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We present a theoretical study of the dynamics of a light pulse propagating through a multilayer system
consisting of alternating blocks of electromagnetically induced transparency (EIT) media and vacuum. We study
the effect of a dynamical modulation of the EIT control field on the shape of the wave packet. Interesting effects
due to the group velocity mismatch at the interfaces are found. Modulation schemes that can be realized in
ultracold atomic samples with standard experimental techniques are proposed and discussed. Calculations are
performed using a modified slowly varying envelope approximation of the Maxwell-Bloch equations and are
compared to an effective description based on a continuity equation for the polariton flow.
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I. INTRODUCTION

The control of light-pulse propagation in matter is a
key element of optical devices for fundamental science as
well as for technological applications. In many cases, this
is made difficult by the presence of competing effects like
dispersion and absorption. Furthermore, the available time for
manipulation is often limited by the very high propagation
speed of light in conventional materials.

New perspectives in light propagation are opened by the
observation of long-living coherence effects in optical media.
The coherent population trapping (CPT) [1] and electromag-
netically induced transparency (EIT) [2] effects have been
shown to produce strong modification to the properties of
optical media. By dressing the matter excitations with coherent
external fields, a resonant probe laser pulse can be made to
propagate across an otherwise strongly absorbing medium
at an ultraslow group velocity and without being distorted.
The incoming light is coupled to a dark-state polariton which
shows vanishing absorption and dispersion [3] and whose
group velocity can be controlled via the intensity of the control
field [4]. This feature has been demonstrated as a tunable delay
line for propagating pulses.

The dynamical modulation in time of the control field while
the pulse is propagating opens up even richer possibilities
for light manipulation in the spirit of the so-called dynamic
photonic structures [5,6]. For example, by completely switch-
ing off the control field, the probe light can be halted and
stored as an atomic (spinlike) excitation and later retrieved
after a macroscopic time: Such light-storage techniques [3,7]
are considered crucial tools for all-optical information tech-
nologies. A periodic dynamical modulation of a spatially
homogeneous control field can lead to intriguing phenomena
such as frequency triggering in time of the EIT band [8].
By adiabatically raising the resonance frequency, it is also
possible to shift the energy of a propagating polariton [9]. A
nonadiabatic variation of the control field has been proposed
as a tool to compensate the pulse broadening at the exit of a
delay line [10] or after retrieval of a previously stored light
wave packet [11]. Extremely fast modulations of the control
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field have been anticipated to produce a substantial dynamical
Casimir emission [12].

Spatially modulated EIT media have been proposed and
used for light-stopping applications via the creation of tunable
stop bands within the EIT window [6,13]. Mutual interaction of
several moving spin coherence gratings has been demonstrated
as an efficient way to stop two-color light and to perform
wavelength conversion [14].

In the present article we investigate the effect on ultra-
slow light propagation of a combined spatial and temporal
modulation of the EIT medium. A pioneering study in this
direction was reported in [15,16], where the simultaneous
propagation of both control and probe pulses is investigated: a
ramp of the control field in an otherwise homogeneous medium
induces different propagation velocities in the different parts
of the probe pulse. This is predicted to result in a controllable
reshaping of the probe profile.

Dilute ultracold gases are among the most promising
media for EIT applications. Both slow light and light storage
have been experimentally realized in this systems [17]. As
compared to condensed matter systems, atomic gases have the
advantage of showing extremely narrow linewidths, which can
be exploited to obtain ultraslow group velocities: Doppler and
collisional dephasing processes which destroy the coherence
are in fact strongly reduced in cold samples. Furthermore, the
achievement of the Mott-insulator (MI) phase [18] suggests the
possibility of obtaining even longer coherence times thanks
to the gap in the many-body excitation spectrum: The first
experimental realization of EIT in a MI has been recently
reported for light-storage purposes [19].

Most of the theoretical works on slow light propagation
in atomic samples were focused on the simplest case of a
homogeneous atomic medium with some boundary condition.
Unfortunately, the typical size of atomic samples is often small
as compared to the duration and waist of the probe pulse,
which calls for a more complete theoretical description. In
this article we present a model that is able to include the
spatial inhomogeneity of a system and therefore to describe
the propagation dynamics at the interface between vacuum and
the EIT medium.

In particular, we show how one can take advantage of the
interfaces to manipulate the wave-packet shape by means
of a dynamical modulation of the control field intensity.
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The multilayer structure offers in fact the possibility of
spatially engineering the radiation-matter interaction. While
the usual schemes based on a single control field pulse in a
homogeneous system [15] limit the manipulation to a single
interface, our proposal can explore a much wider range of
configurations: increasing the number of interfaces allows a
variety of modulation protocols to be developed, leading, for
example, to the switching of a single pulse into a train of
separated signals. Furthermore, the reduced optical depth of
each layer may allow for a more efficient modulation [7]. The
short pulses that can be tailored with our proposed technique
may be of interest in view of creating polariton states with
a Dirac-like dispersion [20]. Even though our theoretical
description is based on semiclassical wave equations, our
conclusions directly apply to the quantum processing of single
photon wavefunctions and therefore can have an importance
for optical quantum computing applications.

