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Generation of two-mode squeezed states for two separated atomic ensembles via coupled cavities
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We propose an efficient scheme for the generation of two-mode squeezed states for two separated atomic
ensembles trapped in distant cavities. The scheme is based on selective couplings between the collective atomic
modes and two linearly transformed common field modes mediated by an optical fiber or a third cavity. The
quanta of the transformed atomic modes are exhausted due to the linear coupling with the transformed field
modes, bringing the original atomic modes into the two-mode squeezed states. The experimental implementation
of the scheme would be an important step toward quantum communication and networking with continuous
variables.
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Two-mode squeezed states are of crucial importance for
quantum communication [1] and nonlocality tests [2] with
continuous variable states. Recently, entangled squeezed states
of two electromagnetic field modes have been used for the
teleportation of quantum states with continuous variables [3].
In the context of cavity QED, schemes have been proposed
for the generation of two-mode squeezed vacuum states for
two field modes located in a single cavity via interaction
with a single driven three-level atom [4–6]. Pielawa et al. [7]
have proposed a scheme for generating two-mode squeezing
in a high-Q microwave resonator with a beam of two-level
atoms, which constitute a spin reservoir. Guzman et al. [8]
have presented a scheme for realizing such continuous variable
entanglement for two local cavity modes via interaction with
an atomic sample.

On the other hand, single atoms or atomic ensembles with
long-lived electronic states are ideal for storing and processing
local quantum information. Parkins et al. [9] have presented
a scheme for the preparation of two-mode squeezed states of
the effective modes in a pair of atomic ensembles located in a
single cavity through collective interaction with two quantized
field modes and laser fields. In order to implement quantum
communication or test quantum nonlocality one should pre-
pare entanglement between separate subsystems. Although the
scheme of Ref. [9] can also be applied to atomic ensembles in
two separated, cascaded two-mode cavities, it is required that
the cavity decay rate be much larger than the effective coupling
between each atomic mode and the respective cavity modes
so that the cavity modes can be adiabatically eliminated from
the dynamics. Therefore, the time required to generate the
two-mode squeezed state is exteremely long and the fidelity of
entanglement may be seriously spoiled by dephasing, which
induces an uncontrollable phase noise to Dicke states and
destroys the coherence among them.

The coupled atom-cavity-fiber systems are considered as
basic building blocks toward scalable quantum networking
schemes. Proposals have been suggested for entanglement
engineering and quantum communication between single
atomic qubits in separate cavities through the exchange of real
[10–12] or virtual photons [13] mediated by an optical fiber. In
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this article, we present an alternative scheme for the generation
of two-mode squeezed states for two atomic ensembles trapped
in two separate single-mode cavities. We show that, through
suitable choice of the detunings and Rabi frequencies of the
classical fields driving the atoms, the dynamics of the system is
described by the competition between the annihilation operator
of one atomic mode and the creation operator of the other
atomic mode correlating with the linearly transformed field
modes. With the application of a two-mode squeezing operator,
the quanta of the transformed atomic modes are absorbed by
the field modes, which forces the original atomic modes to
evolve to the desired two-mode squeezed vacuum state. Since
the two collective atomic modes are coupled to the common
field modes, there is no need to eliminate field modes from
the dynamics and the rate at which the desired entanglement
is produced is much larger than that of the scheme of Ref. [9]
when applied to atomic ensembles in two separated cavities.

We consider that two atomic ensembles are trapped in two
cavities coupled by a short optical fiber or a third cavity,
whose field mode will be referred to as the mediating mode.
The atomic number in the ith ensemble is Ni . Suppose that
the two cavity modes are resonant with the mediating mode.
In the interaction picture, the resonant coupling between the
two cavity modes and the mediating mode is given by the
interaction Hamiltonian H1 = νb(a†

1 + a
†
2) + H.c., where b is

the annihilation operator for the mediating mode, a
†
j is the

creation operator for the j th cavity mode, and ν is the coupling
strength.

