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Optical precursors with self-induced transparency
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Optical Sommerfeld-Brillouin precursors significantly ahead of a main field of comparable amplitude have
been recently observed in an opaque medium with an electromagnetically induced transparency window [Wei
et al., Phys. Rev. Lett. 103, 093602 (2009)]. We theoretically analyze in this article the somewhat similar results
obtained when the transparency is induced by the propagating field itself and we establish an approximate analytic
expression of the time delay of the main-field arrival, which fits fairly well the result obtained by numerically
solving the Maxwell-Bloch equations.
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More than one century ago, Sommerfeld examined the
apparent inconsistency between the existence of superluminal
group velocities and the theory of relativity. Considering an
incident field switched on at time t = 0 (step pulse), he showed
that, no matter the value of the group velocity, no field can be
transmitted by a linear dispersive medium before the instant
t = L/c, where L is the medium thickness and c the velocity of
light in vacuum [1]. Subsequently, he and Brillouin studied the
fast oscillatory transients appearing at t � L/c in the particular
case of a single-resonance Lorentz medium [2,3]. They
named them “forerunners” insofar as, in proper conditions,
they can distinctly precede the establishment of the steady-
state field (the main field). Renamed “optical precursors,”
forerunners have entered classical textbooks [4,5] and continue
to raise considerable interest. The theoretical results of
Sommerfeld and Brillouin have been improved, even rectified
(in particular, the amplitude of the precursors was strongly
underestimated in their work), and different models of linear
dispersive media have been considered. See [6] for a recent
review.

Despite the abundant literature on precursors, there are
very few articles reporting direct observation of precursors
distinguishable from the main field. The difficulty of such an
observation has been soundly discussed by Aaviksoo et al. [7],
who performed in 1991 an experiment involving single-sided
exponential pulses (instead of step pulses) and exploiting the
dispersion originating from a narrow exciton line in AsGa [8].
For proper detuning of the optical carrier frequency ωc from
the resonance frequency ω0, optical precursors appear as a
small spike superimposed on the main pulse (see also [9,10]).
The observation of precursors significantly ahead of a main
field of comparable amplitude obviously requires the use of
long-enough square pulses and a medium fairly transparent at
the optical carrier frequency, the corresponding group delay
being long compared to the duration of the precursors. As
discussed in [11,12], the latter conditions are met in an opaque
medium with a narrow transparency window (slow-light
medium). Such an experiment has been recently conducted
by Wei et al. [13] in an opaque cloud of cold atoms with an
electromagnetically induced transparency (EIT) window. Note
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that, in this experiment (as in all the studies of precursors), the
propagating field interacts linearly with the medium.

For comparison, we will examine here the nonlinear
situation where the medium transparency is induced by the
propagating field itself [14,15]. Figure 1 shows the result of an
experiment performed in such conditions [16]. The medium
is HC15N gas at low pressure contained in a 182-m-long
oversized waveguide and the incident wave is on resonance
with the molecular rotational line J = 0, M = 0 → J =
1, M = 0 (wavelength λc ≈ 3.5 mm). The gas behaves as a
two-level medium [17] characterized by T1 (T2), the relaxation
time for the population difference (the polarization); T ∗

2 , the
Doppler time; and α, the resonant absorption coefficient at
low intensity (extrapolated from the Lorentzian wings of the
line). See [18] for details. The incident wave is characterized
by I0, its intensity normalized to the saturation intensity; and
τr , its rise time. The observed step responses clearly have
some similarities with those obtained in the EIT experiment
[13], with a short transient preceding the establishment of
a steady-state regime (main field). The quasi-Rabi oscilla-
tions [15] accompanying the latter are obviously absent in
the EIT experiments but oscillations having a linear origin
(postcursors) can also be observed in this case [12].