The article is organized as follows. In Sec. II we review
the Maxwell-Bloch formalism for describing light propaga-
tion in an atomic medium and we introduce the modified
slowly varying envelope approximation to include the spatial
inhomogeneities. The standard polariton picture for slow light
propagation in homogeneous EIT media is reviewed in Sec. III.
These concepts are then used in Sec. IV to investigate the
simplest modulation schemes based on the idea of EIT chain.
In Sec. V, we derive an effective equation for the pulse
propagation. This simplified formalism is then used in Sec. VI
to propose and characterize some specific protocols to be
implemented in cold atom systems. In Sec. VII, we draw
conclusions and we sketch the perspectives of the work.

II. THE FORMALISM

This article is devoted to the theoretical analysis of the
propagation of a light pulse in a time-dependent and spatially
inhomogeneous medium with sharp interfaces. Furthermore,
the pulse carrier is fixed in a region where the optical response

of the medium is strongly dispersive. This requires that the
formalism explicitly includes both the atomic degrees of
freedom in the presence of a time-dependent dressing field and
the spatiotemporal dynamics of the propagating pulse. In this
section we introduce a modified version of the well-known
slowly varying envelope approximation which is able to
address all these features in a single unified treatment.

A. Optical Bloch equations

We assume the internal dynamics of the atoms to be
restricted to three levels in the � configuration sketched in
Fig. 1(a): the ground state |g〉, a long-living metastable state
|m〉, radiatively decoupled from |g〉, and an optically active
excited state |e〉, with a lifetime γ −1

e . The lifetime of the |m〉
state is assumed to be much longer than any other time scale
in the system: γ −1

m � (γ −1
e , tmax), where tmax is the time of

observation of the system. The atomic ensemble is assumed to
be initially in the ground state.

Two lasers are shone on the atoms: the control (or dressing)
field is a strong laser beam coupled to the |m〉 → |e〉 transition
of carrier frequency ωc and (time-dependent) Rabi frequency
�c. This field is considered to be an external field that can be
controlled at will. The focus of the present work is centered
on the propagation of another laser pulse of carrier frequency
ωp close to resonance with the |g〉 → |e〉 transition of dipole
moment deg and has an electric field

E(x, t) = E(x, t) e−iωpt + c.c. (1)

This probe field is assumed to be weak enough to be within
the linear regime where a linearized version of the optical
Bloch equations [1,21] can be used. Within the well-known
rotating-wave approximation, only quasiresonant terms for the
atom-laser interaction are considered.

In order to eliminate the carrier frequency, we can rewrite
the optical Bloch equations in terms of the reduced coherences
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FIG. 1. (Color online) (a) Scheme of the three-level � configuration of atomic levels and laser beams. (b) and (c) Frequency dispersion
and decay rate of the three polariton branches (green, upper; blue, dark; red, lower). Parameters of the system:

√
D = 0.1, �c/ωeg = 0.04,

γe/ωeg = 0.01, resonant dressing ωc = ωe − ωm. The solid lines are the MSVEA predictions using ωp = ωeg and and assuming an Erf shape
for the f (k) function with a half-bandwidth of 0.5 ωeg . The dashed line is the exact EIT dispersion.
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ρ̃eg = ρeg eiωpt and ρ̃mg = ρmg ei(ωp−ωc)t :

∂ρ̃eg

∂t
= −

(γe

2
+ iδe

)
ρ̃eg + i

dgeE
h̄

− i
�c

2
ρ̃mg, (2a)

∂ρ̃mg

∂t
= −

(γm

2
+ iδR

)
ρ̃mg − i

�c

2
ρ̃eg. (2b)

Here, δe = ωe − ωg − ωp is the one-photon detuning of the
probe field from the |g〉 → |e〉 transition, while δR = ωm +
ωc − ωg − ωp is the detuning of the probe and control beams
from the so called Raman two-photon transition connecting
the ground to metastable states.

As the transition |g〉 → |m〉 has a vanishing dipole moment
and the coherence ρem is of higher order in E , the atomic
polarization can be written in terms of the coherence ρeg only:

P (x, t) = n(x) deg ρeg(x, t) + c.c. (3)

Here, n(x) is the atomic density.

B. Modified slowly varying envelope approximation (MSVEA)

In the present work we restrict our attention to a one-
dimensional geometry at normal incidence. As the different
polarizations of electromagnetic (e.m.) field are in this case
decoupled, the vector nature of Maxwell equations disappears
and one is left with a scalar problem for each component:(

∂2

∂x2
− 1

c2

∂2

∂t2

)
E(x, t) = µ0

∂2

∂t2
P (x, t). (4)

Here P (x, t) is the polarization (3) of the atomic medium. The
constants c and µ0 are, respectively, the velocity of light in
vacuum and its magnetic permeability.

We assume that the pulse envelope E(x, t) varies on
a characteristic time scale much slower than the carrier
frequency ωp. Under this approximation, we can perform a
modified slowly varying envelope approximation (MSVEA)
and neglect the second-order time derivatives of the envelope.
Assuming the same form P (x, t) = P(x, t)e−iωpt + c.c. for
the atomic polarization, the Maxwell equation (4) can then be
written in the form[

∂2

∂x2
+ ωp

c2

(
ωp + 2i

∂

∂t

)]
E = −µ0 ω2

p P. (5)

Here we have neglected the first-order derivative in time of the
polarization envelope which is proportional to second-order
time derivative of the electric field [22].

It is important to note that, differently from the conventional
SVEA discussed in textbooks (e.g., [23]), we have not
separated out the spatial part of the envelope from the carrier
and we have retained all the derivatives of the field with respect
to the spatial coordinates. This crucial feature of the MSVEA
equation (5) is required when one investigates configurations
involving abrupt jumps in the spatial distribution of atoms n(x).

