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All-optical delay line based on a cavity soliton laser with injection
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The motion and position of cavity solitons in a vertical-cavity surface-emitting laser with optical injection are
investigated. Spatial variations of the phase of the injected field are considered in the form of sinusoidal and
triangular modulations. We show how the velocity, distance traveled, and final position of the cavity solitons can
be controlled by varying the slope of the phase modulations and the response time of the semiconductor medium.
Numerical simulations demonstrate the feasibility of an all-optical delay line in a cavity soliton laser. Merging of
cavity solitons is observed when they collide at modulation maxima and is shown to be beneficial in the operation
of the delay line. The merging and consequent emission of pulsed and localized light is explained in terms of
violation of energy balance for soliton systems in the presence of injection and dissipation.
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I. INTRODUCTION

Cavity solitons (CS) and, more generally, spatial dissipative
solitons [1,2] are independent and controllable localized light
peaks on a low-intensity, homogeneous (or quasihomoge-
neous) background. They have been described in a variety of
models in photonics and observed, more notably, in both single
feedback mirror experiments [3] and semiconductor microres-
onators [4]. More recently, attention has moved from passive
to active systems with the specific aim of realizing a “cavity
soliton laser” (CSL). This objective has been achieved in
different configurations, from vertical-cavity surface-emitting
lasers (VCSELs) with optical injection [5,6] to VCSELs
with frequency-selective feedback [7,8] and coupled VCSEL
resonators [9].

In terms of practical applications, CS features such as their
ability to be independently written and erased were first used in
optical memories [2,10]. These features have been combined
with the motion of CS in phase gradients to build an all-optical
delay line with a high figure of merit [11]. In this, a pulsed
input signal creates (writes) a sequence of CS that is quickly
moved away from its original position via a background phase
gradient. CS are then read out at the end of the line either by
a sequence of pulses with an appropriate erasing phase or by
well-localized detectors.

All-optical delay lines based on CS have thus far been
demonstrated in passive configurations [2,11] and only limited
attention has been devoted to the readout operation of the delay
line. The aim of this article is to demonstrate the feasibility
of an all-optical delay line in an active configuration: a CS
laser with injection. Our first step is to obtain reduced models
describing VCSELs with optical injection, following a recent
method to eliminate stiffness in laser equations [12]. We then
investigate the use of phase modulations of the injected field to
move CS in the transverse space and to control their final posi-
tion at the maxima of the modulation. The readout operation is
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achieved in the modulation extrema by the merging of CS and
the release of light pulses that can be detected over a broad area,
thus replacing the use of erasing pulses. CS merging features
are favored in the CSL with injection with respect to other
systems [2] because of the absence of spatial oscillations in the
CS tails.

The article is organized as follows: In Sec. II we introduce
the dynamical Maxwell-Bloch equations that describe the
VCSEL with optical injection and discuss under which
conditions and to what extent the equations can be simplified
by taking advantage of the separation of the time scales of the
different variables. The final models are highly efficient for
numerical integration and allow for a systematic investigation
of the delay line for the chosen parameter values. Section III
details the optimization of the duration and separation of the
input pulses superimposed onto the injected signal in order
to generate sequences of CS in the delay line. Numerical
simulations are performed in both one-dimensional (1D) and
two-dimensional (2D) transverse-space configurations. Con-
trol of the CS motion, velocity, and position by the shape of the
phase modulation of the injected field is investigated in Sec. IV.
In particular, we study sinusoidal and triangular modulations
of the input phase. Section V is devoted to the investigation of
the phenomenon of CS merging that occurs when two CS move
toward the same spatial position at the peak of the phase
modulation. By extending energy balance considerations to CS
in the presence of injection and dissipation, we demonstrate
that such merging processes are accompanied by the emission
of short pulses of light that can be collected and used as the
output of the delay line. Merging strongly reduces the CS
clogging close to the readout position that may detrimentally
affect delay lines in passive systems. Merging is, in fact,
favored in CSL because CS in lasers have almost no spatial
oscillations in their tails. Conclusions and discussion of the
relevance of our results to the realization of delay lines based
on CSL are presented in Sec. VI. We predict that all-optical
delay lines with CS lasers can operate at typical speeds of
Gb/s with delays that are limited only by the transverse size
of the VCSEL sample.
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II. THE MODEL EQUATIONS