To analyze the previous results, we provisionally neglect
the Doppler broadening and assimilate the guided wave to
a plane wave propagating in the z direction (0 < z < L),
with an electric field polarized in the x direction. As long
as τr , T1, T2 � 1/ωc and α � ωc/c, the slowly varying
envelope approximation (SVEA) [17] holds [19] and we write
the Ex component of the electric field as

Ex(z, t) = Re [eiωct Ẽ(z, t)], (1)

where, as in all the following, t is a local time (real time minus
z/c), and Ẽ(z, t) is the slowly varying field envelope. Denoting
µ the dipole matrix element for the transition (chosen real),
R(z, t) = µẼ(z, t)/h̄ the Rabi frequency, n(z, t) the popula-
tion difference per volume unit (n0 its value at equilibrium),
and P̃ (z, t) the envelope of the electric polarization induced
in the medium, it is convenient to introduce the dimensionless

quantities D = n/n0, P = iP̃
n0µ

√
T1
T2

and E = µẼ
√

T1T2/h̄ =
R

√
T1T2, all real in the resonant case. I = E2 is the intensity

normalized to the saturation intensity. The Maxwell-Bloch
(MB) equations governing the system evolution take then the
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FIG. 1. Observed step response of a resonant absorbing medium.
Parameters: αL ≈ 200, T1 ≈ T2 ≈ 10 µs (T2/αL ≈ 50 ns), T ∗

2 ≈
1.3 µs, ωc = 5.4 × 1011s−1 (ω−1

c ≈ 1.8 ps), τr = 12 ns; I0 ≈ (a)
2100, (b) 960, (c) 620, and (d) 350. In each case, the intensity
is normalized to that of the step transmitted in the absence of gas
(dashed line).

simple form

∂E

∂z
= −α

2
P (2)

T2
∂P

∂t
= DE − P (3)

T1
∂D

∂t
= −PE + (1 − D). (4)

We assume that the rise time τr of the incident intensity,
while long compared to 1/ωc (as previously mentioned), is
short with respect to all the other characteristic times of the
system (1/R, T1, T2, and T2/αL). The response E(L, t) of the
medium (with a time resolution equal to τr ) is then obtained
by solving the MB equations with P (z, 0) = 0, D(z, 0) = 1,
and E(0, t) = E0�(t) = √

I0�(t), where �(t) is the unit step
function. This problem has been examined by Crisp [15] when
the relaxation effects are negligible, a condition obviously not
met in the experiments.

The long-term behavior of the step response (t � T1, T2)
is obtained by solving the MB equations in steady state.
Combining Eqs. (3) and (4), we find P = E/(1 + E2) and,
putting this result in Eq. (2), we easily retrieve the transmission
equation [20–22]

I (∞) + ln I (∞) = I0 + ln I0 − αL, (5)

where I (t) is a short-hand notation of the transmitted intensity
I (L, t). The medium being optically thick in the linear regime
(αL � 1), the absorption is fully saturated [I (∞)/I0 ≈ 1]

only when the incident (normalized) intensity is extremely
large (I0 � αL). In fact, the transmitted field (main field)
will be significant (partial transparency) as soon as I0 − αL =
O(αL). The transmission equation takes then the approximate
form I (∞)/I0 ≈ 1 − αL/I0 and a transmission I (∞)/I0 >

1/3 is obtained for I0 > 3αL/2.
Consider now the short-term behavior of the step response.

By combining the integral form of Eqs. (3) and (4) and
taking into account that D(z, t) � 1, one can establish the
inequality [23]

1 − D(z, t) <

∣∣∣∣∫ t

0
R(z, t ′)dt ′

∣∣∣∣2

< R2
0 t

2, (6)

where R0 is the Rabi frequency associated with the incident
step (R2

0 = I0
T1T2

). When R2
0 t

2 � 1, D(z, t) ≈ 1 and the MB
equations are reduced to the couple of linear equations
∂E/∂z = −αP/2 and T2∂P/∂t = E − P . So, at least in this
time domain and though I0 � 1, the medium behaves as a
linear system (small pulse-area approximation [23]). Its
response E(L, t) is easily retrieved from the previous couple
of equations and can be written as [24,25]