The optical polarization (3) arising from the optical
Bloch equations has to be plugged back into the Maxwell
equation (5). After choosing an appropriate normalization,
the resulting Maxwell-Bloch (MB) equations can be cast in
the form

∂E
∂t

= i

2

(
∂2

∂x2
+ 1

)
E + i

√
Dρ̃eg, (6a)

∂ρ̃eg

∂t
= −

(γe

2
+ iδe

)
ρ̃eg + i

√
DE − i

�c

2
ρ̃mg, (6b)

∂ρ̃mg

∂t
= −

(γm

2
+ iδR

)
ρ̃mg − i

�c

2
ρ̃eg. (6c)

In particular, ωp is used as the unit for frequency, and
kp = (ωp/c) for the wave vector. The electric field is measured
in terms of E0 = √

nh̄ωp/2ε0. The physical meaning of this
choice is related to the energy density in the system: The
energy density associated to the atoms is Wat = nh̄ωp|ρ̃eg|2,
while the energy in the e.m. field is [24] We.m. = 2ε0E2

0 |E |2:
E0 is then the electric field associated to a polariton in which
the excitation is exactly shared between atoms in the excited
state and photons, |E |2 = |ρ̃eg|2 = 1,Wat = We.m..

The strength of the light-matter coupling is quantified by
the adimensional parameter

D = d2
gen

2ε0h̄ωp

. (7)

In the case of a homogeneous system of N atoms, the
D coefficient is straightforwardly related to the atom-field
coupling constant g as defined in [3],

Dω2
p = g2N. (8)

C. Features and limitations of MSVEA

Before proceeding, it is important to assess the features
and limitations of the MSVEA approach that we introduced
in the previous section. This approximation leads, in fact, to
Eqs. (5) and (6) that differ from the standard formalism used
for EIT-related problems and offer important advantages for
the specific problems under consideration here.

In the absence of atoms, the MSVEA Eq. (5) with P = 0
gives the following approximate dispersion for the free e.m.
field:

ω(k) = c2k2 + ω2
p

2ωp

. (9)

On one hand, this dispersion is able to simultaneously
describe both the forward (k > 0) and the backward (k < 0)
propagating photons. This will be useful to handle reflectivity
problems without the need for a coupled mode theory. In
particular, this approximate dispersion correctly reproduces
the exact one in the neighborhood of k = ±kp, for example,

ω(±kp) = c|kp|, (10a)

dω

dk

∣∣∣∣
±kp

= ±c. (10b)

On the other hand, the deviation from the linear dispersion
of light that is due to the curvature of the approximate
dispersion (9) is responsible for a spurious wave-packet
broadening. However, this effect start to be important over
propagation lengths that are much longer than the ones under
investigation here.

At the interface with a generic semi-infinite medium of
linear susceptibility χ (ω), the reflectivity of a monochro-
matic wave at normal incidence can be straightforwardly
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calculated from (5) as

r(ω) = 1 − k′/k

1 + k′/k
, (11)

where the MSVEA wave vectors in vacuum and in the medium
are respectively given by the dispersion laws

ck = ωp

√
1 + 2(ω − ωp)/ωp, (12)

ck′ = ωp

√
1 + χ (ω) + 2(ω − ωp)/ωp. (13)

Provided the frequency ω is close to the carrier ωp, the
approximate reflectivity (11) is accurate up to corrections of
the order (ω − ωp)/ωp. This condition is well satisfied in an
EIT medium in the frequency region around resonance as the
light propagation is dominated by the frequency dispersion of
the susceptibility χ (ω).

To conclude this section, it is important to note that at the
level of the MSVEA approximation one is allowed to replace
the c2k2 term in (9) with a generic function f (k) that satisfies
the conditions (10). This feature is of great interest when one
is to numerically solve the set of Eqs. (6). In fact, a proper
choice of f (k) makes it possible to significantly increase the
time step of the simulation [25]: in the remainder of the article,
we will use the Erf-shaped form

f (k) = ω2
p

[
1 + Erf

(√
π

|k| − kp

kp

)]
, (14)

which results in a bandwidth of the order of ωp, wide enough to
avoid introducing spurious physics in the frequency region of
interest. The resulting dispersion for the EIT system is shown
in Fig. 1, which is in excellent agreement with the exact one in
the frequency region of interest. In particular, the choice of a
linear f (k) in the vicinity of ωp makes it possible to suppress
the effect of the spurious dispersion of the wave packet that
would be otherwise introduced by the MSVEA. We have also
checked that the numerical results presented in the remainder
of the article do not depend on the specific choice of f (k).

III. POLARITONS IN A HOMOGENEOUS AND
STATIC EIT MEDIUM

Before entering in the discussion of the complex features
of the propagation in spatially inhomogeneous and time-
dependent media, it is useful to briefly review the main features
of light propagation in the simplest case of homogeneous and
static EIT medium.

At the level of linear optics considered in the present article,
the response of a stationary medium is summarized in its
susceptibility χ (ω). In the case of a EIT medium, this is
straightforwardly calculated from the Bloch equations [(6b)
and (6c)] to be

χ (ωp) = 2Dωp

[
δe − i

γe

2
− (�c/2)2

δR − i(γm/2)

]−1

. (15)

Once plugged into the Maxwell equation, this form of χ (ω)
gives the three polariton branches [3,12] that are shown in
Fig. 1(b). In this figure, as well as in the rest of the article,
we focus our attention on the resonant case ωc = ωe − ωm.
The width of the Rabi splitting between the polariton bands at
resonance is fixed by the light-matter coupling to (2

√
Dωp).

