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Unambiguous discrimination of mixed quantum states: Optimal solution and case study

Matthias Kleinmann,1,2,* Hermann Kampermann,1 and Dagmar Bruß1

1Institut für Theoretische Physik III, Heinrich-Heine-Universität Düsseldorf, DE-40225 Düsseldorf, Germany
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We present a generic study of the unambiguous discrimination between two mixed quantum states. We derive
operational optimality conditions and show that the optimal measurements can be classified according to their
rank. In Hilbert space dimensions less than or equal to 5, this leads to the complete optimal solution. We
demonstrate our method with a physical example, namely, the unambiguous comparison of n quantum states,
and find the optimal success probability.
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According to the laws of quantum mechanics, two
nonorthogonal quantum states cannot be distinguished per-
fectly. This fact has far-reaching consequences in quantum-
information processing; e.g., it allows one to generate a
secret random key in quantum cryptography. In spite of the
fundamental nature of the problem of state discrimination,
determining the optimal measurement to distinguish two
(mixed) quantum states is far from being trivial.

In the literature, two main paths to state discrimination have
been taken [1]. First, in minimum error discrimination, the
unavoidable error in distinguishing two states from each other
is minimized. This problem has been completely solved in
Ref. [2]. Second, in unambiguous state discrimination (USD),
no error is allowed, but an inconclusive answer may occur.
The optimal USD measurement minimizes the probability of
an inconclusive answer [3–5]. Although USD has received
much attention in recent years, and special examples have been
solved, no general solution is known so far for the case of mixed
states. A strategy that is analogous to USD but applicable also
to linearly dependent states is discussed in Ref. [6].

The aim of this Rapid Communication is to present the
optimal USD measurement for cases that cannot be reduced to
the discrimination of pure states and thus to known solutions.
This analysis can be applied to the unambiguous discrimina-
tion of any two density operators acting on a Hilbert space
of up to five dimensions. This goes beyond previous results
which require a high symmetry or other very special properties
of the given states [7–13]. We will show the main ideas and
steps toward the solution; we explain the technical details
elsewhere [14].

The scenario of optimal unambiguous discrimination of
two density operators is as follows: two (normalized) den-
sity operators �1 and �2, acting on a finite-dimensional
Hilbert space H occur with a priori probability p1 and
p2, respectively, where p1 + p2 = 1. We will denote the
support of a density operator � as the orthocomplement of
its kernel, (supp �)⊥ = ker �. A measurement for USD is
described by a positive operator valued measure (POVM), i.e.,
a family of positive semidefinite operators {E1, E2, E?} with
E1 + E2 + E? = 1, obeying the constraints for unambiguity,
tr(E2�1) = 0 and tr(E1�2) = 0. The operator E? corresponds
to the inconclusive outcome, while E1 and E2 correspond to
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the successful detection of �1 and �2, respectively. The aim
is to find a POVM that maximizes the success probability
Psucc = p1tr(E1�1) + p2tr(E2�2). Let us introduce here the
useful notation γ1 = p1�1 and γ2 = p2�2. Thus, the success
probability reads Psucc = tr(E1γ1) + tr(E2γ2).

What are the relevant structures of the density operators
and measurement operators? The unambiguity condition
tr(E2γ1) = 0 means that the support of E2 is a subspace of
the kernel of γ1. The second unambiguity condition reads
supp E1 ⊂ ker γ2. Obeying these constraints, one has to
maximize the sum of the scalar products tr(E1γ1) and tr(E2γ2),
while keeping E? positive. Due to the reduction theorems in
Ref. [8], the optimization problem reduces to the case of a
strictly skew pair of (unnormalized) density operators. The
operators γ1 and γ2 are called strictly skew, when they possess
neither any parallel component, i.e., supp γ1 ∩ supp γ2 = {0},
nor any orthogonal components, i.e., supp γ1 ∩ ker γ2 = {0}
and supp γ2 ∩ ker γ1 = {0}. A simple example for a strictly
skew pair of unnormalized density operators is any pair of
pure states, γ1 = p|φ1〉〈φ1| and γ2 = (1 − p)|φ2〉〈φ2|, with
0 < |〈φ1|φ2〉| < 1 and 0 < p < 1. Both operators of such a
strictly skew pair have the same rank, and the sum of both ranks
cannot exceed the dimension of the underlying Hilbert space.
Below we will show a constructive method to discriminate
two skew density operators of rank 2. This solves optimal
USD in all cases where one of the given states has rank 2, and
hence in particular the case with a Hilbert space of up to five
dimensions.

In the following we will only consider skew pairs of
unnormalized density operators and proper USD measure-
ments. We call a USD measurement “proper” if it satisfies
supp (E1 + E2) ⊂ supp (γ1 + γ2). It is sufficient to only
consider proper measurements, since the subspace ker γ1 ∩
ker γ2 cannot contribute to the success probability [15].