E(L, t) = E0�(t)

[
1 − αL

∫ t/T2

0

J1(
√

2αLu)√
2αLu

e−udu

]
. (7)

When αL � 1, the integral can be transformed to obtain

E(L, t) ≈ E0�(t)e−t/T2 J0(
√

2αLt/T2). (8)

For x > 1, J0(x) ≈
√

2
πx

cos(x − π
4 ) and E(L, t > T2

2αL
) ≈

E+(t) + E−(t), where

E±(t) = E0√
2π

e−t/T2
exp[±i(

√
2αLt/T2 − π/4)]

(2αLt/T2)1/4
. (9)

So the optical field is made of two components of equal
amplitude and instantaneous frequency ωc ±

√
αL

2tT2
, which

are nothing other than the Sommerfeld (E+) and Brillouin
(E−) precursors as determined by the saddle-point method of
integration [12,26,27]. The linear character of the short-term
response (and thus its analysis in terms of precursors) is well
supported by the experiments. As shown Fig. 1, the shape
of the corresponding transient is roughly independent of the
incident intensity. By numerically solving the MB equations,
we find that the condition R2

0 t
2 � 1 is much too severe and that

the linear approximation satisfactorily holds up to t = 2π/R0,
the Rabi period of the incident field. It even holds later in the
experiments because the transversal inhomogeneity of the field
partially washes out the (nonlinear) quasi-Rabi oscillations
while it does not affect the linear response (the precursors).

In the EIT experiments, the probe field interacts linearly
with the medium at every time and the arrival of the main
field is determined by the (slow) group velocity [12]. In
the present case, this arrival is fixed by fully nonlinear
phenomena, the study of which requires the resolution of
the complete MB equations. We first examine the solution
obtained in the rate equations approximation (REA) [17].
The equations to solve are then reduced to ∂I/∂z = −αID

and T1∂D/∂t = −D(1 + I ) + 1 [20,22], with D(z, 0) = 1
and I (0, t) = I0�(t). Eliminating D and integrating in z, we
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FIG. 2. Step response obtained in the rate equations approxima-
tion (REA) as a function of the normalized time t/T1. Optical thick-
ness αL = 200. Each step response is labeled by the corresponding
incident intensity I0. The step response obtained for I0 → ∞ is given
for reference (dashed line).

get [22]

T1d(ln I )/dt = ln I0 + I0 − αL − ln I − I, (10)

with I (0) = I0 exp(−αL). The transmitted intensity I (t) is
finally given by the implicit equation

t

T1
=

∫ I (t)

I0 exp(−αL)

dI ′

I ′(ln I0 + I0 − αL − ln I ′ − I ′)
. (11)

The transmission T (t) = I (t)/I0 monotonously increases
from exp(−αL) to I (∞)/I0, where I (∞) is given by Eq. (5). In
the conditions considered here [αL � 1, I0 − αL = O(αL)],
T (0) ≈ 0, T (∞) ≈ 1 − αL/I0, and the transition between
these two values is very steep (Fig. 2). The time delay
of the arrival of the main intensity is conveniently defined as
the time τd such that I (τd ) = I (∞)/2. It is given by Eq. (11) by
taking I (∞)/2 as upper limit of integration. When I0 � αL

(full saturation limit), Eq. (11) can be explicitly integrated to
give T (t) ≈ [1 + exp(αL − I0t/T1)]−1 in agreement with the
result given in [28]. The 10%–90% rise time �t of the intensity
and the time delay τd then read as �t ≈ 4 ln 3 (T1/I0) and
τd ≈ αL(T1/I0) � T1. When the saturation is only partial, the
time delay τd as a function of 1/I0 increases much faster than
αLT1/I0 and values of the order of T1 can be attained while
keeping a significant transmission (Fig. 2).

