − �), which are ±� from the resonant frequency,
is coupled to the |b〉 → |a〉 transition of each of the N

atoms. A bichromatic control light detuned by ±�, having
Rabi frequencies of �, is coupled to the |c〉 → |a〉 transition.
The interaction Hamiltonian of the system is described in an
interaction picture by

V̂ = h̄g

N∑
j=1

â(ω0 + �)e−i�t σ̂
j

ab + h̄g

N∑
j=1

â(ω0 − �)ei�t σ̂
j

ab

− h̄�e−i�t

N∑
j=1

σ̂ j
ac − h̄�ei�t

N∑
j=1

σ̂ j
ac + H.c., (1)

where σ̂
j
µν = |µ〉j j〈ν| is the flip operator of the j th atom

between states |µ〉 and |ν〉, and g is the coupling constant
between the atoms and the probe light. In order to clarify the
characteristics of this bichromatic EIT system, we introduce
the following bosonic operators:

â± = 1√
2

[â(ω0 + �) ± â(ω0 − �)]. (2)

The continuous-mode descriptions of modes â± are given
by

â+ = 1√
π

∫ ∞

−∞
dt â(t)eiω0t cos(�t),

(3)

â− = 1√
π

∫ ∞

−∞
dt â(t)eiω0t sin(�t),

where â(t) is the Fourier-transformed operator of â(ω) de-
fined by â(t) = (2π )−1/2

∫ ∞
−∞ dωâ(ω) exp(−iωt). The tempo-

ral function of cos(�t) describing mode â+ is identical to
the beating of the amplitude of the control light due to the
interference of the two frequency components.
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probe
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FIG. 1. (Color online) Three-level atoms coupled to two-mode
probe light and bichromatic control light.

Using these bosonic operators, Eq. (1) is rewritten as

V̂ =
√

2h̄g cos(�t)
N∑

i=1

â+σ i
ab − 2h̄� cos(�t)

N∑
i=1

σ i
ac

+
√

2h̄g sin(�t)
N∑

i=1

â−σ i
ab + H.c. (4)

Since the first and second terms, which indicate the interaction
between the atoms and mode â+ and the interaction between
the atoms and the control light, have the same time dependence
of cos(�t), there exist dark states for mode â+, as well as the
conventional EIT with monochromatic control light [12]. In
contrast, the interaction between the atoms and mode â− has
a time dependence of sin(�t), and there are no dark states
for mode â−. This means that the bichromatic EIT renders
the medium completely transparent only for the excitation of
mode â+.

In the following, we describe the relationship between
the squeezed vacuum and modes â±. We treat the two-
mode squeezed vacuum of the sideband frequency of �

defined as

|ζ 〉 = exp[ζ ∗â(ω0 + �)â(ω0 − �)

− ζ â†(ω0 + �)â†(ω0 − �)]|0〉, (5)

where ζ is the complex squeezing parameter. This can be
written in terms of modes â± as

|ζ 〉 = exp

(
ζ ∗â2

+
2

− ζ (â†
+)2

2

)
exp

(
−ζ ∗â2

−
2

+ ζ (â†
−)2

2

)
|0〉.

(6)

A two-mode squeezed vacuum is thus represented by the
product of the single-mode squeezed vacua at modes â±. In
other words, when a bichromatic control light is used, only the
squeezed vacuum for mode â+ can be stored in the atoms.

In experiments involving the sidebands of the squeezed
vacuum, homodyne detection with a local oscillator (LO) light,
the frequency of which is identical to the frequency of the
squeezed vacuum, is used and the power of the frequency
component corresponding to the sideband frequency is mea-
sured. The obtained power is represented by 〈X̂†

�(θ )X̂�(θ )〉,
where X̂�(θ ) = [â†(ω0 − �)eiθ + â(ω0 + �)e−iθ ]/2 is the
two-mode quadrature and θ is the relative phase between
the squeezed vacuum and the LO. This power can be
rewritten with the quadratures of modes â±, which are

in case of monochromatic EIT
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FIG. 2. (Color online) Schematic diagram of the experimental
setup. BS: beam splitter, HBS: half-beam splitter, AOM: acousto-
optic modulator, PD: photodetector, PZT: piezo electric transducer,
Amp: RF amplifier.

defined as X̂±(θ ) = (â†
±eiθ + â±e−iθ )/2, i.e.,

〈X̂†
�(θ )X̂�(θ )〉 = 1

2 〈X̂2
+(θ )〉 + 1

2 〈X̂2
−(θ + π/2)〉. (7)

Since the both the â+ and â− modes contribute to Eq. (7), the
optical loss for mode â− degrades the observable squeezing.
However, since the temporal function describing mode â+ is
already known, as shown in Eq. (3), using the time domain
homodyne method [13,14], we can selectively monitor the
quadrature of mode â+. As mentioned above, the quantum
memory of the squeezed vacuum for arbitrary sidebands can,
in principal, be implemented using bichromatic EIT with no
degradation.

