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Geometry-induced potential on a two-dimensional section of a wormhole: Catenoid
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We show that a two-dimensional wormhole geometry is equivalent to a catenoid, a minimal surface. We then
obtain the curvature-induced geometric potential and show that the ground state with zero energy corresponds
to a reflectionless potential. By introducing an appropriate coordinate system we also obtain bound states for
different angular momentum channels. Our findings can be realized in suitably bent bilayer graphene sheets
with a neck, in a honeycomb lattice with an array of dislocations, or in nanoscale waveguides in the shape of a
catenoid.
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I. INTRODUCTION

Quantum mechanics in flat two-dimensional space gives
unusual results such as the quantum anticentrifugal force for
waves with zero angular momentum [1,2]. Thus, it would
be insightful to explore quantum mechanics in curved two-
dimensional space. Of special interest are the minimal surfaces
(i.e., with zero mean curvature) which play an important role
in physics. Besides the plane, the two other examples include
the helicoid and the catenoid. An interesting question in the
context of the three-dimensional wormhole geometry [3,4]
in cosmology is whether information can propagate across
the wormhole. We study the analog of this problem in two
dimensions and first show that the two-dimensional wormhole
is a catenoid. We then obtain the curvature-induced quantum
potential [5]. The latter is an attractive geometric potential,
VG(q1, q2) = −(h̄2/8m0)(κ1 − κ2)2, where κ1, κ2 denote the
two position-dependent principal curvatures of the surface,
(q1, q2) are the surface coordinates, and m0 is the mass of the
particle on the surface.

A two-dimensional wormhole geometry can conceivably
be realized in a bilayer of honeycomb lattices with radially
arranged dislocations or in bilayer graphene [6], where the
curvature-induced suppression of local Fermi energy can
lead to the control of local electronic properties. In the next
section we demonstrate the equivalence of a two-dimensional
wormhole and a catenoid. In Sec. III we obtain the effective
curvature induced potential. In Sec. IV we introduce a suitable
coordinate system to study the bound states of the resulting
Schrödinger equation on the catenoid. We have previously
studied bound states on the other minimal surface, namely, the
helicoid [7]. Note that a genus one helicoid also exists [8].
Finally, in Sec. V we summarize our main conclusions and
comment on the anticentrifugal force.
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II. CATENOID AS A TWO-DIMENSIONAL SECTION
OF A WORMHOLE

For a catenoid x = R cosh(z/R) cos φ, y = R cosh(z/R)
sin φ, and z = z with φ ∈ [0, 2π ] (Fig. 1). Thus the local radius
ρ = R cosh(z/R) and the metric is given by the following
elements:

gρρ = ρ2

ρ2 − R2
, gφφ = ρ2. (1)

We now show that a two-dimensional wormhole geometry
is equivalent to a catenoid (Fig. 1). In cylindrical coordinates
(z, r, φ), a two-dimensional section of a wormhole is given by

z(r) = ±b0 ln

[
r

b0
+

√
r2

b2
0

− 1

]
, (2)

with l = ±
√

r2 − b2
0. For the three-dimensional wormhole the

line element is given by the following expression [4]:

ds2 = dl2 + (
b2

0 + l2)(dθ2 + sin2 θdφ2), (3)

where the coordinates belong to the following intervals, l ∈
[−∞,+∞], θ ∈ [0, π ], and φ ∈ [0, 2π ], and b0 is the shape
function of the wormhole [in general b = b(l) and for l = 0,
b = b(0) = b0 = const represents the radius of the throat of
the wormhole]. Here l is a radial coordinate measuring proper
radial distance; θ and φ are spherical polar coordinates. In
this article we consider the case of θ = π/2 which represents
an equatorial section of a three-dimensional wormhole (at
constant time). For this section we thus get the following line
element:

ds2 = dl2 + (
b2

0 + l2
)
dφ2, (4)

which is precisely equivalent to the line element of a catenoid
(since l2 = r2 − b2

0),

ds2 = r2

r2 − b2
0

dr2 + r2dφ2. (5)
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FIG. 1. (Color online) A two-dimensional section (catenoid) of a
three-dimensional wormhole geometry with its axis along z and the
throat radius R.

Note that if we consider any other section of the three-
dimensional wormhole, say for θ = θ0, the line element will
change to

ds2 = r2

r2 − b2
0

dr2 + a2r2dφ2, (6)

where a2 = sin2 θ0 and obviously a2 ∈ [0, 1]. For the catenoid
this will mean only a rescaling of the radius of the
catenoid from R to aR. The line element Eq. (6) corre-
sponds to a catenoid with x = aR cosh(z/aR) cos φ, y =
aR cosh(z/aR) sin φ, and z = z. Thus all θ sections of the
three-dimensional wormhole represent a catenoid with radius
aR. The catenoid with the biggest radius corresponds to the
equatorial section θ = π

2 and the catenoid with zero radius
corresponds to θ = π .

