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Approximations for the interparticle interaction energy in an exactly solvable
two-electron model atom
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The capability of different ansatz kernels, denoted as K(r, r′), in the calculation of the electron-electron
interaction energy is investigated here for an exactly solvable two-electron model atom proposed by Moshinsky.
The model atom is in the spin-compensated, paramagnetic ground state. The exact expression for the interaction
energy in this state, derived by the diagonal of the second-order density matrix, is used as a rigorous background
for comparison. It is found that the form of KM (r, r′) = 2ρ(r)ρ(r′) − γ p(r, r′)γ q (r′, r), expressed via the ρ(r)
density distributions and operator powers of the one-body density matrix γ (r, r′), results in the exact value for
the interparticle interaction energy of the two-electron model atom if and only if p = q = 1/2. Approximate
forms with p = q �= 1/2 and with p �= q at (p + q) = 1 give deviations from the exact expression.
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I. INTRODUCTION

In density-matrix-functional theory (DMFT), the one-
electron reduced density matrix (the 1-matrix) plays the role
[1] of the main variable. The external potential energy can
easily be expressed in terms of the one-particle density, and
going from density-functional to density-matrix-functional
theory eliminates the problem of the precise determination
of the kinetic energy. The electron-electron interaction energy
is the only contribution to the total energy without a known
explicit dependence on the 1-matrix. Owing to this difficulty, it
has been the tendency recently [2] to use ansatz kernels K(r, r′)
instead of the diagonal of the second-order density matrix, i.e.,
to replace the so-called two-particle density n2(r, r′) by kernels
constructed from the 1-matrix and its diagonal, the one-particle
density.

Considering the fact that the complexity [3] of scientific
progress consists of a mixture of well-designed experiments,
ab initio microscopic calculations, and simple models, the
present study is based on an exactly solvable two-electron
model [4,5] introduced earlier by Moshinsky. The study is
performed in a comparative manner in order to get information
that would be oriented to practical applications of DMFT
in other situations. Thus, we employ simple ansatz kernels
to calculate approximate interparticle interaction energies of
the confined two-electron system. This energy is exactly
determined by the given interparticle force in coordinate space
and the diagonal of the second-order density matrix of the
model.

The Hamiltonian of this confined two-electron system is
taken as

Ĥ = − h̄2
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where � is a convenient coupling parameter. In the noninter-
acting case, � = 0. From now on we shall use Hartree atomic
units, e2 = h̄ = m = 1. The exact (ex) solution [4] for the
spatial wave function of the singlet ground state of the model

atom is given by
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in space dimension D. The �1 = (ω− + ω+)/2 and �2 =
(ω− − ω+) frequencies are expressed by ω+ = ω0 and ω− =
ω0

√
1 + 2�. The ground-state energy is Eex

g.s. = (D/2)ω0(1 +√
1 + 2�).
Section II is devoted to the theory and the obtained new

results in a self-contained representation. The paper ends in
Sec. III with our main conclusion.

II. THEORY AND RESULTS

We have shown [6] recently that the kernel function of the
qth power of the density operator has the form

γ q(r1, r2) =
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in terms of the informative λ(�) = √
ω+ω−/(ω+ +

ω−) = 2(1 + 2�)1/4/(1 + √
1 + 2�). Clearly, λ ∈ [0, 1].

Here, (2a − b) = 2ω+ω−/(ω+ + ω−) = 2ω0
√

1 + 2�/(1 +√
1 + 2�). Due to the special character of the λ(�) function,

to any −1/2 < � < 0 repulsive coupling there exists a
corresponding attractive one �′ > 0 for which λ(�) = λ(�′).

In Eq. (3), the aq and bq pairs are [6] determined as
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where (2a + b) = [(ω+ + ω−)/2] = (ω0/2)(1 + √
1 + 2�)

in terms of the physical variables. The diagonal, r1 = r2 ≡ x,
of the standard one-particle density matrix (q = 1) gives the
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density distribution

ρ(x) =
(

2a − b

π

)D/2

e−(2a−b)x2
. (6)

Notice that this density distribution—similar to the exact
eigenfunction, the n2(r1, r2) ≡ ψ2

ex(r1, r2) two-particle den-
sity [1,7], and the ground-state energy—shows a clear differ-
ence between the attractive (� > 0) and repulsive (−0.5 <

� < 0) cases. From our previous detailed investigation [6]
of different quantum entropies, we concluded that the range
of (1/2) � q < 1 seems to be the proper one to practical
applications of density matrices γ q . The present work on
interaction energies rests on this conclusion.