Note how the Erf-shaped form of f (k) chose for the calculation
does not affect the polariton dispersion in the region of interest.

Throughout this article, we are mostly interested in the
central band, the so-called middle polariton or dark polariton
(DP) [3]. The width of this DP branch is proportional to the
dressing Rabi frequency �c. Exactly on Raman resonance
δe = 0, the group velocity is given by

vgr = c

1 + ωp

2
∂χ

∂ωp

= c

1 + Dω2
p

(�c/2)2

. (16)

In contrast to standard optical media where an optical
resonance is generally associated to a high interface reflectivity
and a strong absorption [9,26–28], three-level systems under
a coherent dressing allow for a very slow group velocity, a
negligible interface reflectivity, and negligible absorption [2].
This striking effect is due to the vanishing value of the
susceptibility χ (ω) exactly on resonance combined with a
strong value of its frequency dispersion. Spontaneous emission
from the excited state is suppressed thanks to the destructive
interference between the different excitation paths, while
dephasing between the ground and the metastable states is
generally very small in cold atom systems, γm � 0.

For a polariton wave at a wave vector k, the group velocity
and the lifetime are in fact related to the relative weights of the
radiation and matter excitation components that are obtained
by diagonalizing [12] the set of Eqs. (6):

vgr(k) = c
|E(k)|2

|E(k)|2 + |ρ̃eg(k)|2 + |ρ̃mg(k)|2 , (17)

γ (k) = γe

|ρ̃eg(k)|2
|E(k)|2 + |ρ̃eg(k)|2 + |ρ̃mg(k)|2 . (18)

The prediction (18) for the decay rate of the different bands
is plotted in Fig. 1(c). As expected, the decay rate is exactly
vanishing on resonance (for γm = 0) and grows quadratically
in the wave vector k:

γ (k) = 1

2
Im

[
d2ω(k)

dk2

∣∣∣∣
δR=0

]
(k − kp)2. (19)

To leading order, the second-order derivative of the EIT
dispersion is then purely imaginary [22]:

d2ω

dk2

∣∣∣∣
δR=0

= −i
γe

c

Dω2
p

(�c/2)4
v3

gr. (20)

For a sample length L, this recovers the well-known [2,3]
Gaussian transmittivity window of width

�ωTR = 1√
2

(�c/2)2√
γe Dω2

p

√
c

L
. (21)

IV. MULTILAYER SYSTEM: THE EIT CHAIN

We consider a pulse of light launched into a layered
geometry consisting of several atomic EIT media separated by
empty regions of space. A pictorial view of the layered system
under consideration—the EIT chain—is shown in Fig. 2. We
assume the atoms in the different EIT layers to have the same
Raman frequency. The probe pulse carrier is taken exactly on
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Control

Probe

FIG. 2. (Color online) Pictorial scheme of a double-layer EIT
chain. The shown configuration with orthogonal probe and control
beams [17] allows for independent modulation of �c in the different
layers, but the predictions of the present article are straightforwardly
extended to other geometries.

Raman resonance and the pulse bandwidth is assumed to fit
within the EIT frequency window. The propagation of the pulse
across the system can be simulated using the MB formalism (6)
described in the previous sections with a spatially dependent
D(x) and �c(x).

Two cases can be distinguished: a static case where all
the parameters describing radiation-matter interaction remain
costant in time, and a dynamic configuration when some
parameter is varied in time while the pulse is propagating
across the system. In what follows, we will concentrate our
attention on a time modulation of the control field amplitude
�c. Other dynamic schemes may involve a modulation of
the atomic resonance frequency and/or of the dressing field
frequency [6,9].

A. Static case

In a static situation, the pulse propagates across the
whole multilayer structure with negligible distortion. The
propagation time is equal to the sum of the thickness of each
layer divided by the corresponding group velocity.

While the spatial shape of the emerging pulse remains
unchanged with respect to the incident pulse, the shape inside
the structure is significantly modified. As shown in Fig. 3(a),
a pulse entering an EIT layer is in fact spatially compressed
by vgr/c as a consequence of the reduced group velocity and
a reversed process takes place when the pulse leaves the layer,
which restores the initial shape. Correspondingly, the envelope
of the electric field remains continuous at all interfaces, but
its derivative has discontinuities proportional to the group
velocity mismatch between neighboring layers.

An important distinction has therefore to be carefully made
in the notation: The length of the wave packet within the EIT
layer will be denoted by σ̄x = σt vgr while its length in vacuum
will be denoted by σx = σt c.