III. EFFECTIVE POTENTIAL

Returning to the catenoid and focusing on the (z, φ)
coordinates (instead of ρ, φ), the line element is given by

ds2 = cosh2(z/R)dz2 + R2 cosh2(z/R)dφ2, (7)

with the principal curvatures

κ1 = 1

R
sech2(z/R), κ2 = − 1

R
sech2(z/R). (8)

This implies that the mean curvature H = (κ1 + κ2)/2 = 0
(i.e., a minimal surface) and the Gaussian curvature K =
κ1κ2 = −(1/R2)sech4(z/R). If a particle is confined to move
on a curved surface (with finite thickness) and the thickness
is allowed to go to zero, then an effective potential in the
Schrödinger equation, known as the da Costa potential [5],
will appear. (For a flat surface the potential is zero). The
corresponding curvature-induced da Costa potential for a
catenoid is

V (z) = − h̄2

2m0
(H 2 − K) = − h̄2

2m0R2
sech4(z/R). (9)

Note that for a2 � 1 the geometric potential becomes very
deep and localized at the origin.

The relevant Schrödinger equation is

− h̄2

2m0R cosh2(z/R)

[
R

∂2ψ

∂z2
+ 1

R

∂2ψ

∂φ2

]

− h̄2

2m0R2
sech4(z/R)ψ = Eψ, (10)

or, simplifying,

−R
∂2ψ

∂z2
− 1

R

∂2ψ

∂φ2
− sech2(z/R)

R
ψ = 2m0R

h̄2 cosh2(z/R)Eψ.

(11)

Using the cylindrical symmetry along the z axis, we set
ψ = eimz� and we get the following equation for �:

�zz − m2

R2
� + sech2(z/R)

R2
� + 2m0E cosh2(z/R)

h̄2 � = 0.

(12)
Defining dimensionless length ζ = z/R and energy ε =

2m0ER2/h̄2 we get the following effective Schrödinger
equation:

−�ζζ + V (ζ )�(ζ ) = 0, (13)

where the geometric potential now reads

V (ζ ) = [m2 − ε cosh2(ζ )] − sech2(ζ ). (14)

This potential for m �= 0 bears some similarity to the cor-
responding geometric potential for the three-dimensional
wormhole [3]. Note that in the ground state (ε = 0, called
also a critically bound state [9]) the aforementioned potential
becomes the reflectionless Bargmann’s potential [10] and the
Schrödinger equation becomes the hypergeometric equation
with the ground-state wave function (or the Goldstone mode)
given by �(ζ ) = sech(ζ ). This result is remarkable in that the
minimal surface of the catenoid enables complete transmission
across it for a quantum particle. This does not seem to
be the case for a three-dimensional wormhole. For nonzero
and positive ε the aforementioned potential is an inverted
double-well potential (see Fig. 2).
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FIG. 2. The inverted double-well potential V (ζ ) with m = ±1
and ε = 0.1.

014102-2



BRIEF REPORTS PHYSICAL REVIEW A 81, 014102 (2010)

IV. BOUND STATES

Let us consider Eq. (13) in more detail. We see that

lim
ζ→±∞

|V | → ∞. (15)

The behavior of the potential at infinity is strange since the
physical geometry in the catenoid in these regions approaches
the usual Euclidean one. This feature can be traced to the
coordinates used since the proper length per unit in the ζ

direction diverges when ζ → ±∞. This can be remedied by
introducing another set of coordinates on the catenoid.

Quantum theory in curved spaces is generally a challenge
since the theory is not generally covariant. Classical quantum
theory is not even Lorentz invariant. This puts a severe
constraint on the coordinate system in which one wishes to
describe the physics in order to be able to extract the physical
content of the theory. This challenge was even central in the
early days of general relativity theory itself in connection
with the physical interpretation of the Schwartzschild metric,
for example, just like as in general relativity theory one is
usually safe concerning the physical interpretation as well as
the definitions of physical quantities when the manifold in
question is asymptotically Minkowski (Euclidean). In such
asymptotic regions we expect on physical grounds to re-derive
the usual flat space physical results. The asymptotic properties
thus in some sense anchor the curved region and its physics to
reality as we know it. The catenoid is an asymptotic Euclidean
object, thus making this manifold a space anchored to
“reality.”