The experimental setup is shown schematically in
Fig. 2. A laser-cooled atomic ensemble of 87Rb was used
as the EIT medium. Here, Ti:sapphire laser 1 was used to
generate and detect the squeezed vacuum, the carrier frequency
of which was resonant on the 5 2S1/2, F = 1 → 5 2P1/2, F

′ =
2 transition, and Ti:sapphire laser 2 was diffracted by an
acousto-optic modulator (AOM) and was used as the control
light. The relative frequency between the probe light and the
control light was stabilized using the feed-forward method
[15]. By adjusting the frequency of the synthesizer, the
detuning of the control light could be precisely controlled
around the 5 2S1/2, F = 2 → 5 2P1/2, F

′ = 2 transition. When
bichromatic control light is used, the synthesizer output was
mixed with a sine wave at the frequency �, and the bichromatic
control light was detuned by ±�. Although the diffraction
angles of the AOM for the two frequency components
differed slightly, they were coupled to the single-mode fiber,
and thus had identical spatial modes when injected into the cold
atoms. The probe and control lights were circularly polarized
in the same direction and were incident on the cold atoms
with a crossing angle of 2.5◦. The radii of the probe and
control lights were 170 µm and 790 µm, respectively. One
cycle of the experiment was 10 ms. Each cycle consisted
of a 9 ms preparation period to prepare the cold atoms in
the 5 2S1/2, F = 1 state and a 1 ms measurement period (for
details, refer to [16]). The optical depth of the atoms was
approximately eight which was measured by using a single
photon counting module.
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We first demonstrate experimentally that EIT cannot be
achieved for high-frequency sidebands for the case in which a
monochromatic control light is used. During the measurement
period, the squeezed vacuum was incident on the cold atoms
with the control light in a coherent state and having a power of
200 µW. The squeezed vacuum passed through the cold atoms
and was measured by the time-domain homodyne method. The
measured homodyne signals were imported into a high-speed
digital oscilloscope, which had a signal sampling rate of 5 ×
107 samples/sec. We evaluated the spectrum of the quadrature
noise by squaring the Fourier transform of the obtained data.
The relative phase between the squeezed vacuum and the
LO was set to θ = π/2 or 0 during the preparation period
using a weak coherent beam, which had a spatial mode that
was identical to that of the squeezed vacuum. During the
measurement period, the feedback voltages to the PZTs were
kept constant, and this weak beam was turned off using the
AOM.

Figure 3(a) shows the observed spectra of the quadrature
noise when the frequency of the control light was resonant
on the 5 2S1/2, F = 2 → 5 2P1/2, F

′ = 2 transition. Trace (A)
indicates the shot noise, and traces (B) and (C) indicate the
quadrature noise of the squeezed vacuum in the absence of
cold atoms. Traces (D) and (E) indicate the quadrature noise
of the squeezed vacuum that passed through the cold atoms
due to EIT. Here, the relative phases were π/2 in traces (B)
and (D) and were 0 in traces (C) and (E). Each trace is the
average of 1000 measurements. Electromagnetically induced
transparency for the squeezed vacuum was observed in the
low-frequency region, where 95% transparency was obtained.
When the control light is resonant on the transition, each
sideband used to construct the two-mode squeezed vacuum
undergoes a phase shift of the opposite sign, and thus the
effect of the phase shifts is canceled [16]. Figure 3(d) shows
the corresponding numerical simulation, where the atomic
absorption loss and the phase shift caused by dispersion under
the EIT condition were taken into account.
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FIG. 3. (Color online) Quadrature noise spectra of the squeezed
vacuum incident together with the monochromatic control light,
where the frequencies of the control light were (a) resonant on
the 5 2S1/2, F = 2 → 5 2P1/2, F

′ = 2 transition, (b) detuned by 500
kHz, and (c) detuned by 2 MHz. (d), (e), and (f) show the
numerical simulations of the EIT for the squeezed vacuum shown
in (a), (b), and (c), respectively. Traces A, B, C, D, and E are
described in the text.
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FIG. 4. (Color online) Quadrature noise spectra of the squeezed
vacuum incident with bichromatic control light detuned by ±2 MHz
obtained by (a) squaring the Fourier transform of the direct homodyne
signals and by (b) multiplying the 2-MHz sine waves having phases
that are identical to the phase of the beating amplitude of the control
light and (c) the phase that differs from the beating amplitude of the
control light by π/2 before taking the Fourier transform. Traces A,
B, C, D, and E are identical to those in Fig. 3.

Figures 3(b) and 3(e) show the experimental results and
numerical simulations when the control light was detuned by
500 kHz. Since perfect cancellation of the dispersion effect
no longer exists, the noise spectra are completely different.
Upon further detuning of the control light [Fig. 3(c), where the
control light was detuned by 2 MHz], only one of the sidebands
used to construct the two-mode squeezed vacuum passed
through the atoms, whereas the other sideband was absorbed.
Therefore, the observed quadrature noise exceeded the vacuum
noise and was phase insensitive. The corresponding numerical
simulation is shown in Fig. 3(f). These results demonstrate that
EIT cannot be achieved for the high-frequency sidebands of a
squeezed vacuum by simply detuning the control light.