B. Dynamic case

The easy tunability of the properties of the dressing field
together with the slow propagation of the DP allow for an
efficient dynamic modulation of the propagating pulse. Taking
advantage of spatial inhomogeneities, the dynamic EIT chain
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FIG. 3. (Color online) Examples of modulation of a pulse via
a space- and time-dependent EIT. The propagation of the pulse is
calculated by solving the MB equations (6). In all of the panels, the
pulse moves from left to right and the shaded regions correspond
to a EIT medium. The dashed curves show the initial pulses.
(a) Propagation across a static interface. Solid line, pulse shape
while being spatially compressed in entering into a medium with
vi

gr = 0.11 c; dotted line, pulse shape once it has completely entered
the EIT medium. (b) Wave-packet propagation in a homogeneous
EIT layer. Dotted line, propagation without modulation; solid line,
result of a slow-down ramp with vf

gr = vi
gr/2; dot-dashed line, result

of a speed-up ramp vf
gr = 1.8 vi

gr. (c) Exit from a EIT medium into
vacuum. Dotted line, propagation without modulation; solid line,
result of a slow-down ramp with vf

gr = vi
gr/2. All of the panels have

been calculated for a pulse carrier exactly on Raman resonance
δe = 0, a ramp time ωpτ = 100, and a pulse width ωpσt = 400.
Material parameters: D = 0.01, γe = 10−3ωp .

can be the paradigm for a new class of dynamic photonic
structures [5,6] which are able to perform a simultaneous spa-
tial and temporal modulation of the wave-packet profile. The
mechanism of the pulse modulation in complex geometries
can be understood in terms of two basic building blocks: the
homogeneous layer, when the pulse is completely contained in
a single homogeneous EIT layer during the whole modulation
sequence, and the interface, when the modulation takes place
while the pulse is overlapping two neighboring layers.

1. Homogeneous layer

When the whole pulse fits into a homogenous EIT layer, its
dynamics can be easily understood within the polariton picture
discussed above and it is fully determined by the conservation
of wave vector k.

In the limit of a very slow modulation, the pulse adiabati-
cally follows the evolution of the DP state [3] and propagates
at the instantaneous group velocity with no change in its
length. The peak electric field follows the magnitude of the
photonic component (17) and is determined by the ratio of the
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final to initial group velocity v
f
gr/v

i
gr. In particular, it does not

depend on the temporal shape of the modulation. Examples
of such modulations are illustrated in Fig. 3(b). In the case in
which the group velocity modulation is brought back to the
initial value v

f
gr = vi

gr, the pulse emerges with an unchanged
profile and the layer can be considered as a very compact,
yet programmable delay line. It is interesting to note that the
dynamical modulation of the polariton branches ensures that
if the pulse fits into the EIT window at the entrance, then it
will fit into it at all later times [5,6].

The main effect of a finite ramp time τ is to couple the DP
to the upper and lower polariton branches at the same k. The
effective matrix element of this coupling is proportional to the
modulation rate of the control field amplitude d�c/dt . This
matrix element is to be compared to the frequency splitting
between the bands, which leads to the following quantitative
criterion for adiabaticity [29–31]:∣∣∣∣d�c

dt

∣∣∣∣ � Dω2
p. (22)

2. Interface

A dynamical modulation taking place while the pulse
overlaps an interface provides the simplest way of reshaping
the pulse: Only the part of the pulse which is located inside
the EIT layer is in fact affected by the modulation of the
dressing field. In contrast to the the spatially homogeneous
case considered earlier in this article, the shape of the emerging
pulse now strongly depends on the details of the modulation
ramp even in the adiabatic limit. This crucial fact is illustrated
in Fig. 3(c): the group velocity of a EIT medium is reduced
while a pulse is exiting into vacuum.

The results can be understood by isolating three portions
of the pulse: The first part is already in vacuum when the
modulation begins, while the last part is still in the EIT medium
when the modulation is completed.

The first part is therefore not affected by the modulation,
while the electric field amplitude of the third part is homoge-
neously lowered. When this part of the pulse eventually exits
into vacuum, its spatial length is stretched out by a factor c/v

f
gr.

As compared to the front of the pulse, the stretching is larger
by a factor vi

gr/v
f
gr, which results in the strongly asymmetric

pulse shape that is visible in Fig. 3(c).
Finally, the modification of the central part of the pulse

depends in a nontrivial way on the details of the ramp.
For a fast [but still adiabatic as compared to the interband
splitting, according to (22)] modulation, the first and third
parts of the pulse are connected by a sharp jump in the electric
field amplitude. For slower ramps, this jump is replaced by a
smoother crossover.

3. Defect

The physics of a defect geometry can be understood along
these same lines. Two regions of a homogeneous medium
are separated by a thin layer with a different group velocity.
The thickness Ld of the defect region is taken to be small as
compared to the effective length of the pulse in this layer. For
the sake of simplicity, we restrict our attention to the simplest
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FIG. 4. (Color online) Modulation of a wave packet using a vac-
uum defect. In the EIT medium, the group velocity is decreased from
v+

gr = 0.11 c to v−
gr = 0.02 c and then increased back to v+

gr as shown
in the inset. (Main panel) Pulse at the beginning (dotted blue line) and
at the end of the process (solid blue line); comparison with the results
of the continuity equation for polariton flow (24) (black dot-dashed
line) and the numerical solution of the effective equation (29)
(red dashed line). (Inset) Temporal dependence of �c. (Bottom
panels) Three snapshots during the propagation time. (a) Slow-down
ramp; (b) storage time; (c) speed-up ramp. Parameters: γe = 10−3ωp ,
pulse length kpσ̄x = 1600, defect thickness kpLd = 6400, ramp time
ωpτ = 100, storage time ωpτs = 60 000.

situations of an EIT medium with a vacuum defect and of a
single EIT slab in vacuum.