The model equations for a VCSEL with optical injection
were introduced in [5]:

∂tE = ε[EI + P − (1 + iθ )E + i∇2E]

∂tP = ξ (D)[(1 − iα)DE − P ] (1)

∂tD = σε2[J − D − Re(EP ∗) + dε∇2D],

where E and P are the cavity field and material polarization
variables, respectively, D is the carrier density, ε is the cavity
decay rate, EI is the injected field, θ is the detuning between
cavity and injection, α is the linewidth enhancement factor,
σε2 = γ is the carrier decay rate, J is the injection current,
d is the carrier diffusion constant, and Re(.) is the real part.
Moreover (see [5]),

ξ (D) = �(D)[1 − iα] + 2iδ(D), (2)

with �(D) = 0.276 + 1.016D and δ(D) = −0.169 +
0.216D. Diffraction is described by the Laplacian operator
∇2 in two transverse dimensions (2D) and by ∂2

x = (∂2/∂x2)
in one transverse dimension (1D). Time has been scaled to
the polarization decay time (typically of order 10−13 s), while
the spatial scale is the square root of the diffraction parameter
(typically of the order of 4 to 5 µm).

This model generalizes those adopted for the study of
CS in absorbing or amplifying media below threshold [4]
by including an equation for the dynamical evolution of the
effective polarization variable P . This change is essential in
order to avoid the unphysical short-wavelength instabilities
that would appear below the injection locking point, where the
homogeneous solution is unstable. Yet, the inclusion of the fast
dynamics of P introduces a large separation of the time scales
that makes the complete model (1) numerically stiff, resulting
in inefficient simulation codes. For example, the typical orders
of magnitude of the decay rates ε and γ = σε2 are 10−2 and
10−4, respectively.

We have shown previously that it is possible to drastically
reduce simulation times of VCSELs and other solid-state
lasers, without losing physical insight, by applying peturbative
methods based on the center manifold theory [12]. These
methods reduce the number of dynamical variables and
consequently eliminate a significant amount of the numerical
stiffness. The procedure is sketched in the Appendix, where
the reduced equations for a VCSEL with optical injection,
previously unreported, are obtained.

In this article, however, we consider the specific case
of small pump current, J , and sufficiently high injected
amplitude, EI , to ensure that the VCSEL operates beyond
the injection locking point, where the lower branch of the
homogenous solution, which constitutes the background for
the CS, is stable [5].

In this case the CS are stationary solutions of the complete
model that can be described accurately even by reduced
equations obtained at the lowest order in the perturbation
parameter ε:

∂ε3/2tE = EI − i(α + θ )E + i∂2
xE√

ε
+ (1 − iα)WE

(3)
∂ε3/2tW = σ [J − (1 + √

εW )(1 + |E|2)],

where the population variable W has been defined via D =
1 + √

εW . It is interesting to note that at this perturbation
order the semiconductor susceptibility is well described by the
linewidth enhancement factor α and diffusion effects can be
neglected.

The reduced model (3) is capable of accurately reproducing
the results described in [5] in the case of stable homogeneous
backgrounds, but with a reduction in CPU time by a factor
between 100 and 300, similar to that observed in [12].

In the following we describe the effect of spatial variations
of the phase of the injected field to realize and optimize an
all-optical delay line based on a CS laser. We consider the effect
of two types of phase modulations, sinusoidal and triangular
(in both 1D and 2D), as shown:

EI = |EI | exp [iµ sin(kx)] (4a)

EI = |EI | exp

{
i

2

π
µ sin−1[sin(kx)]

}
(4b)

EI = |EI | exp

{
i

2

π
µ sin−1[sin(kx) sin(ky)]

}
. (4c)

In each case, by varying the amplitude of the phase
modulation, µ, it is possible to control the gradient applied to
the CS and thus vary its transverse speed. By adjusting the wave
vector, k, it is possible to control the total distance traveled by
each CS. In principle, amplitude gradients and amplitude mod-
ulations are also possible but they are far less efficient and more
unstable than phase modifications of the optical injections.