The atomic level configuration is shown in Fig. 1. Each atom
has one excited state |r〉 and two ground states |e〉 and |g〉. The
transitions |e〉 → |r〉 and |g〉 → |r〉 in the ith cavity (i = 1,
2) are coupled to the corresponding cavity mode with the
coupling strengths gei and ggi and detunings �e and �g . Mean-
while, they are driven by two classical fields with the Rabi
frequencies �ei and �gi and detunings �g + δe and �e + δg .
In the interaction picture, the Hamiltonian describing the
atom-field interaction is

H2 =
N1∑
j=1

{[ge1a1e
−i�et + �e1e

iφe1e−i(�g+δe)t ]|r1,j 〉〈e1,j |

+ [gg1a1e
−i�gt + �g1e

iφg1e−i(�e+δg )t ]|r1j 〉〈g1j |}

1050-2947/2010/81(1)/015804(4) 015804-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.81.015804


BRIEF REPORTS PHYSICAL REVIEW A 81, 015804 (2010)

FIG. 1. (Color online) The atomic level configuration and transi-
tions. The transitions |e〉 → |r〉 and |g〉 → |r〉 in the ith cavity (i = 1,
2) are coupled to the corresponding cavity mode with the coupling
strengths gei and ggi and detunings �e and �g . Meanwhile, they are
driven by two classical fields with the Rabi frequencies �ei and �gi

and detunings �g + δe and �e + δg .

+
N2∑
j=1

{[ge2a2e
−i�et + �e2e

iφe2e−i(�g+δe)t ]|r2j 〈e2j |

+ [gg2a2e
−i�gt + �g2e

iφg2e−i(�e+δg )t ]|r2j 〉〈g2j |} + H.c.,

(1)

where φei and φgi are the phases of the classical fields driving
the transitions |e〉 → |r〉 and |g〉 → |r〉 for the ith atomic en-
semble. Introducing the new bosonic modes c = 1√

2
(a1 − a2),

c+ = 1
2 (a1 + a2 + √

2b), and c− = 1
2 (a1 + a2 − √

2b) [12],

we can rewrite the Hamiltonian H1 as H1 = √
2νc

†
+c+ −√

2νc
†
−c−. In terms of the bosonic modes c, c+, and c−, the

Hamiltonian H1 is diagonal. So we can take H1 as the “free
Hamiltonian” mathematically and perform the transformation
eiH1t to obtain the atom-field interaction Hamiltonian in the
“interaction picture” with respect to H1:

H
′
2 = eiH1f tH2e

−iH1t

=
N1∑
j=1

{[
1

2
ge1(e−i

√
2νt c+ + ei

√
2νt c− +

√
2c)e−i�et

+�e1e
iφe1e−i(�g+δe)t

]
|r1,j 〉〈e1,j |

+
[

1

2
gg1(e−i

√
2νt c+ + ei

√
2νt c− +

√
2c)e−i�gt

+�g1e
iφg1e−i(�e+δg )t

]
|r1j 〉〈g1j |

}

+
N2∑
j=1

{[
1

2
ge2(e−i

√
2νt c+ + ei

√
2νt c− −

√
2c)e−i�et

+�e2e
iφe2e−i(�g+δe)t

]
|r2j 〉〈e2j |

+
[

1

2
gg2(e−i

√
2νt c+ + e−i

√
2νt c− −

√
2c)e−i�gt

+�g2e
iφg2e−i(�e+δg )t

]
|r2j 〉〈g2j |

}
+ H.c. (2)

Set �e,�g ,�e − �g � gei, ggi, �ei, �gi , ν, δe, δg . Then
the upper-level |r〉 can be adiabatically eliminated and the
atoms undergo Raman transitions. Choose the detunings
appropriately so that the dominant Raman transitions are
induced by the classical field �ei and the bosonic mode c

or the classical field �gi and the bosonic mode c+, while other
Raman transitions are far off-resonant and can be neglected.
This leads to the effective Hamiltonian

He = [λ1ce
iδet + µ1c

†
+e−i(δg−

√
2ν)t ]S+

1 + H.c.

+ (αe1c
†c + βe1c

†
+c+ + ηe1c

†
−c− + ξe1)(Sz1 + N1/2)

+ (αg1c
†c + βg1c

†
+c+ + ηg1c

†
−c− + ξg1)(N1/2 − Sz1)

+{[−λ2ce
iδet + µ1c

†
+S+

2j e
−i(δg−

√
2ν)t ]S−

2 + H.c.}
+ (αe2c

†c + βe2c
†
+c+ + ηe2c

†
−c− + ξe2)(N2/2 − Sz1)