As we stated in the Introduction, the basic goal is to
express the total energy of an interacting system in terms
of one-particle density matrices. Considering the proper
normalization of the inputs, this energy is described exactly
by the equation
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where the kinetic energy density, t(r), in the first term is given
[8] by the informative t(r) = (1/2)[∇r ·∇r′γ (r, r′)]r′=r =
[|∇ρ|2/(8ρ)] + b(D/2)ρ expression. We easily derive
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in the same order of terms as in Eq. (7) for the ground-state en-
ergy [6]. This equation decomposes Eex

g.s.(�) = (D/2)ω0(1 +√
1 + 2�), obtained from the Schrödinger Hamiltonian.
We proceed by calculating the following double integral:

Ip,q(�) ≡ 1
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Applying the convenient notations α ≡ (ap + aq) and η ≡
(bp + bq), together with
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we write the result of long but straightforward integrations in
Eq. (9) as

Ip,q(�) = D
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Now we introduce the obvious notation of Eex
int(�) =

(D/2)ω0�/
√

1 + 2� for the interparticle interaction energy
in Eq. (8) and a new [9] variable ξ ≡ (1 − λ)/(1 + λ); ξ ∈
[0, 1]. With these, we can rewrite the result in Eq. (11) into a
more easily interpretable form
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Next we evaluate the more common, density-related double
integral

J (�) ≡ 1
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where ρ(x) is given by Eq. (6). After integrations, we get
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in terms of the notation and variable used already in Eq. (12)
for Ip,q(�). A simple inspection, based on Eqs. (12) and (14),
shows that we have

Eex
int(�) = 2J (�) − Ip,q(�), (15)

for arbitrary values of the physically allowed � ∈ [−0.5,∞),
if and only if, p = q = 1/2.

According to the above details, the final form for the kernel
KM (r, r′) to be used in DMFT instead of the two-particle
density n2(r, r′) is

KM (r, r′) = 2ρ(r)ρ(r′) − γ 1/2(r, r′)γ 1/2(r′, r). (16)

This form, which yields the exact result in the investigated
Moshinsky’s case, was proposed earlier by Müller as an
optimal one for a spin-compensated system [10]. Notice at this
important point that the p = q = 1/2 prescription provides a
lower bound in the Coulomb case to the true Schrödinger
energy of confined two electrons [2]. Now, we can see that
in the Moshinsky’s case this bound coincides with the exact
value. This is our main result.

After establishing a rigorous result, we investigate the
capability of few ansatz kernels. As an illustrative comparison,
we plot in Fig. 1 the function
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2
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FIG. 1. The Fp,q (ξ ) function, defined by Eq. (17), as a function
of

√
ξ at different parametrizations. Dashed curve refers to p = q =

0.65; dotted curve to p = 0.65 and q = 0.35. The solid line at unity
corresponds to p = q = 1/2, i.e., the exact representation.
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for a common pair of p = q = 0.65 and for a different pair,
i.e., p = 0.65 and q = 0.35. The former was considered [11]
to be a well-designed one in a recent calculation of gaps in
condensed matter, where the interparticle force is Coulombic.
The latter version (p + q = 1) still satisfies [2] a global
integral condition for the exchange-correlation hole which is
violated in the former version (symmetric: p = q).

There is, with p = q = 0.65, an interesting oscillation
around unity. The crossing through unity appears at about
λ = 1/2 in this particular case. Interestingly, one could find
crossing points to any p = q > 0 pairs in the 0 < ξ < 1 range,
i.e., there are interparticle coupling parameters at which the
so-calculated interaction energies become equal to the exact
ones. The dotted curve signals that the fulfillment of an integral
condition alone is not enough to obtain an exact result for the
interparticle interaction energy in the 0 < ξ < 1 range.

III. CONCLUSION

We have shown in this Brief Report that a kernel
KM (r, r′) = 2ρ(r)ρ(r′) − γ p(r, r′)γ q(r′, r), expressed via the
ρ(r) density distributions and operator powers of the one-
particle density matrix γ (r, r′), results in the exact value for
the interparticle interaction energy of a two-electron model
atom introduced by Moshinsky if and only if p = q = 1/2.
Forms with p �= q at (p + q) = 1 and with 0.5 < p = q < 1
give deviations from the exact expression.
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