Note that under the action of phase gradients the CS are
no longer stationary solutions of the equations and they can
undergo relatively fast changes, especially when they merge.
We have checked that the dynamics is still described accurately
by Eqs. (3) by comparing them with the higher-order equations
in ε of the Appendix.

III. WRITING LASER CAVITY SOLITONS

Writing CS in the VCSEL is the first operation of an
all-optical delay line; the pulsed input signal is transferred
to dissipative solitons that drift in the transverse direction of
the laser. Figure 1 shows the intensity, phase, and carrier
distributions of a steady-state CS in both 1D and 2D for
parameter values where the lower homogeneous steady state is
stable (see [5] for a steady-state stability curve). Note that the
peak intensity of the 2D CS is higher than that of the 1D case
because of the well-known larger self-focusing effect in two
transverse dimensions. When writing CS, various parameters
can affect the time required for a CS to fully establish. In
particular, we consider the amplitude and the duration of the
address beam. We have performed numerical simulations of
Eqs. (3) to evaluate the minimum duration of the address beam
required to establish a CS in the VCSEL with optical injection
as a function of the amplitude of the address beam. In Fig. 2 we
compare the results for the cases below threshold (amplifier
J = 0.96) and above threshold (J = 1.05) and find that there
is a clear advantage in the response of the delay line when
operating the VCSEL above threshold.

The minimum injection time for writing a CS is, however,
not necessarily the optimum one because of the switch-on
dynamics of the generated CS. In Fig. 3 we show that for
a fixed value of the amplitude of the writing beam (0.65) an
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FIG. 1. Spatial distributions of (a) the intensity, (b) phase, and (c) carrier density of a laser CS in a VCSEL with injection. Solid (dashed)
lines are for the 1D (2D) case. Parameters are J = 1.05, ε = 0.04, γ = 10−4, |EI |2 = 0.03, θ = −2.3, and α = 3.0.

increase in the address beam duration from 0.15 to 0.20 ns leads
to a considerably faster establishment of the CS, from around
5 ns to around 1 ns. However, further increases of the duration
of the writing beam do not further reduce the CS establishing
time. Figure 3 shows, for example, that for an address pulse
duration of 0.5 ns (dot-dash line) the establishment of the CS
takes around 1.8 ns. This is typical of the critical behavior
of CS switching as originally described and observed in a
liquid-crystal light valve [2,13].

Although the writing speed of CS is an important feature in
the optimization of the operation of an all-optical delay line, the
minimum repetition rate of the input signal is limited by how
quickly CS can be moved away from the writing position while
remaining independent from each other. CS are moved away
by a phase gradient that both induces their motion and provides
the delay. Note that in this section we discuss the use of phase
gradients to achieve the maximum repetition rate while in Sec.
IV we present the use of such gradients to introduce delay.

The use of a sinusoidal phase modulation of the injected
field [see Eq. (4a)] to quickly remove CS from the writing

FIG. 2. (Color online) Qualitative comparison between the min-
imum injection time required to write a CS in the VCSEL [black
(solid) line, J = 1.05] and amplifier [red (dashed) line, J = 0.96]
cases for varying amplitudes of the address beam, 1D case. Similar
results have been obtained for the 2D case. Other parameters for the
lasing case are fixed to the values given in Fig. 1. The parameters for
the amplifier are EI = 0.61, θ = −2.25, and α = 4.5.

position is not optimal since the gradient is constantly de-
creasing toward the modulation peak, causing the CS velocity
to decrease and CS to merge with each other. Simulations
with a sinusoidal phase modulation of amplitude µ = 1
show that up to 200 ns are required between CS writing
cycles. Replacing the sinusoidal phase modulation (4a) with
a triangular phase modulation (4b), however, eliminates this
problem as it provides a constant gradient and a constant
velocity as the CS proceed toward the modulation peak. This
fact, coupled with the absence of spatial oscillations in the CS
tails in our CSL, allows for much faster repetition rates of up to
1 ns between successive pulses. Figure 4 shows the maximum
data transmission rate with an all optical delay line based on
a CSL for a range of values of the modulation amplitude, µ,
and a fast carrier decay rate of γ = 10−3.