In Ref. [16], Eldar and collaborators showed that the opti-
mality of a USD measurement can be proved via the existence
of a certain operator that fulfills a set of conditions. However,
no constructive way to find this operator was provided. Starting
from these conditions we derive the following set of necessary
and sufficient requirements for the optimality of a proper USD
measurement:

E?(γ2 − γ1)E?(1 − E?) = 0, (1a)

�1E?(γ2 − γ1)E?�2 = 0, (1b)
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�1E?(γ2 − γ1)E?�1 � 0, (1c)

�2E?(γ1 − γ2)E?�2 � 0. (1d)

Here, �1 is the projector onto ker γ2, and �2 is the projector
onto ker γ1. The details of the derivation are presented
elsewhere [14]. Note that the methods used to arrive at
Eqs. (1) cannot be generalized to the discrimination of more
than two states. (For special cases, however, see Ref. [17].)

Let us point out two observations from Eqs. (1). First,
neither E1 nor E2, but only the operator E? appears in this set of
equations. This is due to the fact that from E? it is possible to
uniquely reconstruct E1 and E2, as Eiγi = γi − E?γi holds
for i = 1, 2. Second, neither γ1 − γ2 � 0 nor γ2 − γ1 � 0
can hold for a strictly skew pair of operators, and thus it is
nontrivial to fulfill Eqs. (1c) and (1d). The set of equations
(1a)–(1d) provides an efficient tool in optimal USD: one might
be able to guess a measurement, e.g., from the symmetry
of a given USD problem, and then verify easily whether
it is optimal. Moreover, one can use these equations in a
constructive way in order to find the solution for E?, which
then uniquely defines an optimal POVM. Below, we will show
explicitly how to construct the optimal measurement from
Eqs. (1) for the example of state comparison.

It has been an open question as to whether the optimal
USD measurement is unique. This is indeed the case. The
structure of the proof is as follows: As pointed out above,
a USD measurement is already defined via E?. It can be
shown [14] that for optimal proper measurements, the rank of
E? is fixed, namely, rank E? = rank(γ1γ2) + dim ker(γ1 + γ2).
Assuming that there would be two optimal operators E? and
E′

?, their convex combination 1
2 (E? + E′

?) would also describe
an optimal measurement. However, for positive semidefinite
operators E? and E′

?, the identity rank(E? + E′
?) = rank E? =

rank E′
? can only hold if supp E? = supp E′

?. When the support
of E? is given, the operator E? is uniquely determined via
Eq. (1a). Thus, the optimal proper USD measurement is
unique.

The uniqueness of the optimal measurement now al-
lows a meaningful characterization of the optimal USD
measurement. We introduce a classification of the dif-
ferent types of optimal USD measurements according
to the rank of the measurement operators E1 and E2.
A measurement type is specified by (rank E1, rankE2).
This classification turns out to be vital for the construc-
tion of optimal measurement strategies from Eqs. (1).
For given density operators �1 and �2 and a given a priori
probability p1 = 1 − p2, one particular measurement type is
optimal, due to the uniqueness of the optimal solution. While
varying p1, some or all of these measurement types may occur,
see Fig. 1 for an illustration. With r = rank γ1 = rank γ2, one
arrives at the constraints rank E1 � r , rank E2 � r , and

r � rank E1 + rank E2 � 2r. (2)

Equation (2) follows from the geometry of unambiguous
measurements and the fact that in the optimal case rank E? =
dim ker γ1γ2 holds. The two extremal cases where either the
lower or the upper bound in Eq. (2) is reached correspond to
special situations.

The case of the upper bound in Eq. (2), where rank E1 =
r = rank E2, is the well-understood fidelity form measurement.

FIG. 1. (Color online) USD measurement types for r = 2, as
allowed by the constraint in Eq. (2). Projective measurements are
indicated by squares, nonprojective ones by circles. The arrows
illustrate an example for a possible path between the measurement
types, while the probability p2 is varied from p2 = 0 to p2 = 1. The
start point is necessarily type (2,0), and the end point type (0,2). The
types (0,2), (2,0), and (2,2) will only occur once. Which other types
are visited in between, and in which order, depends on the concrete
example.