The case of a vacuum defect is illustrated in Fig. 4. In
particular, we consider the long pulse limit σx � Ld in which
the pulse amplitude can be considered as almost homogeneous
across the defect. The temporal shape of the modulation of �c

is shown in the inset: Its time scale is assumed to be fast as
compared to the pulse duration, but still slow as compared
to the interband adiabaticity requirement (22). v±

gr are the
maximum and minimum values of the group velocity; τs is
the interval between the two ramps, that is, the storage time.
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The modulation takes place in three stages: the slow-down
ramp, the storage time and the speed-up ramp. When �c

is first decreased, the pulse intensity in the atomic medium
is correspondingly reduced by a factor v−

gr/v
+
gr, while the

amplitude of the central part remains unchanged as it is sitting
in vacuum [Fig. 4(a)]. When this part of the pulse re-enters
the EIT medium, it results in a spatially compressed, narrower
peak of width Ld v−

gr/c [Fig. 4(b)]. The part of the pulse that
crosses the defect during the storage time does not experience
any distortion: In Fig. 4(b) this part lies just behind the narrow
peak and is τsv

−
gr − Ld v−

gr/c long. The final speed-up ramp
which restores the group velocity to its initial value v+

gr is
responsible for an increase of the electric field amplitude in
the EIT medium. This eventually results in a hole being left
imprinted in the pulse profile correspondingly to the vacuum
layer [Fig. 4(c)]. Once it has re-entered the EIT medium, the
length of this hole is equal to Ld v+

gr/c.
This vacuum defect geometry is then the simplest example

of a nontrivial modulation of the wave-packet profile: Note that
the resulting profile is very different from the one obtained in a
homogeneous geometry, where the second ramp would simply
compensate the first one.

The opposite case of an EIT layer in vacuum is presently
of great experimental interest for light-storage purposes [3,7].
The idea is very simple: By switching off the control field �c

while the wave packet is inside the EIT medium, the DP is
fully mapped into a metastable coherence ρmg . As this has a
vanishing group velocity, it can remain stored in the atoms
for macroscopically long times. When the control field �c

is switched on again, the wave packet is retrieved. The main
limitations to the efficiency of a light-storage process originate
from spontaneous emission processes from the excited state
(a finite ρeg component is always present for any pulse of
finite duration), leakages due to the finite optical depth of
sample as the usually considered systems are shorter than the
effective length of the pulse, and ground-state decoherence
γm > 0 [3,7]. Even though this last effect sets the ultimate
limit to the performances of light-storage experiments, for
the parameters considered in the present work its effect is
negligible as compared to the other processes.

A situation similar to the experimental realization in [19] is
simulated in Fig. 5: Because of the limitations in the numerical
solution of the MB equations, we have been forced to consider
a EIT medium with a much bigger vgr/c. Anyway, a suitable
rescaling of all other parameters makes it possible to observe
the same dynamics.

During the storage time, �c is brought to zero with the
same temporal profile as shown in the inset in Fig. 4: Again,
this process consists of three stages. During the stopping ramp
[Fig. 5(a)], the signal is cut into three parts. The front part,
which has already crossed the defect, is not affected by the
modulation and keeps on propagating almost undisturbed. The
central slice that was contained in the EIT layer at the stopping
time remains coherently stored in the medium as an atomic
polarization. The back part of the pulse hits the medium when
this is no longer optically dressed and its fate strongly depends
on the spontaneous emission rate from the |e〉 state.

If spontaneous emission is negligible, this part of the pulse
is reflected back albeit in a strongly distorted way [3,9,27]:
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FIG. 5. (Color online) Snapshots of the pulse profile during a
light-storage process in a single EIT layer. �c is modulated in time
from �+

c = 0.07 ωp to �−
c = 0 with the same shape as shown in

the inset of Fig. 4. The storage time is ωpτs = 1350. The initial
group velocity in the EIT layer is vgr = 0.11 c. The pulse has a
Gaussian shape with kpσx = 540 in vacuum and the defect has a
length kpLd = 10. (a) Initial pulse (dashed line), pulse hitting the
defect and splitting immediately after the stopping ramp (solid line),
and counterpropagating wave packets during the storage time (dotted
line). (b) Emerging wave packets after the retrieval ramp. The arrows
indicate the propagation directions of each pulse. Blue lines in panels
(a) and (b) are in the absence of spontaneous emission γe = 0. The
green line in panel (b) is for γe = 0.07 ωp .

This is, for example, the case of a Mott-insulator state of
two-level atoms where spontaneous emission is suppressed
as a consequence of the ordered lattice structure [32] and
information on the interface structure can be inferred from
the shape of the reflected wave packet. On the other hand, as
shown by the green (light gray) line in Fig. 5(b), the reflected
wave packet is almost completely absorbed in the presence of
a significant spontaneous emission rate.

When the retrieval ramp is finally applied, the excitations
stored in the EIT layer are free to propagate out of the atomic
medium. The efficiency of this retrieval process (defined as the
ratio of the intensity of the retrieved pulse to the intensity of
the incident pulse) is around 15% for this simulation, which
qualitatively agrees with the estimation in [19]. As shown in
Fig. 5(b), this retrieved wave packet is weakly affected by
spontaneous emission.

V. POLARITON FLOW: EFFECTIVE DESCRIPTION

The MB formalism (6) gives a complete picture of the
pulse propagation which is able to take into account interband
transitions as well as reflection at the interfaces. As the
solution of the three coupled equations is time- and memory-
consuming, it quickly becomes unfeasible for growing values
of the velocity mismatch between the different media.
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For this reason, an effective approach able to investigate
the ultraslow light regime can be of great interest. As
the dynamic modulation of the pulse does not result in
an increased reflection as compared to the static case, the
propagation dynamics can be described in terms of a single
continuity equation for the polariton flow. In particular, both
the absorption and the spatial inhomogeneity of the structure
are fully included in this model equation.