+ (αg2c
†c + βg2c

†
+c+ + ηg2c

†
−c− + ξg2)(N2/2 + Sz1),

(3)

where S+
1 = ∑N1

j=1 |e1j 〉〈g1j |, S−
2 = ∑N2

j=1 |e2j 〉〈g2j |, Sz1 =
1
2

∑N1
j=1(|e1j 〉〈e1j | − |g1j 〉〈g1j |), Sz2 = 1

2

∑N2
j=1(|g2j 〉〈g2j | −

|e2j 〉〈e2j |), λi = �eiggi

2
√

2
( 1
�g

+ 1
�g+δe

)e−iφei , µi = �gigei

4 ( 1
�e+

√
2ν

+ 1
�e+δg

)eiφgi , αei = g2
ei

2�e
, βei = g2

ei

4(�e+
√

2ν)
, ηei = g2

ei

4(�e−
√

2ν)
,

ξei = �2
ei

�g+δe
, αgi = g2

gi

2�g
, βgi = g2

gi

4(�g+
√

2ν)
, ηgi = g2

gi

4(�g−
√

2ν)
, and

ξgi = �2
gi

�e+δg
. The two Raman transition channels can also be

achieved through dispersive couplings to two different virtual
excited states.

Define di = 1√
Ni

S−
i and d

†
i = 1√

Ni
S+

i . Then we have

[di, d
†
i ] = 1 − 2

Ni
(Szi + Ni/2). Suppose that the average num-

ber of atoms in the state |e〉 in the first ensemble and the average
number of atoms in the state |g〉 in the second ensemble
are much smaller than N1 and N2, respectively. In this case,
Szi � −Ni/2 and the collective atomic operators di and d

†
i

can be regarded as the bosonic operators. Then the effective
Hamiltonian He approximates to

He =
√

N1[λ1ce
iδet + µ1c

†
+e−i(δg−

√
2ν)t ]d†

1 + H.c.

+N1(αg1c
†c + βg1c

†
+c+ + ηg1c

†
−c− + ξg1)

+{
√

N2[−λ2ce
iδe2t + µ2c

†
+e−i(δg−

√
2ν)t ]d2 + H.c.}

+N2(αe2c
†c + βe2c

†
+c+ + ηe2c

†
−c− + ξe2). (4)

The Stark shifts (N1αg1 + N2αe2)c†c and (N1βg1 +
N2βe2)c†+c+ can be compensated through suitable choice of the
detunings δe and δg . To see this clearly, we perform the further
transformation eiHe,0t with He,0 = δec

†c + (δg − √
2ν)c†+c+,

and obtain the new engineered Hamiltonian

He,i = eiHe,0tHee
−iHe,0t − He,0

= (N1αg1 + N2αe2 − δe)c†c + [N1βg1 + N2βe2

− (δg −
√

2ν)]c†+c+ + (N1ηg1 + N2ηe2)c†−c−

+
[
c
√

N1λ1

(
d
†
1 −

√
N2λ2√
N1λ1

d2

)
+ H.c.

]

+
[
c+

√
N2µ2

(
d
†
2 +

√
N1µ1√
N2µ2

d1

)
+ H.c.

]
, (5)

where we have discarded the constant energy terms.
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Choose the Rabi frequencies, phases, and detunings of the
classical fields appropriately so that the following conditions
are satisfied:

|
√

N2λ2/
√

N1λ1| = |
√

N1µ1/
√

N2µ2| = tanh(r),√
N1λ1 =

√
N2µ2 = ε,

δe = N1αg1 + N2αe2, (6)

δg = N1βg1 + N2βe2 +
√

2ν,

φe1 = φg1 = 0, φg2 = θ, φe2 = π + θ.

Then we have

He,i = (N1ηg1 + N2ηe2)c†−c− + ε{c[d†
1 + tanh(r)e−iθ d2]

+ c+[d†
2 + tanh(r)e−iθ d1] + H.c.}. (7)

Performing the unitary transformation H
′
e,i = S+(ξ )He,iS(ξ ),

with S(ξ ) being the two-mode squeezing operator S(ξ ) =
eξ∗d1d2−ξd

†
1d

†
2 and ξ = reiθ , we obtain the linearly coupling

Hamiltonian

H
′
e,i = (N1ηg1 + N2ηe2)c+

−c−+ 1

cosh(r)
ε(cd†

1 + c+d
†
2 + H.c.)