Intuition might tell us that the success probability should be
a function of some distance measure between the two states
(this is indeed true for minimum error discrimination, where
the smallest achievable error probability is a function of the
trace distance between the unnormalized density operators).
Here, for the case with rank E1 = r = rank E2, the success
probability is the square of the Bures distance, i.e., Pfid =
1 − 2tr|√γ1

√
γ2| [10,11,14,15] (while, in general, Pfid is an

upper bound on the success probability [15]). In fact, formally,
the construction of the fidelity form measurement is always
possible [11], and the resulting operator E? always satisfies
all conditions in Eqs. (1). However, this operator in general
fails to satisfy the condition 1 − E? � 0. The measurement
types for which rank E1 + rank E2 < 2r occur because of
this very positivity condition. In a geometric language,
the optimal measurement is on the border of the allowed
(positive) measurements, unless rank E1 = r = rank E2. One
can compute two numbers plow and pup for given �1 and �2,
such that the fidelity form measurement is optimal if and only
if plow � p1 � pup.

In the case of the lower bound of Eq. (2), where rank E1 +
rank E2 = r , the operators E1, E2, and E? are projectors, i.e.,
the optimal measurement is a von Neumann measurement. A
special situation occurs when rank E1 = 0 and rank E2 = r or
rank E1 = r and rank E2 = 0. This is interpreted as follows:
For very small p1, it will turn out to be advantageous to ignore
�1 by choosing E1 = 0. This case is referred to as the single-
state detection of �2, because the state �1 is never detected. As
then E? = 1 − E2, from Eqs. (1) only Eq. (1c) remains, and
this inequality can be written as

γ1(γ2 − γ1)γ1 � 0. (3)

The success probability for single-state detection of γ2 is
given by Psucc = tr(�2γ2), where �2 was defined above as
the projector onto ker γ1. Equation (3) implicitly defines a

020304-2



RAPID COMMUNICATIONS

UNAMBIGUOUS DISCRIMINATION OF MIXED QUANTUM . . . PHYSICAL REVIEW A 81, 020304(R) (2010)

TABLE I. Measurement types for the case r = 2. For details
about the properties, see main text.

Rank E1 Rank E2 Type Properties

0 2 (0,2) Single-state detection, projective
1 2 (1,2) Nonprojective measurement
2 2 (2,2) Fidelity form measurement, nonproj.
1 1 (1,1) Projective measurement, see example
2 1 (2,1) Nonprojective measurement
2 0 (2,0) Single-state detection, projective

calculable threshold for p1, below which it is advantageous
not to detect �1. This threshold is always larger than 0, i.e.,
single-state detection is always optimal for a finite regime.
Analogous considerations hold for small p2.

So far our considerations have been independent of r . Let us
now consider specific values for r . For r = 1, i.e., the case of
pure states, only the single-state detection measurement or the
fidelity form measurement may occur. Hence the problem of
unambiguous discrimination of pure states is well understood
[18]. Furthermore, any USD task where the two density
operators can simultaneously be brought in a diagonal form
with 2 × 2-dimensional blocks (the “block-diagonal” case)
can also be solved by treating the corresponding orthogonal
subspaces independently [9,11,19]. For all other cases, only
solutions for special cases are known [10–13]. For r = 2 there
are six possible measurement types, which are summarized in
Table I. The optimal measurements for types (1,2), (2,1), and
(1,1) remain to be determined. For each of these types, Eqs. (1)
reduce to a polynomial equation [14] and hence the analytic
solution for the case r = 2 is completed.

Let us now study the important example of a quantum-
state comparison and demonstrate explicitly how to solve
Eqs. (1) for the case of measurement type (1,1), which
occurs for a wide range of parameters. We consider the state
comparison of n pure quantum states, where each of the
states is taken from the set {|ψ1〉, |ψ2〉}, with corresponding
a priori probabilities {η1, η2}, η1 + η2 = 1. In quantum-state
comparison [10,15,19–22], one aims at answering the question
of whether the given n quantum states are equal or not.
Applications of this task in quantum information are, e.g.,
quantum fingerprinting [23] and quantum digital signatures
[24]. For n = 2, the optimal unambiguous measurement for
quantum-state comparison has been given in Refs. [10,22].
For n � 3, the corresponding USD task reduces to the
unambiguous discrimination of two mixed states of rank 2,
i.e., r = 2.

State comparison of n states is equivalent to the discrimi-
nation of (cf. Ref. [22])

γe = (η1|ψ1〉〈ψ1|)⊗n + (η2|ψ2〉〈ψ2|)⊗n, (4)

γd = (η1|ψ1〉〈ψ1| + η2|ψ2〉〈ψ2|)⊗n − γe. (5)

Due to Theorem 2 in Ref. [8], it remains to consider the reduced
operators γ r

e and γ r
d , which are given by the projection of γe and

γd onto (supp γe + ker γd), respectively. It is straightforward to
see that for n � 3 this discrimination task cannot be reduced
further and that no block-diagonal structure is present unless
η1 = η2 = 1

2 .