IV. MOTION OF LASER CAVITY SOLITONS

Once CS have been written in a VCSEL with optical
injection, their motion is affected by the dynamics of the
background. In fact, depending on the parameters (in par-
ticular, the pumping current), CS can either have a stable

FIG. 3. (Color online) CS peak intensity during and after writing
via an address beam of amplitude 0.65 and various durations. Dotted
line (black), duration = 0.15 ns; dash line (green), duration =
0.16 ns; solid line (red), duration = 0.20 ns; dot-dash line (blue),
duration = 0.50 ns. Parameters are those of Fig. 1.
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FIG. 4. Data transmission rate with varying amplitudes of the
triangular phase-modulation of the injected field. Here, γ = 10−3

and other parameters are those of Fig. 1.

background (similar to the case below threshold) or sit on
a rapidly oscillating unstable background [5]. Here we have
induced CS motion by a modulation of the phase of the injected
signal in the regime where the background is stable.

Spatially periodic modulations of the phase of the injected
field provide a versatile and effective method for multiple
delay lines within the same device. Periodic modulations of the
injected phase extend over a wide range of parameters where
both the system and CS remain more stable than the cases,
for example, of modulating injected amplitudes or detunings.
Parallel delay lines can be implemented by using several modu-
lations of the phase across the transverse length of the VCSEL.

By varying the amplitude of the phase modulation, µ, it is
possible to control the gradient applied to the CS and hence its
velocity, as shown in Fig. 5 in both 1D and 2D configurations.
Adjustments of the wave vector, k, control the total distance
traveled by the CS. Note that, although a sinusoidal modulation
can produce a larger peak velocity than a triangular modula-
tion, a triangular modulation is preferable since it provides
a constant gradient and therefore a constant velocity until a
CS reaches the peak. This can help in reducing unwanted
interactions of the CS before they reach the modulation
peak where the readout operation is performed. The motion
of dissipative solitons with triangular modulations has been
realized and investigated in liquid-crystal light valves [14].

Varying the carrier decay rate, γ , provides another method
for controlling the velocity of the CS [11], while keeping both
µ and k constant. The increase in velocity is basically inversely
proportional to the decay time of the carriers (see Fig. 6 for
1D simulations). If γ is too small, however, the system does
not support CS, while if it is too large CS will begin to form
randomly across the cavity width. Note that the range and
stability of the CS upon variations of γ is reduced by an order of
magnitude in our active VCSEL in comparison with that seen
below lasing threshold, where CS have a more stable back-
ground [11]. Similar results have also been obtained in 2D.

V. READOUT OPERATION: MERGING OF LASER
CAVITY SOLITONS

One of the most difficult operations in an optical memory
based on CS is that of collecting the information stored in a

FIG. 5. (Color online) CS velocity as a function of the amplitude
of the phase modulation of the injected field. The motion induced by
a sinusoidal modulation is shown by the dashed (black with squares)
line while the motion induced by a triangular modulation is shown by
the solid (red with squares) line in 1D and by the dotted (green with
circles) line in 2D. Further, the dot-dashed (blue with triangles) line
shows the velocity calculated using the full model (1) and a triangular
phase modulation. Here γ = 10−3, k = 0.036, and other parameters
are those of Fig. 1.

