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Pauli potential in terms of kinetic energy density and electron density in the leading Coulombic
term of the nonrelativistic 1/Z expansion of spherical atomic ions
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The Pauli potential VP in density functional theory is known to be the difference between the functional
derivative of the single-particle kinetic energy Ts[n] with respect to the electron density n and its von Weizsäcker
counterpart. For the leading Coulombic term in the 1/Z expansion for spherical atomic ions, VP [n] is written in
terms of the kinetic energy density plus n(r) and its low-order derivatives. For comparison, the example of an
arbitrary number of closed shells with purely harmonic confinement is also treated.
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In a recent article in this journal [1] the differential virial
theorem has been written in single-particle density functional
theory (DFT) in terms of the first derivative of the Pauli
potential VP for spherical atomic densities n(r). This allows
the so-called force-balance equation to be written in the form
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where tW (r) is the von Weizsäcker kinetic energy density:
h̄2
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Here, to make further analytical progress in understanding

the Pauli potential, we shall obtain V ′
P (r) from Eq. (1) for the

leading Coulombic term in the important 1/Z expansion [2]
for spherical atomic ions. In other words, we are considering
a bare Coulomb field approximation, where the generalized
form of Kato’s theorem is valid. In this Coulomb problem,
with V (r) in Eq. (1) becoming V (r) = −Ze2/r , one of us [3]
has derived the spatial generalization of Kato’s theorem [4] as
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where n0(r) is the s-wave (l = 0) component of the total
density n(r) for an arbitrary number of closed shells. Inserting
Eq. (2) in Eq. (1) for the Coulomb potential, we readily obtain
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If we denote the kinetic energy density of this problem by
tG(r) where G denotes the wave function form (∇ψ)2, we next
employ the result of Amovilli and March [5], readily obtaining
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Using Eq. (4) in Eq. (3) to remove the term −n(r)Ze2

r2 , it follows
that
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While it is convenient, especially for a large number of closed
shells, to work with the s-state density n0(r), in fact use again
of Eq. (2) gives back the more compact DFT-like formula that
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Since it is known from the theorems of DFT [6] that tG is
a functional of the density n(r), it is to be emphasized that
Eq. (6) gives, at least in principle, V ′

P (r) as a functional of the
electron density n. This is, of course, a central objective of
DFT for the Pauli potential.

Heilmann and Lieb [7] have shown what to us is the
remarkable fact that if we sum specifically the squares of the
hydrogenic wave functions over the entire bound-state level
spectrum we obtain a density, say, n∞, which is everywhere
finite. Of course, it is so long range that it is naturally
not normalizable, the density n∞ as r → ∞ giving the
semiclassical Thomas-Fermi result

n∞ = κr−3/2 r → ∞, (7)

where κ = 21/2(3π2)−1 [8]. [Also n∞(0) = 1
π

∑∞
n=1 n−3 ≈

0.383.] Inserting this into Eq. (4) we find in this asymptotic
limit
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Combining Eqs. (1) and (7) we arrive at the result
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or
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Having demonstrated this DFT result for the leading term
in the 1/Z expansion for spherical atomic ions, we shall
explore below a corresponding form to Eq. (6) for closed
shells generated by three-dimensional harmonic confinement,
which is also analytically tractable. It is noteworthy that
magnetically trapped dilute ultracold fermion vapors are now
studied experimentally starting with the pioneering work of
DeMarco and Jin [9]. This allows, in fact, harmonically
confined fermions to be studied as a function of dimensionality
d � 3. The theoretical work of Howard et al. [10] has been
motivated by the above experimental progress. In Ref. [10] and
in d dimensions, the functional derivative of the single-particle
kinetic energy Ts[n] of DFT is obtained in their Eq. (19) as
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The Pauli potential VP can then be obtained, as mentioned
already in the Abstract, as
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Since TW = ∫
tW (r)dr, we know the last term in Eq. (12)

explicitly. Also, from Eq. (10) of [10], but now specialized to
d = 3,
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Returning to Eq. (1) above, we can use this 3D result (13) for
harmonic confinement to remove the term n∂V
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The resemblance of Eq. (14) to Eq. (6) is remarkable though
they are not identical.

In conclusion, it is stated that for the leading Coulombic
term in the 1/Z expansion for spherical atomic ions, the Pauli
potential is written in terms of the kinetic energy density,
the electron density, and its low-order derivatives. It is also
demonstrated that the equation derived for the Pauli potential
of an arbitrary number of closed shells with purely harmonic
confinement has a very similar form.
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