Next, we demonstrate EIT for a squeezed vacuum using
bichromatic control light. During the measurement period,
the squeezed vacuum and bichromatic control light, which
were detuned by ±2 MHz, were incident on the cold atoms.
The frequency components of the control light have the
same power, yielding a total power of 200 µW. Figure 4(a)
shows the quadrature noise spectra evaluated by squaring the
Fourier transform of the homodyne signals, as was done in
Fig. 3. In contrast to Fig. 3, both antisqueezing and squeezing
were observed around 2 MHz. However, as has already
been discussed, absorption for mode â− limited transmission
to 50%.

In order to extract the quadrature noise of mode â+, we
need information about the phase of the beating amplitude
of the control light. In the experimental setup, this phase
was determined by that of the 2-MHz sine wave mixed with
the synthesizer output. We measured this sine wave together
with the homodyne signal, which enabled us to determine
the temporal function describing mode â+. The obtained data
of the homodyne signal was multiplied by the 2-MHz sine
wave of the temporal function, and the power spectrum was
then evaluated [Fig. 4(b)]. The transparency window, which
appeared around 2 MHz in Fig. 4(a), was down-converted to
the low-frequency region, and the transparency was greatly
enhanced (approximately 75%) compared to that of Fig. 4(a).
Moreover, the environmental noise in the low-frequency region
in Fig. 4(a) was up-converted to approximately 2 MHz and, in
contrast with Fig. 3(a), did not appear in the transparency
window. The quadrature noise of mode â− was observed
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[Fig. 4(c)] using the 2-MHz sine wave, the phase of which
differed from that of the beating amplitude of the control light
by π/2. As theoretically predicted, the squeezed vacuum was
completely absorbed. Note that mode â+ can be monitored
using the bichromatic LO [17] if the phase of the beating
of the bichromatic LO is set to that of the bichromatic
control light.

Finally, we demonstrated quantum memory of the squeezed
vacuum with bichromatic EIT. Squeezed vacuum pulses,
which were Gaussian with temporal widths of τ = 470 ns,
were created from the continuous-wave squeezed vacuum with
three AOMs. The residual photon flux at the tail of the pulses
was approximately 1%. Note that the bandwidth of the storage
is limited by the frequency width of the transparency window
[see trace D or E in Fig. 4(b)]. The pulsed squeezed vacuum
was incident on the cold atoms together with bichromatic
control light and was stored in the atoms by turning off
the control light using an AOM. The squeezed vacuum was
retrieved after 3 µs by turning on the control light. The
homodyne signal data were acquired at a signal sampling
rate of 1×108 samples/sec. In order to observe the squeezed
vacuum pulses at mode â+, the obtained data were multiplied
by a 2-MHz sine wave and then multiplied by a temporal
function corresponding to the retrieved pulse. Finally, they
were integrated and squared to evaluate the temporal variation
of the quadrature noise of mode â+. The temporal function
used here was f (t) = H (t) exp(−t2/2τ 2), and H (t) is a step
function, which was expected from the experimental results
obtained for the storage and retrieval of the pulses in a coherent
state. The quadrature noise of mode â+ is shown in Figs. 5(a)
(θ = π/2) and 5(c) (θ = 0), and that of mode â− is shown in
Figs. 5(b) (θ = π/2) and 5(d) (θ = 0). Traces (A) indicate the
shot noise, and traces (B) and (C) indicate the quadrature noise
of the squeezed vacuum pulses with no cold atoms and the
ultraslow propagation of squeezed vacuum pulses with EIT,
respectively. Trace (D) indicates the quadrature noise when
the squeezed vacuum pulses were stored and retrieved. Traces
(A), (B), and (D) were averaged 900 000 times, and traces (C)
were averaged 450 000 times. The observed antisqueezing and
squeezing levels for the retrieved squeezed vacuum pulses
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FIG. 5. (Color online) Temporal variation of the quadrature
noises of mode â+ (left column) and mode â− (right column),
where the relative phases between the squeezed vacuum and the LO
were set to π/2 [(a) and (b)] and 0 [(c) and (d)]. Traces A, B, C, and
D are described in the text.

were 1.80 ± 0.02 dB and −0.44 ± 0.02 dB, respectively. The
margin of error was estimated by the standard deviation of the
temporal variation of the shot noise due to a small amount of
environmental noise.

In conclusion, we demonstrated a novel type of quantum
memory that can be applied to arbitrary sidebands of a
squeezed vacuum. This method is robust against environmental
noise and is compatible with the current QIP for continuous
variables of light. Frequency range where the current technique
is applicable will be extended by using an atomic gas cell with
Doppler-broadened spectrum [7].
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