A. Continuity equation

In terms of the polariton density np(x, t), the continuity
equation describing conservation of the total number of
polaritons reads

∂

∂t
np(x, t) + ∂

∂x
[np(x, t)vgr(x, t)] = 0. (23)

In the static situation [vgr(x, t) = v0
gr(x)], also the local

polariton flux np(x, t)v0
gr(x) remains constant. It is useful to

rewrite this equation in terms of the electric field intensity
I = |E |2 corresponding to the polariton flux instead of the
polariton density. For static multilayer geometries which are
carachterized by abrupt changes in the polariton velocity,
the polariton density shows, in fact, discontinuities while the
electric field remains continuous, even at the interfaces. Taking
into account the photonic weight and the group velocity (17),
Eq. (23) then becomes

∂I

∂t
+ vgr

∂I

∂x
= − I

vgr

∂vgr

∂t
. (24)

The left-hand side of the equation contains the propagation
terms for the static situation. The general solution is a mixed
translation and dilation of the starting pulse I 0(x) according
to the trajectories in space-time which are the solution of the
Cauchy problem: (ξ̇ = vgr(ξ ), ξ (t) = x) [3,15]. The specific
solution clearly depends on the geometry. The right-hand side
of (24) is instead responsible for the amplitude variation in the
dynamic case.

As a first example, this continuity equation model can be
applied to the defect geometry of Fig. 4,

vgr(x, t) = v(t) [θ (−x) + θ (x − Ld )] + cθ (x)θ (Ld − x),

(25)

where the beginning of the defect is located at xd = 0. For
times longer than t = (Ld/c), the solution for the electric field
intensity is

I (x, t) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I 0
(
x − I t

0

) v(t)

v(0)
, x < 0

I 0
( − I t−x/c

0

)v(t − x/c)

v(0)
, 0 < x < Ld

I 0
( − I t0

0

)v(t0)

v(0)

v(t)

v(td )
, Ld < x < Ld + I t

Ld/c

I 0(Ld − ctd )
v(t)

v(td )
, Ld + I t

Ld/c < x < Ld + I t
0

I 0
(
x − I t

0

) v(t)

v(0)
, x > Ld + I t

0. (26)

Here td (x) and t0(x) are the instants of time at which the point
of the wave packet which is located at x at the time t has passed

through x = Ld and x = 0, respectively. They can be found
by the conditions

x = Ld + I t
td
, (27a)

t0 = td − Ld/c, (27b)

where we have defined

Ib
a =

∫ b

a

v(t ′)dt ′. (28)

This analytic solution gives the black dash-dotted curve in the
main panel of Fig. 4.

B. Effect of losses

Even if the carrier frequency ωp sits exactly on Raman
resonance, the finite time duration of the wave packet requires
including absorption for the tails of the wave-vector spectrum
[33]. This leads to a finite and momentum-dependent decay
rate for the polaritons according to (18). Taking inspiration
from the approximated form (19) of the decay rate, a
simple diffusion term can be used to model losses [34]. The
propagation Eq. (24) for the intensity I then becomes

∂I

∂t
+ vgr

∂I

∂x
= − I

vgr

∂vgr

∂t
+ ∂

∂x
D ∂I

∂x
, (29)

where

D = i

(
d2ω

dk2

)
δR=0

= vgr
cγe

Dω2
p

(30)

is the diffusion coefficient. As shown in the main panel of
Fig. 4, this effective model (red dashed line) captures all the
features of the full MB calculation (blue solid line) with a
good accuracy [35]. In particular, the effective model is able
to perfectly reproduce the height of the peak that was instead
overestimated by the simple diffusionless continuity Eq. (24)
(black dash-dotted line).

VI. MANIPULATION SCHEMES IN COLD GASES

The EIT chain introduced and discussed in the previous
section can be implemented experimentally using clouds of
ultracold atoms as the EIT media. Optical fibers can be used
to fix the optical distance between the EIT layers [36]. Other
possible material realizations involve solid-state materials [2].

Realistic values for the system parameters can be obtained
from [17,37]. As a typical example, we consider a cloud of Na
atoms of density n = 8 × 1019 m−3. For the optical transition,
we use the D2 line. As the ground state, we use the |g〉 =
|3S1/2, F = 1, mF = −1〉 sublevel; as the metastable state, we
can use |m〉 = |3S1/2, F = 2, mF = −2〉; and as the excited
state we can use |e〉 = |3P3/2, F = 2, mF = −2〉. In this
case, we have ωeg = (2π )508 THz, deg = 1.5 × 10−29C m,
γe = (2π )10 MHz, and D = 3 × 10−9. For a control field
of Rabi frequency �c = 2π 17 MHz, a group velocity vgr =
10−7c is obtained along with an absorption coefficient D =
6 × 10−7 ωeg/k2

eg . The parameters of the recent experiment
[19] are not much different. From here forward, physical units
are used in the figures.

We have used the effective Eq. (29) to simulate several
simple geometries. We first address the single-layer case
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and then we use the results to investigate more complicated
multilayer structures.