We next construct a basis of supp γe and of ker γd. A
convenient basis of supp γe is given by

|φ±〉 ∝ |ψ1〉⊗n ± |ψ2〉⊗n. (6)

We define c = 〈ψ1|ψ2〉 with 0 < c < 1. Using |ψ⊥
1 〉 ∝ |ψ2〉 −

c|ψ1〉 and |ψ⊥
2 〉 ∝ |ψ1〉 − c|ψ2〉, a basis of ker γd can be

constructed as

|ω±〉 ∝ |ψ⊥
1 〉⊗n ± |ψ⊥

2 〉⊗n
. (7)

Now a Gram-Schmidt orthogonalization of {|φ+〉, |φ−〉,
|ω+〉, |ω−〉} yields the orthonormal basis {|φ+〉, |φ−〉,
|σ+〉, |σ−〉} of supp γe + ker γd. Then {|σ+〉, |σ−〉} is
an orthonormal basis of ker γ r

e ∩ supp (γ r
e + γ r

d ), while
{|ω+〉, |ω−〉} is an orthonormal basis of ker γ r

d ∩ supp (γ r
e +

γ r
d ). In fact, they form Jordan bases (see, e.g., Refs. [15,25]) of

these subspaces, i.e., 〈σ∓|ω±〉 = 0. The remaining overlaps
〈σ±|ω±〉 are equal for odd n (degenerate Jordan angles).
We now study for general but odd n � 3 the solution of the
conditions in Eqs. (1) while restricting our considerations to
the measurement type (1,1).

The measurements of type (1,1) are von Neumann measure-
ments, where Ee and Ed both have rank 1, i.e., Ee = |χe〉〈χe|
and Ed = |χd〉〈χd|. In particular, the vectors |χe〉 and |χd〉 must
be orthogonal and normalized. We use the parametrization
|χe〉 ∝ |ω+〉 + x∗|ω−〉 and |χd〉 ∝ x|σ+〉 − |σ−〉, where x is a
complex variable.1

We now evaluate the necessary and sufficient conditions for
optimality in Eqs. (1). Equation (1) is satisfied for any x. Let
us abbreviate 〈ωa|γe|ωb〉 = Gab

e and 〈σa|γd|σb〉 = Gab
d , where

a, b ∈ {+,−}. Equation (1b) now becomes a scalar equation
which is only quadratic in x; in matrix notation, Eq. (1b) reads

(1, x)(Ge − Gd)(−x, 1)T = 0. (8)

Similarly, the positivity conditions (1c) and (1d) simplify to
scalar inequalities.

With the help of a computer algebra system, we obtain for
n = 3 the optimal success probability

P (1,1)
succ = 1

4

(1 − c2)2

1 − c6
{(c4 + 4c2 + 1) α +(1 − c2)(2 +

√
W )},

(9)

with W = [(1 − c6)α2 + 4(1 − α − αc4)](1 − α) + α2c2 and
α = 4 η1η2. Note that this expression is only valid if in
addition the inequalities (1c) and (1d) hold. The success
probability is illustrated as a contour plot in Fig. 2. Above
the dashed line, the optimal measurement is of type (1,1)
and the success probability is given by Eq. (9). We find from
numerical analysis that the optimal measurement is a fidelity
form measurement in the remaining cases. Note that for a
wide range of the parameters, the optimal measurement is a
von Neumann measurement and hence may be implemented
physically without the need of an auxiliary system.

In summary, we have presented a strategy to find the optimal
measurement for unambiguous discrimination of two mixed
quantum states acting on a five-dimensional Hilbert space. Our

1This parametrization does not include the case |χe〉 = |ω+〉, |χd〉 =
|σ−〉. However, this case is optimal only if η1 = η2 = 1

2 .
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FIG. 2. (Color online) Maximal success probability for compar-
ison of three pure quantum states, taken from the set {|ψ1〉, |ψ2〉},
as a function of the a priori probability η1 and the overlap 〈ψ1|ψ2〉.
Darker areas correspond to lower success probability. The dashed line
indicates the bound from the conditions (1c) and (1d).

method can in principle also be applied to the discrimination
of two quantum states in general dimensions. Our results are

also useful in other contexts, e.g., quantum-state filtering:
in Ref. [7] it has been shown how to optimally distinguish
between one pure state from a given set and the remaining
ones. With our method one could filter a subset of states from
the whole set. In connection with quantum algorithms, one
could thus distinguish between two sets of Boolean functions,
rather than between one function and a set of functions. The
results presented in this paper could also be used to prove
optimality for the universal programmable state discriminator
suggested in Ref. [26]. As the optimal measurement is unique,
the optimal device discussed in Ref. [26] cannot be simplified.
Furthermore, in Ref. [11] the importance of unambiguous
discrimination in the context of quantum key distribution
was shown with particular emphasis on the case of states of
rank 2. As an outlook, our strategy seems a promising path
for the generalization to unambiguous state discrimination of
more than two states.
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