(8)

After an interaction time t , this Hamiltonian leads to the
transformations

d1 → cos(�t)d1 + i sin(�t)c,

c → cos(�t)c + i sin(�t)d1,
(9)

d2 → cos(�t)d2 + i sin(�t)c+,

c+ → cos(�t)c+ + i sin(�t)d2,

where � = ε/ cosh(r). Suppose that the field modes are
initially in the vacuum state (at the optical frequencies, the
thermal photons are negligible). With the choice t = π/2�,
the quantum states of the transformed atomic modes d1 and d2

are transferred to field modes c and c+, respectively; that is,
the two transformed atomic modes are driven to the vacuum
state. Reversing the unitary transformation S+(ξ ), we obtain
the two-mode squeezed state S(ξ )|0, 0〉 for the two collective
atomic modes.

We now briefly discuss the experimental feasibility of the
scheme. For the case that the two cavities are coupled via a
third cavity, parameters ge,i = gg,i = g = 2.5 × 109 s−1, ν =
4 × 107 s−1, � = 1.6 × 107 s−1, and κ = 0.4 × 105 s−1 are
experimentally available [14,15], where � and κ are the atomic
spontaneous emission rate and cavity decay rate, respectively.
Set �g = 1.0 × 1012 s−1, �e = �g + �

′ = 1.3 × 1012 s−1,
�e1 = 0.1g, �e2 = 0.076g, �g1 = 0.14g, and �g2 = 0.184g.
Then the probability for the Raman transition |e〉 ←→ |g〉 in-
duced by the transformed field mode c− and the classical fields
is on the order of (g�e)2/(�gν)2 ∼ 3.91 × 10−6 and thus the
effective Hamiltonian He of Eq. (2) is a good approximation.
The coupling strength � is about 1.77 × 107 s−1 and the
two-mode squeezed state with r = 1 can be obtained after an

interaction time t = π/2� � 0.89 × 10−7 s. The decoherence
rate of the atomic sample due to atomic spontaneous emission,
which is given by the effective single-atom spontaneous emis-
sion rate [16], is about �e = ��2

e1/�
2
e + ��2

e2/�
2
e � 3.94

s−1. This leads to an infidelity �et � 3.5 × 10−7. The infidelity
induced by the field decay is on the order of κt � 3.56 × 10−3.
According to the Hamiltonian (8), the two-mode squeezed
state can also be produced in the steady state. In this case the
field decay plays a positive role in the prepration of entangled
states. As � > κ , the time needed to reach the steady state
is about 2/κ � 5 × 10−5 s [9]. Due to the uncertainty in the
atomic numbers and the fluctuations in the Rabi frequencies
the conditions of Eq. (6) cannot be strictly satisfied. In this case
the obtained state is not a pure entangled state. However, the
entanglement is only slightly affected by moderate deviations
of these conditions. For example, even if

√
N1λ1/

√
N2µ2 is

deviated from unity by 10%, the reduction in the variance of
the quadrature 1

2
√

2
(d1 + d

†
1+ d2 + d

†
2) is only degraded by

about 1–2 dB [9].
It should be noted that when the scheme of Ref. [9] is

applied to preparation of entanglement between two atomic
ensembles trapped in separated cavities, the two collective
atomic modes are coupled to different field modes. It is
required that the coupling strength � between each atomic
mode and the corresponding field modes be much smaller
than the cavity decay rate κ so that the field modes can
be eliminated from the dynamics. In this case, the time
needed to obtain the steady state is about κ/�2, which
is extremely long. In this case, the entanglement may be
seriously destroyed by dephasing, one of the main decoherence
resources in the atomic system. In distinct contrast, in the
present scheme the collective atomic modes are coupled to
common effective field modes so that it is unnecessary to
eliminate the field modes from the dynamics to obtain the
entanglement between two remote atomic ensembles and
the needed time is greatly shortened for the same value
of �.

In conclusion, we have proposed a scheme for the produc-
tion of two-mode squeezed states for two atomic ensembles
trapped in separated cavities connected by an optical fiber or
a third cavity. The scheme is based on selective couplings
between the atomic ensembles and common field modes.
With suitable choice of the parameters of the classical
fields and interaction time the quanta of the transformed
atomic modes are transferred to the field modes, driving the
original atomic modes to the desired two-mode squeezed
state. Due to the collective enhancement of the atom-field
coupling, the required interaction time decreases as the
atomic numbers increase, which is important in view of
decoherence. The scheme may provides the basic blocks for
quantum communication and nonlocality test with continuous
variables.
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