CS. This is generally achieved by using readout pulses with
suitable phase and position that are capable of erasing the
CS. In delay lines, the readout operation can be perfomed by
using localized detectors that collect the output intensity of a
traveling CS. We propose, in this section, an alternative readout
operation that does not require small detectors and that is based
on the self-erasing mechanism of CS merging at the peaks of
the modulations. Induced collision of diffractive autosolitons
has been described in pioneering numerical simulations of
systems with two homogeneous states for the implementation
of optical adders (not to be confused with optical snaking)
[15]. In this case the collision between a larger and a smaller
autosoliton destabilizes the domain walls that connect the two
homogeneous states leading to the survival of just one of the

FIG. 6. CS velocity as a function of the decay rate of the carriers,
γ , for a VCSEL with optical injection. Here µ = 10, k = 0.036, and
other parameters are those of Fig. 1.
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FIG. 7. Merging of two CS in a VCSEL with triangular phase modulation of the optical injection. Panels (a)–(c) display the spatial profile
of the laser intensity, while panels (A)–(C) show the phase of the output field. Here µ = 1.0, k = 0.036, and the other parameters are those of
Fig. 1. (a) and (A) correspond to t = 0 ns, (b) and (B) correspond to t = 870 ns, and (c) and (C) correspond to t = 990 ns.

colliding solitons [15]. Collisions leading to destabilization of
domain walls can also be induced by noise [16]. In the case
of CS in VCSELs with optical injection, there is no bistability
between homogeneous states and no domain walls connecting
them. The merging mechanism of CS described here is related
to the absorption of energy from the pump and its release in the
form of short pulses. To investigate the self-erasing mechanism
of CS merging, extensive simulations have been performed to
describe the interactions of CS around a single maximum of
the phase modulation. For example, Fig. 7 shows the effect of
a second CS on an initial CS already positioned at a maximum
of the phase modulation. Here we have used a triangular phase

modulation of the injected field to induce CS motion. A clear
merging process takes place at the peak of the modulation.

Simulations over a wide range of the amplitude of the
phase modulation, µ, display CS merging at the peak of
the phase modulation, as shown in Fig. 7. This occurs even
for very small values of µ, corresponding to small spatial
gradients, very low velocities of the CS, and large delays in the
delay line.

When more than two CS are introduced in the VCSEL, they
all move toward their nearest respective peak of the injected
phase modulation and, when two or more meet, they merge to
form a single CS (see Fig. 8).

FIG. 8. Merging of eight CS in a VCSEL with sinusoidal phase modulation of the optical injection. The phase of the output field is plotted
versus the transverse spatial coordinate. Here the phase modulation of the injected field corresponds to µ = 0.5 and k = 0.036 and is switched
on after a comb of eight equally spaced CS has been initiated. The other parameters are those of Fig. 1. (a) corresponds to t = 0 ns, (b)
corresponds to t ≈ 838 ns, and (c) corresponds to t ≈ 2488 ns.
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CS merging is commonplace in CSL over a wide range
of the modulation parameters. It can be used in the readout
operation of a delay line since one CS is removed from the
VCSEL at each merging process in a way similar to the use of
external erasing beams.

CS soliton merging also eliminates soliton clogging, which
can be detrimental at the output of optical delay lines based on
amplifiers. This feature can thus be beneficial to the practical
implementation of all-optical delay lines in CSLs.

The process of merging of dissipative spatial solitons is
quite intriguing and deserves special attention. Here, for
example, we demonstrate that during merging there is the
emission of light pulses accompanied by the violation of an
energy balance.

We consider first the simpler case of laser CS without
dynamical contributions of the carrier population. By setting
the population variable D to its equilibrium value, one obtains

∂εtE = EI − i(θ + α)E + i∂2
xE + (1 − iα)(D − 1)E

(5)
D = J

1 + |E|2 .

In analogy with the cubic-quintic Ginzburg-Landau equa-
tion [17], we introduce a continuity equation for the field E:

∂ρ

∂t
+ ∂j

∂x
= Q, (6)

where the density is ρ = |E|2 and the current is j =
i(E∂xE

∗ − E∗∂xE). For conservative systems, the quantity
Q is identically zero. For injected and dissipative systems like
(5), however, we can write

Q = 2[Re(EIE
∗) + D|E|2 − |E|2]. (7)

The three contributions that form Q are identified as the
energy provided by the external injection, the energy stored
in the material by the laser pumping, J , and the losses at
the laser output, respectively. Q is trivially equal to zero
for homogeneous steady states while the spatial part ∂xj

counterbalances Q locally for stationary CS. In this last case,
however, the integration over the full transverse space of Q

(as well as ∂xj ) is identically zero and one talks of “energy
balance” across the full profile of a CS.