Considering the two-dimesional Schrödinger equation in
the plane in polar coordinates we get the Bessel equation.
Clearly, the boundary condition at the origin is suspect
here. However, in our case we can as a first approximation
consider a deformation of the plane in a region around the
origin. In the deformed region the Schrödinger equation will
generally be very complicated but the solutions of it must
nevertheless be matched to the Bessel functions which survive
sufficiently far from the deformed region. This reasoning goes
ad verbum through also on the catenoid even though we
here, in addition to curvature corrections, have a topology
change when compared to the plane. Hence, we should seek
coordinates on the catenoid such that the Schrödinger equation
gives rise to the Bessel equation in the asymptotic region on
the catenoid. The coordinates should in particular result in a
metric which is reminiscent of polar coordinates at infinity.
It is possible to find such coordinates if one covers the entire
manifold with two coordinate patches. One patch covers the
region ζ > 0 and the other one ζ < 0. In the upper part we
choose

η+ = eζ − 1; ζ > 0. (16)

In the lower part we correspondingly choose

η− = −(e−ζ − 1); ζ < 0. (17)

Clearly η+ = η− at ζ = 0. The invariant line-element can then
be written as

ds2 = [(η± ± 1)2 + 1]2

4(η± ± 1)4
(dη±)2 + 1

4

[
(η± ± 1)2 + 1

η± ± 1

]2

dφ2,

(18)

In the limit η± → ±∞ the metric reduces to

ds2 = 1
4 (dη±)2 + 1

2 [(η± ± 1)2 + 1]dφ2

� 1
4 (dη±)2 + 1

2 (η±)2dφ2. (19)

Hence, the asymptotic form of this metric is very similar to the
usual polar coordinates. Clearly, these new coordinates should
be well suited to explore the physical states of a quantum
particle on the catenoid.

Let us now consider the Schrödinger equation. In terms of
the new coordinates we have in particular that

∂2
u� = (η± ± 1)∂±[(η± ± 1)∂±�], (20)

cosh u = ±1

2

[
(η± ± 1)2 + 1

η± ± 1

]
. (21)

This gives rise to identical expressions for the Schrödinger
equation in the two patches. In the upper patch the equation is
explicitly given by

∂2
+� + 1

(η+ + 1)
∂+� +

(
ε

4
− (m2 − ε/2)

(η+ + 1)2

+ 1

4

{
ε

(η+ + 1)4
+ 16

[(η+ + 1)2 + 1]2

})
� = 0. (22)

Clearly, letting η+ → ∞ we get the Bessel equation, which is
well behaved at infinity.

The stationary Schrödinger equation, assuming a well-
defined energy E eigenvalue problem, is formally given by

(−∇2 + V )� = E�. (23)

Hence, we have that

V − E = −
(

ε

4
− (m2 − ε/2)

(η+ + 1)2

+ 1

4

{
ε

(η+ + 1)4
+ 16

[(η+ + 1)2 + 1]2

} )
. (24)

In the asymptotic region we find that

lim
η+→∞

V = E − 1

4
ε > 0. (25)

We have plotted the potential for m = 0, ±1, ±2 and ε = 2 in
Fig. 3.
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FIG. 3. The potential V (η+) with m = 0, ±1, ±2 and ε = 2.
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Clearly, the constant part of the potential can be renormal-
ized to zero without any physical consequences. Hence, the
renormalized potential Vr can be taken to be

Vr − E = −
(

− (m2 − ε/2)

(η+ + 1)2

+ 1

4

{
ε

(η+ + 1)4
+ 16

[(η+ + 1)2 + 1]2

} )
. (26)

Consider V and the case when the energy is set to unity.
Then the physical quantum states fall into four different
categories. In the s channel (m = 0) the potential becomes
negative sufficiently close to the origin. When m = ±1, the
same patterns emerge but with a much faster fall off of
the potential with increasing coordinate distance from the
origin than in the s channel. When m = ±2 the potential
is everywhere positive definite. Higher angular momentum
modes will give rise to bound states at a distance from the
origin and at a distance in the direction of increasing radial
coordinate.

In general, if it is possible to redefine cosh2(ζ )�ζζ = �ηη

in Eqs. (13) and (14), then the equation for �(η) would
correspond to the double sinh-Gordon potential which is
quasi-exactly solvable [11,12], that is, for specific values of
ε and m exact solutions can be obtained.

V. CONCLUSION

We demonstrated that a two-dimensional equatorial
(θ = π

2 ) or any other section of a wormhole is equivalent to
the minimal surface of a catenoid. We then showed that the
curvature-induced da Costa quantum potential [5] allows for
a critically bound state (ε = 0). This leads to a reflectionless
transmission of a quantum particle across the catenoid (or a
two-dimensional wormhole). By introducing an appropriate
coordinate system we were able to obtain bound states for
different angular momentum channels. It is interesting to
note that the potential is attractive at the origin η± = 0 for
m = 0 and m = ±1 (anticentrifugal potential with bound
states). In contrast, in the plane the anticentrifugal potential is
present only for m = 0 but an additional δ-function potential
is needed at the origin in order to introduce the missing
length scale in the plane [1]. We note that a radial array of
dislocations in a bilayer of honeycomb lattices or a suitably
bent bilayer graphene sheet with a neck [6] may provide a
physical realization for our findings. Another experimental
means of measuring the potential [Eq. (14)] is to construct
nanoscale waveguides in a catenoid shape.
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