The REA does not take into account the coherent effects. It
eliminates in particular the quasi-Rabi oscillations accompa-
nying the main field. One may, however, expect that the signals
obtained in this way are a satisfactory approximation of the
exact signals, the oscillatory parts of which would have been
filtered out. To check this idea, we have compared, αL and
I0 being fixed, the step response obtained by using the REA
(independent of T2) to those obtained by numerically solving
the MB equations for two different values of T2/T1 (Fig. 3).

The three step responses are obviously different but the
time delays τd (as defined earlier in this article) are very close.
Similar simulations made for different values of the parameters
show that this result is not accidental. It appears that Eq. (11)
provides the exact time delay with a precision better than 10%
in all the cases of physical interest, that is, when the precursors
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FIG. 3. Comparison of the step response obtained by the REA
(dashed line) to those obtained by numerically solving the Maxwell-
Bloch (MB) equations with T2/T1 = 1 (solid line) and with T2/T1 =
1/2 (dotted line). Other parameters: αL = 200 and I0 = 400, leading
to T (∞) ≈ 1/2. Note that the pseudoperiod of the oscillations
superimposed to the steady state in the MB solutions are nearly equal
to the corresponding Rabi period 2π/R∞ = 2π

√
T1T2/I (∞), namely

0.44T1 (0.31T1) for T2/T1 = 1 (T2/T1 = 1/2).

are well developed before the arrival of the main field and the
latter has a significant amplitude.

We will now examine the modifications brought to the
step response by some effects neglected in the previ-
ous theoretical analysis. The most important one results
from the transverse inhomogeneity of the guided wave.
Figure 4 shows a typical step response obtained by using a
MB numerical code extended to include a transverse variation
of the field [29]. As expected, the linear part of the response
(precursors) is not changed (it is even slightly prolonged)
but the quasi-Rabi oscillations (strongly depending on the
field amplitude) are dramatically affected. Their amplitude
is considerably reduced and their damping is accelerated, in
agreement with the experimental result (Fig. 1). However, we
remark that the time delay τd is not significantly larger than that
obtained in the plane-wave and rate-equations approximations.
Similar calculations including the Doppler broadening instead
of the field inhomogeneity in the plane-wave MB numerical
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FIG. 4. Numerical solution of the MB equations taking into
account the transverse distribution of the field (solid line) for
αL = 200, I0 = 400, and T2 = T1. The REA (dashed line) and MB
(dotted line) solutions obtained with the plane-wave model are given
for reference.
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code show that, even when T ∗
2 = 0.13T2 (parameters of Fig. 1),

the Doppler effect negligibly affects the precursors and slightly
reduces the time delay τd . This can be explained by observing
that the right time scale for the precursors and the nonlinear
response is not T2 but, respectively, T2/αL � T ∗

2 and 1/R0 <

T ∗
2 . Finally, the finite rise time of the incident step essentially

affects the most rapidly varying part of the step response,
namely the transient associated with the precursors and first the
intensity I1 of its first peak. When αL � 1, I1 only depends
on r = αLτr/T2 and attains the intensity I0 of the incident
wave when r � 1. This condition is approximately met in
the experiment reported in [16], where I1 ≈ 0.9I0 (Fig. 1).
Similar results could be obtained at optical wavelength by
propagating a Gaussian beam in an ensemble of laser-cooled
two-level atoms. We have then T ∗

2 � T2 and the Doppler
effect negligibly affects the precursors and the quasi-Rabi

oscillations. In other respects, T2 (typically 50 ns) is about
200 times shorter than in the microwave experiment. For a good
observation of the precursors, the rise time of the incident step
should also be 200 times shorter, namely in the 50-ps range
(attained with electro-optic modulators).

To summarize, we have shown that the experiments
involving self-induced transparency are a good alternative to
the EIT experiments in order to observe optical precursors well
ahead of the main field, both having intensities comparable to
that of the step-modulated incident wave. By using a plane-
wave model and the REA, we have established an analytical
expression for the time delay of the main-field arrival, which
generalizes that previously obtained in the infinite saturation
limit, and we have shown that this expression provides a good
estimate of the real time delay as long as precursors and main
field are well separated and of significant amplitude.
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