We find that the energy balance for
∫

Qdx persists in the
case of CS moving on phase gradients. At the moment of
the merging, however, clear violations appear. Figure 9 shows
the time evolution of the energy balance before and after a CS
merging event for the single equation model (5). Balance takes
place both during the motion of one CS toward the second and
after the collision event. Around the merging time, however,
energy exchanges are clearly not balanced. Initially, excess
energy is absorbed from the injection to be later released
through cavity losses. Note that this excess energy is not
stored in the carrier distribution but is instead emitted from
the VCSEL in the form of a short pulse, as shown in the inset
of Fig. 9.

The physical description of CS merging in model (3) is
more complicated due to the delayed dynamics of the carriers.
When we take this into account, the density term in the
continuity equation (6) becomes ρ = |E|2 − D2 while the
current term, j = i(E∂xE

∗ − E∗∂xE), is unchanged. There

FIG. 9. Time evolution of the energy balance
∫

Qdx for the
merging of two CS in the model (5). (Inset) Cavity losses

∫ |E|2dx

as a function of time (with scale as in the main image). Parameters
are those of Fig. 1. Triangular modulation parameters are µ = 0.1
and k = 0.036.

is a simple explanation for the negative sign in front of the
carrier term, D2, in the definition of ρ: In contrast with the
peak of the field intensity, the carrier distribution has a trough

FIG. 10. Time evolution of (a) the quantity
∫

Qdx without the
carrier density dynamics and (b)

∫
Q̂dx with the carrier density

dynamics for the merging of two CS in the model (3). (Inset) Cavity
losses

∫ |E|2dx as a function of time (with the scale as in the
main image). Parameters are those of Fig. 1. Triangular modulation
parameters are µ = 1.0 and k = 0.036.
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FIG. 11. (Color online) Motion and merging of CS in a VCSEL with phase modulation of the optical injection in 2D given by (4c).
(a) The stationary 2D distribution of the output intensity before the writing of two new CS. (b) The distribution immediately after the writing
of the two CS and (c) after t = 27.5 ns from the writing of the two new CS. The CS in the dashed circle moves to the closest maximum of the
modulation while the CS in the solid oval merges with a CS at the peak of the phase modulation.

at the center of the CS [see Fig. 1(c)]. This means, for example,
that field dissipations are larger at the center of the CS while
the carrier dissipations are reduced in the same place due to
inhibited spontaneous emission. For Eqs. (3), the definition of
Q then has to be updated to [18]

∂(|E|2 − D2)

∂t
+ ∂j

∂x
= Q̂ (8)

= 2{Re(EIE
∗) + (D − 1)|E|2 + σ [D(1 + |E|2) − J ]}.

The addition of the carrier dynamics corresponds to the term
multiplied by σ in the definition of Q̂. Again, Q̂ is identically
equal to zero for homogeneous steady states while

∫
Q̂dx = 0

for a stationary CS due to energy balance. Figure 10(a) shows
the time evolution of the quantity

∫
Qdx with Q from Eq. (7),

that is, without the carrier dynamics term, before and after
a CS merging event for the model (3). The inclusion of the
carrier dynamics in the definition of Q̂ ensures balance during
the motion of one CS toward the second [see the comparison
between Figs. 10(a) and 10(b)]. As in the previous case, energy
exchanges are clearly not balanced around the merging of CS
since excess energy is first absorbed from the injection and
later released through cavity losses. Again, the excess energy
is emitted from the VCSEL in the form of light pulses, as
shown in the inset of Fig. 10(b).