A. Single layer

We consider a single EIT layer where we inject a Gaussian
pulse. As discussed in Sec. IV, the effect of the modulation
depends on several parameters: A crucial quantity is the ratio
R = L/σ̄x between the layer thickness and the pulse length.
Here, we focus our attention on the R < 1 case and we restrict
to the case in which the system size is much shorter than the
absorption length

�abs = vgr

2γ
=

(
vgr

c

Dω2
p

γe

σt

)
σ̄x . (31)

The simplest quantity to measure in a static configuration
is the time delay L/vgr: For sufficiently small group velocities,
this allows the detection of very small differences in L due, for
example, to defects in the structure. Clearly, this measurement
requires a good temporal resolution of the detector as well as
some knowledge of the system parameters, in particular of vgr.

The simplest example of dynamical modulation consists
of a single-ramp modulation of �c. Only the small part of
the pulse contained in the layer feels the modulation. As the
layer is thin, the crossing time is often faster than the ramp
time, which means that different parts of the pulse experience
different portions of the ramp. In this case, the effect of the
modulation on each given slice of the pulse can be estimated
as

|Ef |2(T ) = |E i |2 vi
gr + �vgr(T )

vi
gr

, (32)

where T is the time at which the slice exits the layer and the
initial values vi

gr refer to the entrance of the slice in the EIT
medium. If we approximate the ramp as linear, the variation
in the electric field is then given by (�v/vi

gr)(T/τ ), where �v

is the amplitude of the group velocity ramp.
As we have seen earlier in this article, a most interesting

case consists of a double ramp, as illustrated in Fig. 6(a): The
pulse is slowed down and then accelerated back to the initial
group velocity. In the R < 1 case under consideration here,
the part of the pulse which is modulated during the slow-down
ramp exits from the layer before the restoring ramp has begun.
This latter ramp is then responsible for the creation of the peak
in the trailing part of the pulse. The resulting shape is then
very similar to the case shown in Fig. 4, yet time reversed.

B. Multilayer

The single EIT layer is the basic building block for more
complex geometries. As an example, the cases of a single
ramp in double- and four-layer geometries are illustrated in
Figs. 6(b) and 6(c). In particular, we restrict our attention to
the case in which both the EIT and the vacuum layers are
shorter than the pulse length.

The simultaneous modulation of the dressing field on both
layers allows the creation of several similar structures on the
same pulse, separated by a time depending on the distance
between the layers. By choosing a fast-enough slow-down
ramp, the peak that appears between the different layers can
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FIG. 6. (Color online) Examples of wave-packet manipu-
lation in several realizations of the EIT chain. All curves
have been obtained using the model of Eq. (29). Solid red
lines show the modulated pulse, while dashed black lines re-
sult from static cases. (a) Single EIT layer [L = 200 µm,
vgr = 10−7 c, D = 6 × 10−7 (ωp/k2

p)] with a Gaussian pulse (σt =
10 µs, �abs ≈ 500σ̄x). Effect of a double ramp (as, e.g., in
Fig. 4): v+

gr/v
−
gr = 10, τ = 3.5 µs, and storage time τs = 8 µs. (b) EIT

double-layer structure [L = 30 µm (each layer), interlayer distance
�L = 3 × 107 µm, vgr = 5 × 10−7 c, D = 3 × 10−6 ωp/k2

p] with a
Gaussian pulse (σt = 1 µs, �abs ≈ 400 σ̄x). Slow-down ramp in both
layers: �v = −0.5 vgr, τ = 50 ns. (c) EIT chain with four layers
[same as (b) but �L = 6 × 107 µm] with Gaussian pulse [same as
(b)]. Effect of a single slow-down ramp: �v = −0.7 vgr, τ = 50 ns.

be shaped down to the absorption length. Its height can be
enhanced by applying different ramps to the different layers,
for example, with opposite signs. The creation of such short
and intense pulses can be of great interest in view of creating
a strongly localized polariton, whose dynamics has been
predicted to show peculiar features [20].

VII. CONCLUSION

In conclusion, we have developed a Maxwell-Bloch formal-
ism to investigate the propagation of a light pulse through a
multilayer structure consisting of alternating layers of a generic
EIT medium and vacuum. The formalism recovers the usual
polariton dispersion in a homogeneous EIT medium and is
able to include reflection at interfaces as well as absorption
processes.

The effect of a dynamical modulation of the control field
amplitude on the pulse shape is studied and specific attention
is paid to the case when the modulation takes place while
the pulse is overlapping an interface: As reflection and losses
remain negligible as long as the pulse fits in the EIT window,
abrupt cuts on the wave-packet profile can be performed.
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In order to rapidly and efficiently simulate the propagation
in geometry with strong velocity mismatch, an effective
equation for the wave-packet propagation is developed. The
resulting modified continuity equation is shown to account for
both propagation and absorption effects. A good agreement
with the full Maxwell-Bloch calculations is found.

Starting from this equation, several manipulation schemes
have been proposed and characterized using realistic pa-
rameters for ultracold atomic clouds: contrary to standard
light-storage techniques, our proposal is able to take full
advantage of the reduced size of typical atomic clouds. A
most interesting possibility is the creation of highly localized
peaks.

Our calculations confirm that the wave-packet manipulation
can be performed in a coherent and almost lossless way, which
opens interesting perspectives toward the quantum processing
of single-photon wave functions for optical quantum com-
puting applications. From a broader standpoint, the peculiar
reflection properties at the interfaces of atomic media can be
useful for polariton trapping and guiding as well as interface
characterization.
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