CS merging is also observed in simulations with two
transverse dimensions. Figure 11 shows an example where
two newly written CS move toward their closest maximum of
the triangular phase modulation (4c) in a 2D lattice. When the
maximum is empty, the CS is properly positioned. Where the
maximum is occupied by another CS, merging takes place.
Such mechanisms can be of practical use in the experimental
implementation of 2D optical memories.

Finally, we note that 1D and 2D CS in VCSELs with optical
injection have tails with almost no spatial oscillations. This fact
greatly reduces the interaction between CS, resulting in the
merging of CS described above and in maintaining a constant
temporal separation between input pulses during their motion.

Both effects are beneficial for the implementation of a delay
line and for applications in optical information processing.

VI. CONCLUSIONS

We have demonstrated that the concept of an all-optical
delay line based on CS can be extended from absorbing or am-
plifying media kept below the laser threshold to lasing media.
We have shown that the position, velocity, and merging of CS in
a VCSEL with optical injection are easily controlled optically
by introducing linear gradients or periodic modulations of the
phase of the injected field. The CS velocity, and consequently
the delay in all-optical delay lines, can be controlled by varying
the gradient, the amplitude, and the spatial wave vector of the
phase modulation, as well as the response time of the medium.
The VCSEL operator can control spatially modulated optical
injections in order to select CS traveling distances and hence
form CS arrays for optical memories. When two or more CS
meet at a peak, they merge to form a single CS. The merging
processes release short pulses of light that can be used in the
readout operation of the delay line. They also help eliminate
the detrimental phenomenon of CS clogging.

The minimum time required for a CS to completely
establish in a VCSEL is predicted to be less than a nanosecond.
Consequently, the only factor limiting the speed of perfor-
mance of the delay line is how quickly CS can be maneuvered
from the path of the writing beam. By introducing a triangular,
rather than a sinusoidal, phase modulation, the velocity of the
CS remains constant until it reaches the peak. The minimum
time required before introducing a further CS varies depending
on the delay required and ranges from approximately one to
tens of nanoseconds depending on the response time of the
semiconductor material.

We expect delay lines based on CS motion to work in
other active configurations such as those based on frequency-
selective feedback [8,19] and mutually coupled semiconductor
microresonators [9]. Extensions to systems based on media
different from semiconductors, such as liquid-crystal light
valves [14,20] and photorefractives, are also feasible.
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APPENDIX

Following the approach of [12], it is possible to take
advantage of the separation of the time scales between the
different variables to obtain reduced equations that capture the
long-term spatiotemporal dynamics of the system. We do not
enter into the details of the procedure to avoid repetition but
write the final equations that apply to the case with injection
and that were not reported before [12]. By considering ε, the
ratio between the cavity and polarization decay rates, as the
perturbation parameter, reduced equations at first order in ε

are given by

∂ε3/2tE = EI − i(α + θ )E + i∂2
xE√

ε
+ (1 − iα)WE

+√
ε(1 − iα)(1 + √

εW )(LE + Z) (A1)

∂ε3/2tW = σ {J − (1 + √
εW )(1 + |E|2)

− εRe[(1 − iα)E∗(LE + Z)] + dε3/2∂2
xW }

L = − i∂2
x

ξ (1) + iε∂2
x

Z = − 1

ξ (1)
[EI − i(α + θ )E + √

ε(1 − iα)WE],

where D = 1 + √
εW . Note that the operator L has not been

expanded further in ε for numerical convenience. Equations (3)
can be easily obtained from Eqs. (A1) keeping only terms up
to order ε0 in the equation for E and order ε1/2 in the equation
for W . This corresponds to a standard adiabatic elimination
of the variable P . Equations (3) reproduce accurately all the
stationary solutions of the complete model. Yet, Eqs. (A1)
contain, through the term LE + Z, corrections to the standard
adiabatic elimination that suppress any unphysical behavior
arising in the dynamics of the CS due to the oversimplified
form of the susceptibility in Eqs. (3). We have used them to
check that the description given by Eqs. (3) remains accurate
even in presence of the dynamics induced by the phase
gradients.
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